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Single-cell profiling of the microenvironment in
human bone metastatic renal cell carcinoma
Fen Ma1,2,9, Shuoer Wang3,4,5,9, Lun Xu3,5,9, Wending Huang3,5, Guohai Shi5,6, Zhengwang Sun3,5,

Weiluo Cai3,5, Zhiqiang Wu3,5, Yiming Huang2, Juan Meng2, Yining Sun2, Meng Fang3,5, Mo Cheng3,5,

Yingzheng Ji7, Tu Hu3,5, Yunkui Zhang5,8, Bingxin Gu4,5, Jiwei Zhang 1✉, Shaoli Song 4,5✉, Yidi Sun 2✉ &

Wangjun Yan 3,5✉

Bone metastasis is of common occurrence in renal cell carcinoma with poor prognosis, but no

optimal treatment approach has been established for bone metastatic renal cell carcinoma.

To explore the potential therapeutic targets for bone metastatic renal cell carcinoma, we

profile single cell transcriptomes of 6 primary renal cell carcinoma and 9 bone metastatic

renal cell carcinoma. We also include scRNA-seq data of early-stage renal cell carcinoma,

late-stage renal cell carcinoma, normal kidneys and healthy bone marrow samples in the

study to better understand the bone metastasis niche. The molecular properties and dynamic

changes of major cell lineages in bone metastatic environment of renal cell carcinoma are

characterized. Bone metastatic renal cell carcinoma is associated with multifaceted immune

deficiency together with cancer-associated fibroblasts, specifically appearance of macro-

phages exhibiting malignant and pro-angiogenic features. We also reveal the dominance of

immune inhibitory T cells in the bone metastatic renal cell carcinoma which can be partially

restored by the treatment. Trajectory analysis showes that myeloid-derived suppressor cells

are progenitors of macrophages in the bone metastatic renal cell carcinoma while monocytes

are their progenitors in primary tumors and healthy bone marrows. Additionally, the infil-

tration of immune inhibitory CD47+ T cells is observed in bone metastatic tumors, which may

be a result of reduced phagocytosis by SIRPA-expressing macrophages in the bone micro-

environment. Together, our results provide a systematic view of various cell types in bone

metastatic renal cell carcinoma and suggest avenues for therapeutic solutions.
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Renal cell carcinoma (RCC) is one of the most malignant
tumors worldwide, with ~400,000 new cases and almost
200,000 deaths annually1. In the United States, 76,080

individuals were diagnosed as RCC in 2021, accounting for 4% of
newly occurrent malignant tumors and 46.4% of urinary tumors2.
Eighty-five percent of the pathological diagnosis for RCC is clear
cell renal cell carcinoma (ccRCC)3, consistent with the putative
cell of origin for RCC using scRNA-seq analyses4. It is worth
noting that the ccRCC showed a high risk of distant organ
metastasis, and the five-year survival rate of RCC patients would
significantly decrease from 93% to 12% when distant metastasis
occurred5. More than one-third of metastatic RCC patients were
accompanied by bone metastases6.

Bone metastatic renal cell carcinoma (BMRCC) patients are
usually complicated by skeletal related events including patho-
logical fractures, spinal cord compression, and hypercalcemia7,8.
Until now, the main treatment options for BMRCC in clinical
application are extensive surgical resection and radiotherapy9,10.
Approved bone-targeted systemic therapies like bisphosphonates
and denosumab showed limited benefits to the improvement of
overall survival11. Although certain target-based agents such as
antiangiogenic therapy have shown promising effectiveness, the
progression-free survival of BMRCC remains low of 4.7 months
versus 11.2 months for those without bone metastases12. There-
fore, systematic molecular characterization of BMRCC by single-
cell transcriptome data may help discover predictive biomarkers
and identify therapeutic targets for improvement of BMRCC
treatment.

