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Transcription readthrough is prevalent in healthy
human tissues and associated with inherent
genomic features
Paulo Caldas 1,2✉, Mariana Luz 1,2, Simone Baseggio 1,2, Rita Andrade1,2, Daniel Sobral 1,2,3 &

Ana Rita Grosso 1,2✉

Transcription termination is a crucial step in the production of conforming mRNAs and

functional proteins. Under cellular stress conditions, the transcription machinery fails to

identify the termination site and continues transcribing beyond gene boundaries, a phe-

nomenon designated as transcription readthrough. However, the prevalence and impact of

this phenomenon in healthy human tissues remain unexplored. Here, we assessed tran-

scription readthrough in almost 3000 transcriptome profiles representing 23 human tissues

and found that 34% of the expressed protein-coding genes produced readthrough transcripts.

The production of readthrough transcripts was restricted in genomic regions with high

transcriptional activity and was associated with inefficient splicing and increased chromatin

accessibility in terminal regions. In addition, we showed that these transcripts contained

several binding sites for the same miRNA, unravelling a potential role as miRNA sponges.

Overall, this work provides evidence that transcription readthrough is pervasive and non-

stochastic, not only in abnormal conditions but also in healthy tissues. This suggests a

potential role for such transcripts in modulating normal cellular functions.
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Transcription termination is a highly regulated process
involving nascent transcript cleavage and RNA Polymerase
II (RNAPII) release to produce conforming RNAs1. In

certain conditions, the transcription machinery fails to recognize
the transcription termination site and continues transcribing
beyond annotated gene boundaries, a phenomenon termed
transcription readthrough (TRT)2–6. Such aberrant transcription
produces longer RNAs designated as readthrough transcripts (RT
transcripts) or Downstream-of-Gene (DoG) containing
transcripts2. These transcripts have been detected under a variety
of cellular stress conditions, including hyperosmotic stress, heat
shock, oxidative stress2, hypoxia7,8, viral infections3,9 and even
cancer4. Moreover, inactivation of modulators of histone mod-
ifications, splicing, or transcription termination can also produce
aberrant transcripts4,10–13.

These transcripts are typically described as RNA molecules
extending at least 5 kbps past the normal termination site of their
gene of origin (RT gene) and are retained in the nucleus close to
their transcription site, most likely associated with chromatin2,5,6.
In this context, it has been suggested that they may play a role in
supporting chromatin structure. Readthrough transcription can
also invade neighboring genes affecting their expression and
impacting the transcriptome widely. For instance, downstream
genes (usually silenced pseudogenes) can be transcribed without
the activation of their promoters14. In contrast, functional anti-
sense RNAs can be transcribed by the readthrough of convergent
genes, resulting in the repression of host genes15. In addition,
readthrough transcription can lead to the production of circular
RNAs from downstream genes9 or produce RNA chimeras by
combining coding elements from different genes, where the
intergenic regions and flanking exons (lacking splice sites) are
removed by the splicing machinery4.

Overall, transcription readthrough may severely modify the
transcriptome and threaten the integrity of vital gene expression
programs, but it may also produce functional noncoding RNAs
with roles in gene regulation or cellular processes. However, the
prevalence and functional impact of transcription readthrough in
healthy tissues remains elusive.

Here, we assessed the levels of transcription readthrough
(TRT) across 23 human tissues from 2778 high-throughput
sequencing transcriptome (RNAseq) profiles available from the
Genotype-Tissue Expression project16–18. We showed that TRT
occurs frequently across several healthy human tissues, with
higher expression levels contributing to exacerbating the effect.
However, the expression levels can only partially explain such
behavior, suggesting that certain gene features may play a role in
propagating these termination defects. Our findings suggest that
inefficient splicing, increased chromatin accessibility and deple-
tion of CG-rich regions downstream of RT genes are some of
these trademarks. Moreover, we found that readthrough tran-
scripts contained several binding sites for the same miRNA,
indicating a potential role as miRNA sponges. As a result, our
work shows that transcription readthrough is not exclusive to
pathological conditions but is pervasive in healthy tissues, sug-
gesting a potential role for readthrough transcripts in the reg-
ulation of cellular processes.

Results
Transcription readthrough is pervasive in healthy tissues. To
assess the prevalence of transcription readthrough in normal cells,
we analyzed the transcriptome profiles of 2778 samples from 23
different healthy human tissues obtained from the GTEx
project16–18 (Fig. 1a; Supplementary Fig. 1a; Supplementary
Data 1). We used ARTDeco19 to depict transcription termination
defects by searching for significant read coverage downstream of the

transcription termination site (TTS) of each expressed gene (see
Methods for details) (Fig. 1b). Since GTEx samples were profiled
using nonstranded RNAseq libraries, approximately 28% of the RT
transcripts identified could correspond to downstream genes being
expressed in the opposite strand (Supplementary Fig. 1b). To ensure
a robust list of RT genes, we filtered out such false-positive cases by
removing the RT transcripts overlapping genes in the opposite
strand (being classified as undefined genes). However, this approach
also eliminates legitimate RT transcripts with close downstream
neighbors, resulting in an underestimation of the real transcrip-
tional readthrough occurring in the cell. In fact, we applied the
same approach to a small collection of strand-specific transcriptome
profiles20, confirming that some of these ambiguous cases were
indeed valid transcription readthrough events (Supplementary
Fig. 1b). Nevertheless, to take advantage of the extensive data
available on the GTEx repository, we proceeded with the char-
acterization of TRT in healthy tissues by discarding the dubious
cases and considering only the underestimated but robust list of RT
genes. To overcome the known effects of death and post-mortem
cold ischemia on human tissue transcriptomes21,22, we considered
only adults with fast deaths and no terminal diseases (see Methods
for details). Furthermore, we did not find any strong correlation
between the levels of transcription readthrough and the attributes of
the GTEx samples, such as ischemic time or RNA integrity number
(Supplementary Data 2).