The intrinsic genetic heterogeneity and dynamic immunogenic
features significantly affect the therapeutic outcomes. Previous
studies have explored in-depth tumor microenvironment profil-
ing of ccRCC at single-cell level13. Tumor epithelial cells of
ccRCC have been reported to play an active role in promoting
immune cell infiltration4, while high proportions of endothelial
cells were associated with lack of response to immunotherapy in
ccRCC4. The CD8+ T cells and macrophages were reported to be
increased in the tumor micro-environment14. The cytotoxic T cell
subsets expressed higher levels of co-inhibitory receptors and
effector molecules in RCC patients with effective response to
immune checkpoint blockade15, and the maintenance of expan-
ded T cell clones were correlated with drug response to anti-PD-1
therapy16. In addition to the classical roles of phagocytosis and
antigen presentation, myeloid cells could impact response to
cancer therapy17 and directly contribute to tumor progression
and metastases18. Besides, macrophages in RCC with effective
responses to immune checkpoint blockade exhibited pro-
inflammatory characteristic15. Similarly, TREM2/APOE/C1Q-
positive macrophage was identified as a potential prognostic
biomarker for ccRCC recurrence by single-cell protein analysis19.
In addition, exhausted CD8+ T cells and M2-like macrophages
showed co-occurrence in advanced ccRCC and expressed ligands
and receptors supporting T cell dysfunction and M2-like
polarization20. As a primary hematopoietic organ, bone marrow
represents a unique reservoir for several types of immune cells,
which would dramatically influence the trajectory of malignant
disease. However, our incomplete understanding of the tumor
microenvironment and heterogeneity of BMRCC hinder the
efficient translation of these findings iBMBnto therapeutic
treatment.

Although important insights have been drawn for bone
metastases treatment in the past decades, there remain multiple
longitudinal barriers to gain a better understanding of the cell
compositions and interconnections in the bone metastatic
microenvironment. Traditional bulk transcriptome investigation
is limited by insufficient resolution to characterize specific cellular
types and expression of ligands and receptors of diverse cell types

due to the average measuring of cell populations. Here, we sys-
tematically collect both primary and bone metastatic tumor tis-
sues from ccRCC and performed scRNA-seq to explore the
ecosystem of tumor, immune and stromal cells. The current study
will provide additional therapeutic targets given a deeper insight
into the cellular and molecular characteristics of BMRCC.

Results
Cell landscape of primary and bone metastatic renal cell car-
cinoma. To explore the cellular and molecular basis of bone
metastasis of renal cell carcinoma, we collected 6 primary and 9
bone metastatic tumors from 14 ccRCC patients for scRNA-seq
analyses (Fig. 1a, Supplementary Fig. 1a, b and Supplementary
Table 1). Among them, 3 BMRCC patients were treated with
tyrosine kinase inhibitor (TKI) and PD-1 inhibitor (Supplemen-
tary Table 1). In addition, single-cell RNA-seq samples of 6 pri-
mary ccRCC in different stages, 6 healthy kidneys and 6 healthy
bone marrows were enrolled in the study from public
datasets21–24 for elucidating the unique characteristics of
BMRCC. In total, we obtained single cell transcriptomes from a
total of 258,084 cells. After stringent quality control, 33,119 cells
from early primary tumors, 27,275 cells from advanced primary
tumor, 64,582 cells from bone metastatic tumors (Supplementary
Fig. 2a and Supplementary Table 2), 27,210 cells from healthy
kidney, and 18,396 cells from healthy bone marrows were
reserved. Integration of all the cells using unsupervised graph-
based clustering revealed 11 major cell types (Fig. 1b and Sup-
plementary Fig. 2b, c), which were further annotated based on
canonical cell markers. Specifically, the immune cell types con-
sisted of T cells (CD3D and CD3E), NKT cells (GNLY and
FGFBP2), NK cells (XCL2 and KLRC1), myeloid cells (CD14,
FCGR3A, and LYZ), B cells (CD79A and MS4A1), mast cells
(TPSB1 and TPSAB1), and plasma cells (MZB1 and JCHAIN).
The non-immune cells included endothelial cells (PVALP and
PECAM1), CAFs (COL1A1 and COL1A2), and cancer cells
(KRT18 and VEGFA) (Fig. 1c).