Our analysis confirmed the existence of transcription read-
through across a variety of healthy tissues, where 10-20% of the
expressed genes in each tissue produced RT transcripts (Fig. 1c;
Supplementary Data 1). The number of RT genes varied within
each tissue type (Supplementary Fig. 1c), which could be
explained by the heterogeneity in tissue sampling. Notably, the
large number of undefined cases in all the tissues suggests that
this phenomenon may occur even more frequently. The brain
cerebellum and testis showed the highest number of RT genes,
whereas the lowest amount was found in the skeletal muscle and
heart regions (Fig. 1c; Supplementary Fig. 1c). These findings
suggest that transcription readthrough occurrence may be
associated with cellular proliferation rates. However, no sig-
nificant correlation was found between the expression of the
proliferation marker KI67 and readthrough levels (Spearman
R= 0.20, p value= 0.33, Supplementary Fig. 1d).

Interestingly, ~85% of the 7138 RT genes found across all
tissues corresponded to protein-coding genes (Fig. 1d). This
enrichment was significantly more pronounced relative to genes
without readthrough (Fisher’s exact test p value < 0.05; Supple-
mentary Fig. 1e). In fact, 34% of the human protein-coding genes
expressed in tissues (excluding protein-coding from undefined
cases) produced RT transcripts, reinforcing the pervasiveness of
transcription readthrough in normal cells. Moreover, our analysis
revealed that 64% of RT transcripts were detected in at least two
different tissues (Fig. 1e), with 20% being expressed in half of the
tissues (Supplementary Fig. 1f). Consistent with this, physiolo-
gically related tissues showed similar RT patterns, with clustering
resembling segregation when expressed genes were used (Supple-
mentary Fig. 1g). Thus, these findings suggest that transcription
readthrough is not a stochastic process and its occurrence may be
associated with specific cellular or genomic aspects.

Production of RT transcripts is restricted in regions with high
gene activity. To characterize the occurrence of transcriptional
readthrough under normal cellular conditions, we explored sev-
eral gene features. Overall, we found a moderate and significant
correlation between the expression levels of the RT tail and the
respective RT gene (Pearson R > 0.4, p value < 0.001; Fig. 2a, b).
However, we did not observe a relevant increase in the expression
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levels of RT genes when compared with genes without tran-
scription readthrough (NRT) (Cohen’s d < 0.25 and Mann-
Whitney rank test FDR < 0.05, Supplementary Fig. 2a). In fact,
high gene expression levels do not seem to be sufficient to pro-
duce RT transcripts, since the proportion of highly expressed
genes without transcription readthrough was higher than 70% in
most tissues (Fig. 2c). These findings are consistent with previous
studies showing that RT transcripts are produced regardless of
the transcriptional levels of their host genes2,5,23.

Overall, the length of RT transcripts ranged from 2 kbp
(minimum defined length by ARTDeco) up to 60 kbp, with an
average size of 5 kbp across all tissues (Fig. 2d). However, we did
not find any correlation between RT transcript length and
expression levels of the respective RT genes (Spearman R= 0.035,
Supplementary Fig. 2b). Given the long length of RT transcripts,
we hypothesized that the closest presence of actively transcribed
neighboring genes could influence the occurrence of transcription
readthrough. We examined the distance between the termination
site of each group of genes (RT versus NRT) and the downstream
expressed gene, but we did not find any significant difference
between the groups (Cohen’s d < 0.02, Supplementary Fig. 2c).

We then investigated how transcription readthrough occur-
rence differed across chromosomes. We found a significant
enrichment of RT genes on chromosome 4 and a significant
depletion on chromosomes 16 and 17 in several tissues relative to
all expressed genes (Fig. 2e). Importantly, no enrichment was
found for genes without readthrough (Supplementary Fig. 2d).
Such discrepancy could be associated with the different
transcription activity across chromosomes. Indeed, we found a
moderate but significant negative correlation between transcrip-
tion readthrough occurrence and the density of expressed genes
for each chromosome (Spearman’s R=−0.657, p value < 0.01,
Fig. 2f, Supplementary Data 3). Such a negative association
persisted even when using the tissue strand-specific profiles,
discarding any potential technical artifacts introduced by our
filter (Spearman R=−0.472, p value < 0.05; Supplementary
Fig. 2e). In addition, since gene density is not uniform along
each chromosome, we confirmed these findings by considering
small segments within each chromosome (Spearman R=−0.415,
p value < 0.01 Supplementary Fig. 2f). Therefore, our results
suggest that nearby high gene activity can restrict transcription
readthrough.
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Fig. 1 Transcription readthrough prevalence in healthy human tissues. a Schematic representation of the overall approach for depicting readthrough
genes (RT genes) and non-readthrough genes (NRT genes). Human illustration design by Vexels. b RNAseq profiles for genes DYRK1B and PSMC4 showing
the transcription readthrough region (red) in skeletal muscle. RNAseq coverage is represented as reads per kilobase per million mapped reads (RPKMs).
Boxes represent exons separated by introns shown as solid lines. Assembly GRCh38, gencode annotation v37. c Expressed genes in each tissue classified
according to our computational approach: RT genes (red), NRT genes (blue), and undefined (UND genes, gray). d Proportion of RT genes detected in each
tissue grouped by gene type: protein-coding, lncRNA, pseudogenes, and other genes. e Heatmap representing the percentage of RT genes common
between each tissue pair.
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RT transcripts are delimited by specific epigenomic features.
Since gene expression is linked to chromatin accessibility24, we
characterized the chromatin landscape of readthrough tran-
scribed regions using molecular profiles of healthy tissues from
the Epigenome Roadmap Project25. After identifying RT and
NRT genes in nine healthy tissues, we assessed the enrichment of
25 chromatin states encompassing 11 histone modifications and
DNAse profiles (Supplementary Fig. 3a). Notably, the transcrip-
tion termination site (TTS) vicinity of RT genes showed enrich-
ment for chromatin states typical of 3’ end transcribed regions
and enhancers (chromatin states 9 and 11) (Fig. 3a). To deeply
explore the epigenetic landscape associated with transcription
readthrough, we applied a permutation approach with
expression-matched genes for each mark associated with enriched
chromatin states (Supplementary Fig. 3a–c; Methods for details).
In fact, when comparing the expression-matched RT and NRT
genes, we observed a higher presence of histone marks typical of
transcription elongation (H3K36me3) at the 3’ end of RT genes
relative to genes without readthrough, which continued beyond
the transcription termination site (Fig. 3b, c and Supplementary
Fig. 3d). Some tissues also showed enrichment of accessible reg-
ulatory chromatin (H3K4me1 and H3K27ac) after the tran-
scription termination site (Fig. 3b and Supplementary Fig. 3d).
The presence of these three chromatin marks beyond the 3’ end
of RT genes has been previously reported under conditions of
stress or HIV infection5,6. Thus, our findings show that such
epigenetic alterations are also associated with the production of

transcription readthrough in healthy conditions. Furthermore, we
also characterized the terminal regions of the RT transcripts,
where we found enrichment for an enhancer-associated chro-
matin state (chromatin state 13; Fig. 3a). Consistently, the ends of
RT transcripts showed higher levels of enhancer-specific histones
H3K4me1, H3K27ac, and H3K4me2 (Fig. 3b, c; Supplementary
Fig. 3d). Moreover, we detected high levels of DNase hypersen-
sitivity profiling, indicating increased accessibility. This suggests
that enhancer activity may prevent such aberrant elongation.
Thus, our findings indicate that transcription readthrough in
normal tissues is associated with specific chromatin states.

Splicing efficiency and sequence termination elements influ-
ence Transcription Readthrough. Gene expression is a complex
cellular process with many closely coupled steps where each one
functionally impacts the next26. Given that decreased co-
transcriptional splicing efficiency may lead to termination
defects3, we explored the association between inefficient splicing
and transcription readthrough in healthy human tissues. When
comparing expression-matched genes, we observed intron
retention levels higher in RT versus NRT genes for some tissues
(e.g., liver, skeletal muscle and esophagus mucosa) (Fig. 4a, b and
Supplementary Fig. 4a; Methods for details). Moreover, a sig-
nificantly moderate correlation was found between the respective
RT tail expressions (Supplementary Fig. 4b). However, these
differences were not consistent across all tissues (Fig. 4b). The
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retention of introns occurs frequently in both RT and NRT genes,
especially in the last two introns (Fig. 4b: Supplementary Fig. 4a).

Notably, we found a striking association between transcription
readthrough occurrence and the number of introns for all
expressed genes (Spearman R= 0.82, p value < 0.001; Fig. 4c,
Supplementary Data 4). Intronless genes seemed to be less prone
to readthrough (<5%), and this tendency increased with the total
intron count, reaching a plateau where approximately 30% of
genes with more than 20 introns produced RT transcripts. To
further explore the potential cause-effect link between abnormal
splicing patterns and transcription readthrough at the genome-

wide level, we reanalyzed the transcriptome profiles of human
cells in which the knockout of the canonical splicing factor
U2AF1 leads to global levels of intron retention27. We observed
that the proportion of RT transcripts produced by each RT gene
increased upon the inactivation of the splicing factor (Fig. 4d). All
together, these findings suggest that intron number is correlated
with splicing efficiency, which may influence the molecular events
taking place at gene ends.