We next compared the relationship between the major cell
types and BMRCC, with primary ccRCC and healthy bone
marrows as references. We calculated an enrichment score using
Ro/e analysis which compared the ratio of each cell type in
BMRCC with that in primary ccRCC or healthy bone marrows
(Fig. 1d and Supplementary Fig. 2d–f). The results showed that B
cells, plasma cells and T cells were enriched in BMRCC tumors
(Fig. 1d, e and Supplementary Fig. 2d), indicating the infiltration
of lymphoid cells in the bone metastasis microenvironment. By
contrast, NKT cells, mast cells and cancer cells were enriched in
early- and late-stage primary ccRCC (Fig. 1d, e). Mast cells in
tumors were thought to play a dual role in influencing the fate of
tumor cells25, the enrichment of mast cells in primary ccRCC
instead of BMRCC hinted that mast cells might exhibit diverse
functions across different tumor environment. Interestingly, the
treatment-naïve BMRCC patients showed increased infiltration
of B cells and myeloid cells in comparison with the BMRCC
patients with the immunotherapy treatment (Fig. 1e, f, and
Supplementary Fig. 2e), suggesting that the immunotherapy
treatment might help to reshape the immune microenvironment
of BMRCC.

Tumor cells in bone metastasis have stronger angiogenesis
ability. We next dissected the gene signatures of all tumor cells in
the cohort and found that the primary and bone metastatic
enriched cancer cells revealed distinct gene signatures (Fig. 2a and
Supplementary Fig. 3a–c). Notably, genes with higher expression
levels in the bone metastatic tumors demonstrated a pro-
angiogenic signature, and were enriched in blood vessel
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Fig. 1 The major cell clusters revealed by the primary ccRCC and BMRCC. a Workflow showing the process of sample collection, single-cell dissociation,
sorting, sequencing, and data analysis. b UMAP plot of all single cells from the primary ccRCC of early and advanced stages and BMRCC with or without
treatment. Cell colors indicate unsupervised clustering subgroups. Shading ranges and colors indicate cell type. c Bubble heatmap displaying the expression
levels of representative well-known markers across the cell types identified in the cohort. Dot size indicates fraction of cells with expression of the indicated
gene, and colors represent the normalized expression levels. d Lollipop plot showing the tissue distribution of each major cell type by Ro/e analysis in the
BMRCC compared with the primary ccRCC. Dot color indicate the cell type labeled. BMRCC-enriched types were characterized with Ro/e > 1. Fisher’s exact
test was used to compare significance. e The major cell type proportions among the primary ccRCC of early and advanced stages and BMRCC with or
without treatment. Colors on the columns indicate cell type. f The major cell type proportions in the heathy bone marrows and BMRCC with or without
treatment. Colors on the columns indicate cell type.
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development and VEGFA-VEGFR2 signaling pathways (Fig. 2a, b
and Supplementary Fig. 3a, b), suggesting the angiogenesis ability
of cancer cells in the BMRCC. By contrast, subpopulations in the
primary tumors exhibited higher expression of genes associated
with response to oxygen levels, IL-18 signaling pathway and TNF
signaling pathway (Fig. 2b). In addition, higher MHC associated
genes (e.g., HLA-B and HLA-C) were highly expressed in primary
ccRCC (Supplementary Fig. 3c). major histocompatibility com-
plex class II is critical for antigen presentation to T cells, and is
important for the efficacy of immunotherapy26. We also observed
that the BMRCC patients treated with immunotherapy showed
downregulation of TP53-regulated genes (e.g., TP53I3, COX6C
and TPM2) (Supplementary Fig. 3d).