Besides accurate splicing, the presence of specific pause sites
and a strong poly(A) signal downstream of genes can also
modulate transcription termination12. Therefore, we decided to
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5 Tx5 Transcribed - 5' preferential
6 Tx Strong transcription
7 Tx3 Transcribed - 3' preferential
8 TxWk Weak transcription
9 TxReg Transcribed & regulatory (Prom/Enh)
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13 EnhA1 Active Enhancer 1
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Fig. 3 Epigenomic features of RT genes in healthy tissues. a Heatmap representing the enrichment of 25 chromatin states for regions (+/− 2Kbps)
upstream Transcription Termination Site (TTSminus), downstream TTS (TTSplus) and around the terminal region of RT transcripts (RT End). b, c Number
of RT/NRT genes and RT ends with chromatin marks associated with the enriched chromatin states in different regions for colon-sigmoid (b) and
esophagus (c). Boxplot whiskers represent the 25th and 75th percentiles, while the mid-line in each box represents the median. The ‘*’ indicates
statistically significant differences: Mann-Whitney test p value < 0.01; Cohen’s d > 1.
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investigate the sequence patterns at the 3’ end of RT genes in
comparison with NRT genes. We assessed the enrichment of all
possible 6-mers in the region immediately upstream and down-
stream of the TTS (500 bp in each direction) using permutation
analysis (Fig. 4e; Methods for details). Our analysis revealed a
significant scarcity of GC-rich k-mers in RT genes comparing to
NRT genes (e.g. CCGCGC, CCGCGG, CCGUCG CGCCGC)
consistently across all tissues (Fig. 4e; Supplementary Data 5).
Others have shown that GC content is correlated with a slower
elongation time, allowing more time for the 3’-cleavage complex
to find the poly(A) site28. This depletion of GC clusters at the end
of RT genes might create a shorter window of opportunity for the
RNA cleavage at the desired specific site, thereby increasing the
likelihood of transcription readthrough. Surprisingly, we could
not observe the previously described depletion of polyA signals in
stress-induced transcription readthrough5. Such results suggest
that the occurrence of transcription readthrough in healthy
tissues is not determined by the presence or strength of the polyA
signals.

Therefore, our findings show that failures in co-transcriptional
splicing and termination processes may influence transcription
readthrough in healthy conditions.

Transcription readthrough may impact cellular processes. Our
analysis revealed that a large fraction of protein-coding genes
could produce RT transcripts in healthy human tissues. However,

it is still unclear how transcription readthrough affects cell
homeostasis. Because GTEx samples were profiled using poly(A)
enrichment of the mRNA, the depicted RT transcripts may be
stable mRNA molecules and possibly translated. Over-
representation analysis of the RT genes relative to the expressed
genes for each tissue revealed that RT genes are associated with
tissue-specific biological processes, such as muscle tissue devel-
opment in the heart and skeletal muscle regions, steroid binding
and monooxygenase activity in the liver, and regulation of the
MAPK cascade in adipose tissue (Supplementary Fig. 5a).

The occurrence of transcription readthrough in genes essential
for tissue function suggests a possible role for RT transcripts.
Thus, we hypothesized that the transcription readthrough could
also interfere with protein production through miRNA-mediated
gene regulation due to the extension of regions for miRNA
binding. More importantly, RT transcripts can act as sponges for
miRNAs targeting the respective RT genes. Such a mechanism
has been observed for long noncoding RNAs or between
pseudogenes and parental genes sharing miRNA binding
sites29,30. To address this hypothesis, we assessed the miRNA
binding sites on the RT tails and the last exon of the respective RT
genes in silico. Although the density of binding sites per base pair
was not higher (Cohen’s d= 0.04), the RT tails contained a
higher number of nonbinding sites relative to the last exons
(Cohen’s d= 0.67 and Mann-Whitney rank test p value < 0.05,
Supplementary Fig. 5b). More importantly, 1576 RT genes (22%
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of all RT genes) were identified as putative sponges for 2276
miRNAs (85% of total miRNAs analysed) across different tissues
(Fig. 5a, Supplementary Fig. 5c, Supplementary Data 6). Most
putative sponged miRNAs were common to several tissues, which
is consistent with the large number of RT genes shared across
tissues (Fig. 5b). Of the 145 miRNAs with putative sponges
specific to one or two tissues, we found that 13 were highly
expressed in the respective tissue (Fig. 5c and Supplementary
Fig. 5d).

We previously showed that cancer-associated TRT events may
reach downstream genes that potentially alter their expression
levels4. Thus, we explored whether the invasion of adjacent
downstream genes was frequent in healthy tissues by searching
for readthrough tails overlapping the expressed genes down-
stream. However, only a small fraction of the RT transcripts (<1%
across tissues) reached downstream genes (Fig. 5d: Supplemen-
tary Fig. 5e). A large fraction of these read-in genes are long non-
coding RNAs; however, a few RT transcripts can reach down-
stream protein-coding genes (Supplementary Fig. 5f).

Finally, given that aging is associated with an increase in
transcriptional noise, we presumed that the transcription read-
through could be one of the processes contributing to the
production of aberrant RNAs. In fact, older individuals presented
higher levels of aberrant transcripts in the cerebral cortex, skeletal
muscle, and adipose tissue (Fig. 5e). This indicated that
transcription readthrough levels vary with age in a tissue-
dependent manner, where they can contribute to cellular fitness
loss. In agreement with cellular senescence contributing to
individual aging, we also detected higher levels of RT transcripts

in human senescent cells31 (Supplementary Fig. 5g). Moreover,
the higher prevalence of RT transcripts in the cerebral cortex of
older adults suggests an association between transcription
readthrough and neurodegenerative diseases. Previous transcrip-
tome studies of human cortical regions have revealed increased
intron retention associated with progressive aging and Alzhei-
mer’s disease32. Thus, we hypothesized if inefficient splicing could
lead to the production of RT transcripts in brain regions of
Alzheimer’s patients. In fact, reanalysis of the same human
transcriptome profiles32,33 revealed that the cortical regions of
Alzheimer’s patients show higher levels of transcription read-
through proportion (Supplementary Fig. 5h).

Therefore, our findings suggest that the production of read-
through transcripts may play a role in competitively sequester of
miRNAs and be part of the ageing-related transcription noise.

Discussion
In recent years, transcription readthrough has emerged as a
hallmark of cellular stress responses linked to some human dis-
orders (e.g., cancer and viral infections). However, the prevalence
of this phenomenon in healthy human tissues has not yet been
explored. Here, we show that readthrough transcription is not
exclusive to anomalous conditions and is pervasive across a
variety of tissues from healthy individuals. Although conceptually
readthrough and alternative polyadenylation may appear
equivalent, transcription readthrough has been designated as the
extended transcription for several thousand base pairs beyond the
annotated gene 3’ end2–5,8. Thus, such transcripts show a
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continuous coverage profile beyond any known isoform or
alternative polyadenylation event. Following these criteria, we
quantified the transcription readthrough by searching for sig-
nificant read coverage downstream of all expressed genes in
hundreds of transcriptome profiles available from the GTEx
project. The use of such a large set of samples allows a larger and
more comprehensive portrait of human tissues, but may present
some caveats. First, post-mortem changes affect cellular processes
such as transcription, impacting transcriptome profiles21. To
overcome this issue, we selected only adults with fast deaths, and
we did not find any association between RT levels and several
technical features (e.g., ischemic time and RNA integrity num-
ber). Second, the type of RNA-seq libraries available (unstranded
and poly A-enriched data) limited our ability to accurately detect
all potential RT transcripts. Nevertheless, even after filtering out
dubious cases, our analysis revealed that approximately 20% of
the expressed genes could undergo transcription readthrough in
healthy human tissues. In addition, the correlation found between
the RT tail and the respective genes may indicate a lack of
sequencing coverage to detect transcription readthrough in genes
with low expression. Hence, our underestimated value may
represent only the tip of the iceberg regarding transcription
readthrough in normal cells. Therefore, only a comprehensive
analysis using strand-specific total RNA and augmented coverage
will clearly reveal the extension of transcription readthrough in
human cells. However, we also detected recurrent production of
RT transcripts across tissues, suggesting that transcription read-
through is not a stochastic process.

In fact, our comprehensive analysis identified several distinct
features between genes with and without a transcription read-
through in normal cells. We observed that high gene activity
restricts the occurrence of transcription readthrough. This finding
is consistent with the view that head-on collisions between two
converging RNAPIIs may be necessary to prevent transcriptional
readthrough34. Nevertheless, the expression levels of these genes
were insufficient to produce RT transcripts. In agreement with
this, other studies have found that RT transcripts are produced
regardless of the transcriptional levels of their RT genes in
response to stress5,23.

Furthermore, we found that the production of RT transcripts
in healthy tissues was associated with specific epigenetic prop-
erties. The TTS vicinity of RT genes showed a higher presence of
histone marks typical of transcription elongation (H3K36me3)
and accessible regulatory chromatin (H3K4me1 and H3K27ac),
consistent with previous observations under conditions of stress
or HIV infection5,6. However, it is not clear whether alterations in
these markers are the cause or consequence of readthrough
transcription. More importantly, the ends of the RT tails were
associated with the presence of an active enhancer-associated
chromatin state, showing higher levels of enhancer-specific his-
tones (H3K4me1, H3K27ac, and H3K4me2) and DNase hyper-
sensitivity profiling. Therefore, our results suggest that RT
transcript elongation is restricted by enhancer activity (e.g.
binding of multiple proteins or alterations in chromatin
conformation).

In addition, our work also discerned the co-occurrence of
inefficient splicing and transcription readthrough in healthy
human tissues, in agreement with previous studies showing that
unspliced mRNAs are typically not cleaved at their 3’ ends and
often produce readthrough transcripts35–38. More importantly,
we found a striking correlation between intron number and the
likelihood of producing readthrough transcripts, reinforcing that
splicing efficiency is an important factor in guiding correct
transcription termination. In addition to splicing, RT genes also
showed a depletion of GC-rich k-mers in terminal regions. Given
that GC-content is associated with a reduction of elongation rate

necessary for 3’-cleavage process (Geisber et al. 2022), we pos-
tulate that in RT genes the lack of such specific signals may
prevent RNA polymerase stalling and lead to readthrough. Sur-
prisingly, we could not observe a significant depletion of the
polyA signal (AAUAAA) as previously associated to stress-
induced transcription readthrough (Vilborg et al. 2017). Such
results may indicate that the absence or strength of polyA signals
is not a major determinant for the occurrence of transcription
readthrough in normal cells.

Here, we addressed the potential impact of transcription
readthrough in healthy human tissues. According to our results,
only a small percentage of readthrough transcripts reach down-
stream genes, indicating that read-in events are extreme cases of
stress or cancer4. Nevertheless, we found that RT genes may
occur preferentially in genes essential for tissue function, raising
questions about their potential role. In fact, we showed that RT
transcripts may be putative miRNA sponges, which sequester
miRNAs targeting their respective RT genes. Such a role has
already been demonstrated for long non-coding RNAs sharing
miRNA binding sites with protein-coding genes30,39. Moreover,
given that intron-containing transcripts have been shown to serve
as a source of gene regulation in several contexts40, one might
hypothesize that RT transcripts derived through inefficient spli-
cing may also regulate gene expression via post-transcriptional
processing. Finally, we revealed that RT transcripts contribute to
the transcription noise that prevails in senescent cells and aging
tissues. More importantly, our analysis detected higher levels of
aberrantly long RNAs in the cerebral cortex of Alzheimer
patients. Although complementary and independent datasets
should be explored, our results suggest that transcription read-
through may be prevalent in age-related disorders.