To further investigate genetic heterogeneity between tumor
cells in primary and bone metastatic tumors, we inferred copy-
number alterations for all the tumor cells, with the fibroblasts and
endothelial cells as normal ploidy controls (Supplementary
Fig. 3e). We found aberrant copy-number alterations regions in
the short arm of chromosome 3, long arm of chr13, and chr14.
Specifically, extensive chromosomal gains were observed in the
long arm of chr5 and chr16. Of note, deletions in chromosome 3p
tended to be a universal truncal event in ccRCC, as this region
contains the VHL tumor suppressor locus27,28. TCGA-KIRC
cohort confirmed that VHL gene was the most common mutation
in ccRCC patients (Supplementary Fig. 3f). Interestingly, we also
observed a copy number amplification on chromosome 8q in the

Fig. 2 Cancer cell profiles in the primary ccRCC and BMRCC. a Heatmap showing the differentially expressed genes between primary ccRCC and
BMRCCs. The single cells are ordered by their tissue origins marked by the legend column on the left. Color from red to blue indicates a high to low gene
expression. b Bar plot showing functional enrichment of genes highly expressed in the primary ccRCC or BMRCC. The yellow columns indicate BMRCC
group. The blue columns indicate primary ccRCC group. c Heatmap showing the copy number variations score of genes located in the chromosome 8. The
cells are ordered by their tissue origins marked by the legend column on the left. Color from red to blue indicates a high to low gene expression. d Bar plot
showing the enriched pathways of genes located on the chr8 amplified region by GSVA. The yellow columns indicate BMRCC group. The blue columns
indicate primary ccRCC group. The x-axis showed t values calculated by limma regression. e Comparison of GSVA scores of the WNT signaling pathway
between the primary ccRCC and BMRCC. Yellow columns indicate BMRCC group, blue columns indicate primary ccRCC group. Centre line indicates
median, box represents first and third quantiles, and whiskers indicate maximum and minimum values. P value was calculated by Student’s t test, n= 11132
biologically independent cells. Effect size of Cohen’s d: 0.135.
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bone metastatic samples (P < 2.2e−16, Student’s t test) (Fig. 2c
and Supplementary Fig. 3e). Functional analysis of genes located
in the 8q amplification region showed a significant enrichment in
WNT signaling pathway (Fig. 2d), an ancient and evolutionarily
conserved pathway that regulates crucial aspects of cell fate
determination and cell migration. Further examination showed
that the activation of WNT signaling pathway in the BMRCC
tumors was significantly higher than that of primary ccRCC
tumors (Fig. 2e). These results suggested the important regulation
roles of angiogenesis and WNT signaling pathway in the BMRCC
cells and provided a potential therapeutic solution to targeting
their activities in clinical treatment.

Cancer-associated fibroblasts were associated with metastasis
and poor prognosis of RCC. As the most prevalent component
in the tumor microenvironment, CAFs play diverse roles in
driving tumorigenesis and affecting response to treatment29.
Thus, we next compared the heterogeneity of CAFs between
primary ccRCC and BMRCCs. Focused examination of the CAF
compartment revealed 5 subclusters based on canonical cell
markers (Fig. 3a, b). Common fibroblast marker genes such as
S100A4, SPARCL1 and non-specific mesenchymal markers VIM
and SPARC were found to be expressed across all subgroups
(Supplementary Fig. 4a). Gene ontology (GO) analysis using
marker gene signatures in each subpopulation showed differential
preferences for functional pathways (Fig. 3c). Specifically, devel-
opmental CAFs (dCAFs), with high expression of MYH11 and
MCAM, was functionally featured by muscle structure and tissue
development (Fig. 3b, c and Supplementary Fig. 4b), and pre-
sented in both primary ccRCC and BMRCC (Fig. 3d and Sup-
plementary Fig. 4c). While, inflammatory CAFs (iCAFs) was
characterized by interferon alpha/beta signaling, regulation of
myeloid cell differentiation, and major histocompatibility com-
plex class I antigen presentation (Fig. 3c and Supplementary
Fig. 4d), consistent with the characteristics of the recently
described antigen-presenting CAF (apCAFs)30. Vascular CAFs
(vCAFs) were featured by endothelium development and vascu-
logenesis (Fig. 3c).

Both matrix CAF (mCAF_1 and mCAF_2) clusters were
enriched in the BMRCC patients (Fig. 3d, e), with high expression
levels of extracellular matrix proteins (COL5A2, AEBP1, COL1A1,
COL1A2 and COL3A1) (Fig. 3c and Supplementary Fig. 4e). In
addition to extracellular matrix organization, mCAF_2 was also
enriched in collagen fibril organization with expression of FAP,
COMP, MMP13, and SFRP2 (Fig. 3c and Supplementary Fig. 4f).
Given the role of CAFs in the assembly of fibronectin that is
highly abundant in extracellular matrix and strongly associated
with metastasis31, mCAF_2 might be the CAF subtype affecting
bone metastasis of renal cell cancer. Comparative analysis also
revealed that the mCAF_2 subtype was more abundant in
BMRCC (Fig. 3d, e). The higher abundance of mCAF_2 in
BMRCC than in primary ccRCC was validated by immunostain-
ing experiments (Fig. 3f ). Besides, mCAF_2 exhibited signifi-
cantly higher enrichment score than mCAF_1 in the epithelial
mesenchymal transition (Fig. 3g), which is closely related to
cancer progression and metastasis32. The proportion of mCAF_2
was not decreased in BMRCC samples with treatment, suggesting
the little influence of fibroblasts upon immunotherapy. The
expression of mCAF_2 marker genes was higher in ccRCC
patients with stage III/IV (Supplementary Fig. 4g). We next
grouped the patients with ccRCC into two groups based on the
expression level of marker genes of mCAF_2, and found that the
group with high expression of mCAF_2 markers showed
significantly worse prognosis (Supplementary Fig. 4h). These

results suggested that the mCAF_2 cluster is strongly associated
with BMRCC and could predict poor prognosis for RCC patients.

Diversity of T cell subtypes in BMRCCs. To reveal the intrinsic
structure and potential functional subtypes of lymphoid cells, the
T cell populations were further subdivided into 13 sub-clusters,
including 5 clusters for CD4+ T cells, 8 clusters for CD8+ T cells
and 1 mitotic T cell cluster (Fig. 4a, b and Supplementary Fig. 5a).
Each of these clusters showed specific expression of unique sig-
nature genes (Fig. 4c). The proportions of CD8+ T cells were
increased with tumor progression, and decreased in the BMRCC
after treatment (Fig. 4b). Two clusters of inhibitor CD4+ T cells
(CD4-Treg and CD4-Tex) were identified, CD4-Treg was char-
acterized by specific expression of FOXP3, TNFRSF9 and TIGIT,
whereas CD4-Tex expressed high levels of CTLA4, PDCD1 and
CXCL13 (Fig. 4a and Supplementary Fig. 5b). Both of them were
dominant in bone metastatic tumors, and the proportion of CD4-
Treg decreased in the BMRCC patients with treatment (Fig. 4d).
We also found a large group of effect memory T cells (CD8-Tem)
(Fig. 4a, e), which could be divided to two clusters (CD8-Tem1
and CD8-Tem2). CD8-Tem1 that had higher expression of
GZMB and CTSW were enriched in bone metastatic tumors,
whereas CD8-Tem2 cells were enriched in primary ccRCC with
higher expression of KLRD1, KLRF1, and KLRG1 (Fig. 4d and
Supplementary Fig. 5c).

The proportion of exhausted T cell cluster CD8-Tex, with high
expression levels of PDCD1 and HAVCR2, was increased in
treatment-naive BMRCC samples (Fig. 4d and Supplementary
Fig. 5d). Specifically, CD8-Tex of late-stage primary ccRCC
exhibited higher expression of ENTPD1, which is related to
terminal differentiation of T cells33. By contrast, PDCD1,
CXCL13, and LGALS3 were highly expressed in the CD8-Tex of
BMRCC (Supplementary Fig. 5d), indicating the influence of
metastatic niche in T cell subsets. In addition, CD8-Tex cells in
the BMRCC samples highly expressed genes associated with
interferon response, e.g., CCL5, CCL3, and ISG15 (Fig. 4f). This
observation was consistent with previous findings that intrinsic
type I interferon signaling of CD8+ T cells skewed the
differentiation to a terminal exhaustion state34.