In conclusion, our study revealed that the transcription read-
through is widespread in healthy human tissues, characterized by
specific genomic and epigenomic features. Moreover, we unra-
velled the potential roles of RT transcripts as modulators of gene
expression under healthy conditions.

Methods
Transcriptome profiles from Human healthy tissues. RNA
samples (BAM files) were accessed on 2021/04/01 from the
Genotype-Tissue Expression (GTEx; release v8) project allocated
to the NCBI database of Genotypes and Phenotypes
(dbGaP)16–18. Authorization was granted to dbGaP Accession
phs000424.v8. p2, where NIH Genomic Data Sharing Policy
policies are applied to protect the privacy of patients (all infor-
mation is anonymized). The GTEx platform includes approxi-
mately 948 postmortem donors, from whom RNA samples from
several tissues were isolated in an ongoing manner as donors were
enrolled in the study. We considered only paired-end samples
with at least 60 million reads per sample and prepared with the
Illumina TruSeq library construction protocol (nonstrand specific
polyA+ selected library). Cell culture samples and tissues con-
taining fewer than 50 samples were excluded. Healthy subjects
were selected by filtering samples for “violent and fast deaths” and
“no terminal diseases”. We obtained 2778 samples from 23
healthy human tissues that were used for downstream analyses.

Transcription readthrough detection. We first converted the
downloaded BAM files from dbGaP back to FASTQ using sam-
tools (v.1.10)41 and re-aligned them to the reference genome
(GRCh38 assembly; release 37, GRCh38.p13) using STAR
(v2.7.8a)42. To detect the transcription readthrough, we used
ARTDeco19, a pipeline for analyzing and characterizing tran-
scriptional readthrough that searches for continuous coverage
over a minimal length downstream of the 3’end of each gene
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locus (annotation version 37, Ensembl 103) using a rolling win-
dow approach. The transcription levels of the window must meet
the thresholds to be considered part of the readthrough tail. We
used a rolling window of 500 bp, minimum length of 2000 bp,
and minimum coverage of 0.15 FPKM. ARTDeco uses HOMER’s
tools43 to select only uniquely mapped reads for downstream
analysis and returns a variety of metrics to measure readthrough.
We used the information contained inside the “quantification”
and “dogs” folders (expression levels and novel transcripts created
as a result of readthrough, respectively) for downstream analysis.

As GTEx samples were profiled using nonstranded RNAseq
libraries, a significant number of reads identified as downstream
transcripts corresponded to reads coming from genes being
expressed in the opposite direction. Because transcriptional
signals can come from either direction, ARTDeco is ambiguous
when inferring a true downstream transcript in some cases. To
eliminate these dubious cases created by the lack of strandedness
(designated as undefined genes), we filtered the output from
ARTDeco to report only entries that did not overlap with genes in
the opposite strand, using the intersect function from bedtools
(v2.30.0)44. This approach discards RT transcripts with close
downstream neighbors in the opposite strand but ensures that our
list of readthrough genes is robust. In addition, only RT
transcripts from the expressed genes in each given tissue were
considered for downstream analysis. Expressed genes were
defined as those with FPKM > 1 in at least 25% of the samples
of a given tissue.

To show that some of these ambiguous cases can be either valid
transcription readthrough events or false positives, we obtained
strand-specific transcriptome profiles20 from the Gene Expression
Omnibus (GEO) repository: adipose tissue (GSM1010958), testis
(GSE93500), and heart (GSE93498). The workflow described
above was applied to each sample, except for the filter for
ambiguous readthrough events. Illustrations of the genomic data
were built using the pyGenomeTracks Python module45.

Hierarchical clustering analysis was performed in Python
(Seaborn’s Clustermap package) using all 7138 RT genes
identified across all tissues. We normalized the median expression
of the RT tail across all samples to the respective median
expression of the gene body (RTratio = RTlevels/(RTlevels
+GeneLevels)). A RT ratio of zero was attributed to RT genes
that were not present in certain tissues. Clustering of all expressed
genes was performed using the 10000 most variable expressed
genes across all tissues and z-score normalization.

Gene Density Analysis. To determine the distance between each
TTS gene and the closest expressed gene downstream, we used
the closest function of bedtools (parameters -D a -iu -io –s). For
each given gene of interest, bedtools reported the nearest gene
found (and the respective distance) from a second input list,
containing all expressed genes. Each gene on the first input was
labeled as RT or NRT to build the barplot in Supplementary
Fig. 2c. We used the Mann-Whitney test to assess statistical
significance (p value) and Cohen’s d for the effect size.

Chromosome enrichment analysis was performed by counting
the number of RT, NRT and expressed genes found in each
chromosome and comparison using Fisher’s exact test for each
chromosome (RT vs. expressed genes; NRT vs expressed genes),
adjusting for multiple testing (FDR < 0.05). Enrichment results
are displayed as a heatmap representing the detected significance
(FDR values) for enrichment (red) and depletion (blue). To
estimate the gene density per chromosome, we counted the
number of expressed genes divided by each chromosome length.
As gene density is not uniform along each chromosome, we
performed the same analysis considering regions of 1 megabase

pairs to compute gene density, instead of the whole chromosome.
All statistical analyses and plots were produced using built-in
functions in the Python environment.