Interestingly, we found that the proportions of CD8-Tex were
decreased and CD8-Tem was increased, especially CD8-Tem1, in
the BMRCC after treatment (Fig. 4d), which was verified by
immunostaining assay (Supplementary Fig. 5e). Thus, we next
explored the alteration of T cell profiles upon the treatment of
PD-1 inhibitor in the BMRCC, and found that CD8-Tex cells in
the treated samples showed much higher expression of T cell
activation associated genes, including JUNB, CEBPB, and HLA-
DQB1 (Fig. 4f). Further cell trajectory analysis using Monocle235

revealed that CD8-Tem2 and CD8-Tem1 cells could differentiate
into CD8-Tex cells in the treatment-naïve BMRCC (Fig. 4g).
While, the CD8-Tex cells in the treated BMRCC patients
demonstrated potential to differentiate back into CD8-Tem2
through CD8-Tem1 cluster (Fig. 4h). Moreover, the expression of
CD8-Tem1 marker genes were higher in ccRCC patients of stage
III/IV (Supplementary Fig. 5f). Survival analysis indicated that
high expression level of CD8-Tem1 markers in primary ccRCC
was significantly associated with poor prognosis (Supplementary
Fig. 5g), whereas the high level of CD8-Tem2 indicated better
prognosis (Supplementary Fig. 5h). These results suggested that
immunotherapy might reshape the differentiation trajectory of
CD8+ T cells into activated effector T cells in the bone
metastases.

To identify potential transcription factors (TFs) associated with
the two different transition directions of CD8-Tem1 cells, we then
performed gene regulatory network analysis using SCENIC36 and

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05772-y ARTICLE

COMMUNICATIONS BIOLOGY |            (2024) 7:91 | https://doi.org/10.1038/s42003-024-05772-y | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


uncovered a series of regulons differentially expressed in CD8-
Tem1 cells between the treatment-naïve and treated BMRCC
(Fig. 4i). Specifically, ZFP30, ZNF569, TCF7,MYBL1, and HOXB2
were predominantly present in treatment-naïve BMRCC, while
XBP1, BCL3, ARID5B, RELB, and NR2C1 were featured by treated
BMRCC (Fig. 4i). The targeted genes highly expressed in the
CD8-Tem1 of treatment-naïve BMRCC were enriched in cellular
metabolic processes and regulation of leukocyte differentiation,
while those enriched in the treated group were associated with
functions including cytosine signaling in immune system, T cell

activation, immune effector process and type I interferon
signaling pathway (Fig. 4j). Together, these results indicated that
BMRCCs were enriched with infiltrated T cell subtypes with
distinct status from the primary ccRCC, and treatment might
affect the trajectory path of CD8-Tem cells by activating TFs for
T cell activation in the BMRCC.

Identification of myeloid cell subsets in primary and BMRCC.
To generate a deeper transcriptional landscape of tumor-
infiltrating myeloid cells, which modulate key cancer-associated

Fig. 3 High proportion of mCAF cells in the BMRCC. a UMAP plot showing the subtyping of CAFs. Colors of the cell indicate the cell type marked by
legend. b Heatmap showing the expression levels of top 10 marker genes for CAF subtypes. The single cells are ordered by cell types marked by the upper
legend column. Color from yellow to purple indicates a high to low gene expression. c Dot plot showing the functionally enriched pathways of marker genes
in each CAF subtype. Dot color and size indicate p value. d Bar plot showing the fraction of CAF subtypes in the primary ccRCC and BMRCC. Colors on the
columns indicate cell type. e Comparison of the fraction of mCAF_1 and mCAF_2 cells among the primary ccRCC and BMRCC. Yellow columns indicate
BMRCC group, blue columns indicate primary ccRCC group. Data presents the mean ± SEM. P values were calculated by wilcox rank sum test, n= 15
biologically independent samples. The effect size of Cohen’s d: mCAF_1: 0.118; mCAF_2: 0.822. f Immunostaining experiments showing the existence of
mCAF_2 in BMRCC and primary ccRCC. The green color indicates the expression of VIMENTIN protein. The red color indicates the expression of FAP
protein. g GSEA analysis showing the enrichment of top 5 ranked hallmark pathways between mCAF_1 and mCAF_2 subtypes. The colors of the line
indicate the pathway of enrichment.
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activities and comprise various subsets with divergent functions,
including immune evasion and responses to different types of
cancer therapy37. We further explored the subpopulations of
myeloid cells and identified 4 major lineages (Fig. 5a). Myeloid-
derived suppressor cells (MDSC), macrophages, dendritic cells
(DC), and monocytes showed high expression of canonical cell
markers, including S100A12, APOE, HLA-DQA2, and HES4,