Epigenetics analysis. To evaluate whether RT genes had sig-
nificantly altered epigenetic marks, we used existing chromatin
state annotations available from Roadmap Epigenomics and
defined by ChromHMM46. Under a 25-state ChromHMMmodel,
we considered the following state annotations as active regulatory
regions:

1-TssA (Active TSS); 2-PromU (Promoter Upstream TSS);
3-PromD1 (Promoter Downstream TSS 1); 4 - PromD2
(Promoter Downstream TSS 2); 5 - Tx5 (Transcribed - 5’
preferential); 6 - Tx (Strong transcription); 7 - Tx3 (Transcribed -
3’ preferential); 8 - TxWk (Weak transcription); 9 - TxReg
(Transcribed & regulatory (Prom/Enh)); 10 - TxEnh5 (Tran-
scribed 5’ preferential and Enh); 11 - TxEnh3 (Transcribed 3’
preferential and Enh); 12 - TxEnhW (Transcribed and Weak
Enhancer); 13 - EnhA1 (Active Enhancer 1); 14 - EnhA2 (Active
Enhancer 2); 15 - EnhAF (Active Enhancer Flank); 16 - EnhW1
(Weak Enhancer 1); 17 - EnhW2 (Weak Enhancer 2); 18 - EnhAc
(Primary H3K27ac possible Enhancer); 19 - DNase (Primary
DNase); 20 - ZNF/Rpts (ZNF genes & repeats); 21 - Het
(Heterochromatin); 22 - PromP (Poised Promoter); 23 - PromBiv
(Bivalent Promoter); 24 - ReprPC (Repressed Polycomb); 25 -
Quies (Quiescent/Low).

RNAseq samples from nine available tissues were obtained
from Roadmap Epigenomics: artery aorta (SRX263858), sigmoid
colon (SRX190146), esophagus (SRX190128), left ventricle
(SRX190136), liver (SRX218942), lung (SRX190118), psoas
muscle (SRX190140), ovary (SRX190120), and thymus
(SRX190116). We ran STAR and ARTDeco (as described
previously) to assess RT and NRT genes in each sample. We
then created bed files containing 2kbp upstream (TTSminus) and
downstream of the termination site of each RT and NRT gene
(TTSplus) as well as the flanking region (+/−2 kbp) around the
end of the readthrough tail. To reduce the overlap of selected
regions, we filtered out RT genes with tails shorter than 2500 bp.
Finally, we used the ChromHMM OverlapEnrichment module
(v1.23) to compute the fold enrichment of each chromatin state
along each flanking region.

To further corroborate the enrichment for each chromatin
state, we used all available Chip-seq datasets (narrowPeaks) for
histone modification marks of these samples from:

https://egg2.wustl.edu/roadmap/data/byFileType/peaks/
consolidatedImputed/narrowPeak/

For each dataset, we ran liftOver47 to convert the hg19 to
GRCh38 coordinates. We then computed the number of genes
with at least one peak for each chromatin mark in each defined
region using bedtools intersect (v2.30.0)44. As the RT and NRT
groups differed considerably in size and expression, we built 1000
equal-sized expression-matched subsamples by randomly select-
ing subsets of RT genes from each tissue (N= 200) and finding
the nearest-neighbor expression partner in the group of NRT
genes. We combined the number of RT and NRT regions with or
without Chip-seq peaks for a given chromatin mark from all
permutations (N= 1000), and plotted the average and standard
deviation from all subsamples generated. Statistical significance
was assessed using the Mann-Whitney U test and Cohen’s
coefficient.

Hexamer enrichment analysis. To test whether RT genes contain
different sequence compositions downstream of their termination
sites compared to NRT genes, we examined the occurrence
of all possible 6-mers in the flanking regions of each TTS
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(+ /− 500 bp). We defined the enrichment score for each hex-
amer as the log ratio of the number of occurrences between the
two groups.

score ¼ log 2
#6mer in RT genes
#6mer inNRT genes

� �

To overcome the differences between RT and NRT (size and
expression) we applied the same procedure as above, and used
1000 equal-sized expression-matched subsamples (n= 500) from
each group. To compute the significance of enrichment/depletion
of each 6-mer occurrence, we compared the counting distribution
obtained from all permutations between the two groups using the
p value from a Student’s t-test. We applied multiple test
correction to the p values and plotted the adjusted values as a
function of the enrichment score (volcano plot). Thresholds of
0.001 and 0.58 were applied to the p values and log2ratio values,
respectively, to highlight the most enriched (red) and depleted
(blue) hexamers.

Intron retention analysis. For the intron retention analysis, we
built a table (BED format) containing only information con-
cerning introns from all human genes. For this, we first created a
matrix containing all regions/coordinates that do not overlap with
any exons of any isoform (i.e. introns and intergenic regions), by
merging all gene isoforms in the ENSEMBL annotation file (GTF
format, GRCh38, version 37, Ensembl 103) and subtracting them
from spanning regions of genes using the complement module
from bedtools (v2.30.0). We then used the bedtools intersect
module to screen for overlaps between this file and all gene iso-
forms in the annotation file to generate another BED file con-
taining only intron information (e.g., gene names and
coordinates). We filtered this intron table to contain only the first
two and last two introns of each gene. Finally, we computed the
intron depth coverage for each intron in each sample using
bedtool coverage and the corresponding RPKM as follows:

RPKM ¼ ðReadCountsþ 1Þ
intronLength=1000 � TotalNumReads=1e6

Differences in gene expression and group size between RT and
NRT genes, was once again handled by randomly picking
expression-matched subsamples (500 genes) and run the analysis
for multiple subsamples (1000 permutations). Barplots show the
average RPKMs values across all samples from all permutations
for a given intron (Supplementary Figure 4c). The heatmap shows
the median value of each intron contained in the bar plots
(Supplementary Figure 4a). To show the cause-effect link between
inefficient splicing and transcription readthrough, we used
transcriptome profiles from the Encode project before
(GSE78686) and after depletion of the splicing factor U2AF1
(GSE88226) in the human cell line (HepG2). Assessment and
comparison of transcription readthrough proportions were
performed as described above.

Gene enrichment analysis. Gene set enrichment analysis for RT
genes in each tissue was performed using ToppFun Suite (Chen
et al., 2009) based on gene ontology, phenotype, and literature co-
citation libraries. The list of expressed genes in each tissue was
used as the background for enrichment analysis. For the
enrichment test of common RT genes, a list of genes commonly
expressed among the tissues was used as the background. The
results were considered significant when the adjusted p-values
(FDR) were below 0.05.

Aging and related conditions analysis. To assess how tran-
scription readthrough varied in aging tissues, we compared the

RT proportion (calculated as described above) of young (<40) and
old (>60) individuals for each tissue type using the Mann-
Whitney test (FDR < 0.05). RT transcripts were designated as up-
or downregulated according to the fold-change of RT proportion
between old and young individuals. Senescent cells were char-
acterized using transcriptome profiles for different human cell
lines (GSE63577), and early and senescent cells were defined
according to a previous study27. The comparison of brain regions
of healthy individuals and Alzheimer’s patients was performed
using transcriptome profiles from public cohorts in the Short
Read Archive: SRS373308 and SRS37325733. Assessment and
comparison of transcription readthrough proportions were per-
formed as described above.

Identification of miRNA targets. We identified miRNA binding
sites for the last exon and tail of the readthrough transcript of the
respective RT gene in each tissue. First, we obtained the DNA
sequences of each region using the getfasta function of bedtools
(v2.30.0). Second, we selected 2650 mature human miRNA
sequences obtained from miRBase48 and used the microRNA
BioConductor package49 (R package version 1.58.0) to reverse
complement and obtain the seed regions (starting position 2 and
stop position 9). We then used the scanMiR BioConductor
package50 (R package version 1.6.0) to identify miRNA-binding
sites in both regions (function findSeedMatches). We calculated
the density of the binding sites by dividing them by the respective
region length (last exon or RT tail). The comparison between the
RT tail and the last exon was performed by averaging the num-
ber/density of miRNA binding sites for each RT gene across
tissues. Differences were assessed using the Mann-Whitney test
and Cohen’s d for the effect size. miRNA sponges were defined as
RT genes containing at least 20 binding sites for miRNAs, as
previously stated51. Finally, the miRNA expression profiles for
healthy tissues were obtained from microRNA Tissue Expression
Database (miTED)52.

Statistics and reproducibility. The statistical methods employed
in each analysis are described in their respective sections. All
these statistical tests were conducted using dedicated Python
packages tailored to each specific analysis.

Ethical approval. The collection of biospecimens from deceased
individuals is not legally classified as human subjects research;
however, sites involved in the GTEx project were mandated to
secure written or recorded verbal authorization from the next of
kin for the participation of deceased donors. This was typically
facilitated through an addendum or modification to an existing
authorization form for the donation of tissues and organs for
research. The remaining data used in this manuscript (i.e.
Roadmap Epigenomics, Senescence and Alzheimer’s samples)
followed all relevant ethical regulations for work with human
subjects and informed consent was obtained from all participants.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All main RNA-seq data from human tissues used in this manuscript were accessed
through the GTEx-project (release v8) allocated in the NCBI database of Genotypes and
Phenotypes (dbGaP), under the dbGAP accession number phs000424.v8. All RNA-seq
samples for the study of epigenomic features (Fig. 3) were obtained through the
Roadmap Epigenomics platform, containing the following Short Read Archive accession
numbers: artery aorta (SRX263858), sigmoid colon (SRX190146), esophagus
(SRX190128), left ventricle (SRX190136), liver (SRX218942), lung (SRX190118),
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psoas muscle (SRX190140), ovary (SRX190120), and thymus (SRX190116). Senescence
and Alzheimer’s samples used in Supplementary Figure 5, were obtained from the GEO
dataset GSE63577 and from the Short Read Archive SRS373308 and SRS373257,
respectively. All the essential data required to replicate the analyses has been made
accessible on GitHub, and can be accessed via https://doi.org/10.5281/zenodo.
1045261153. Source data underlying most figure panels is also available there.

Code availability
All the code needed to reproduce the analyses has been made accessible on GitHub, and
can be accessed via https://doi.org/10.5281/zenodo.1045261153.
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