respectively (Fig. 5b). We next examined the composition of
major lineages of tumor-infiltrating myeloid between the primary
ccRCCs and BMRCCs (Fig. 5c). Monocytes and DCs were
abundant in primary ccRCC, whereas MDSCs and macrophages
were increased in BMRCC (Fig. 5c), supporting the notion that
MDSCs are generated in the bone marrow from common mye-
loid progenitor cells38.
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Macrophages have been reported to differentiate from mono-
cytes in primary tumors23, we next explored whether the
differentiation trajectory of macrophages in the BMRCC remained
the same as the primary ccRCC. Trajectory analysis using the
identified MDSCs, monocytes and macrophages in primary
ccRCC and BMRCCs as well as normal bone marrow tissues
revealed a complete picture of the differentiation trajectories of
myeloid cells in the ccRCC (Fig. 5d). The results showed that
macrophages in healthy kidney, early- and late-stage primary
ccRCC and healthy bone marrows are mostly differentiated from
monocytes, while macrophages are mainly derived from MDSC in
the BMRCC (Fig. 5d). These results revealed enrichment of
different myeloid subtypes together with distinct differentiation
trajectories in the BMRCC in comparison with the primary ccRCC.

Further clustering of the bone metastasis-enriched tumor-
infiltrating myeloid cells MDSCs and macrophages gave rise to 14
sub-populations with specific gene signatures, including 4 groups of
MDSCs and 10 subtypes of macrophages (Fig. 5e, f, Supplementary
Fig. 6a–c). We then compared infiltration of subgroups of myeloid
cells between primary ccRCC with BMRCC (Supplementary Fig. 6a,
b). We observed that MDSC-S100A12 and Macro-NLRP3, Macro-
MRC1, Macro-CX3CR1, Macro-BAG3, Macro-CCL18, and Macro-
NRP2 were enriched in the BMRCC, with primary ccRCC from
early and late stages as comparison (Supplementary Fig. 6a, b).
MDSCs were reported to have the ability to markedly influence the
trajectory of malignant diseases38,39. We then explored the cell
transformation relationship between MDSC and macrophage
subtypes in the BMRCC, and found that MDSC subgroups
MDSC-S100A12 and MDSC-VCAN were the potential origins of
macrophages, which were further divided into two branches with
different macrophage subgroups (Fig. 6a and Supplementary
Fig. 6d). Notably, genes highly expressed at the start of the
trajectory were enriched in GO terms including chemotaxis,
regulation of growth and osteoblast differentiation (Fig. 6b),
consistent with the upregulated expression of S100A9, S100A12,
S100A4 and S100A6 in the MDSC-S100A12 and MDSC-VCAN
subtypes (Supplementary Fig. 6e). The expression of genes related
to regulation of myeloid cell differentiation were increased at the
transformation stage, accompanied by the transcriptional regulation
by TP53 (Fig. 6b and Supplementary Fig. 6e). Genes including
APOE, CD81, CD9 and GPNMB showing high expression levels at
the end of differentiation process were significantly enriched in
leukocyte migration and T cell activation pathways (Fig. 6b and
Supplementary Fig. 6e), suggesting potential interaction between
macrophages and T cells in the BMRCC.

By defining the dichotomous M1/M2 dualistic polarization
state and functional phenotypes of macrophages subtypes, we
found that Macro-CCL18 and Macro-MRC1 subgroups, which
differentiated in the same branch (Branch 1) at the developmental
trajectory, exhibited higher M2 signature and preferential
expression of genes involved in phagocytosis (Fig. 6a, c). For

the subtypes of macrophages on Branch 2, Macro-NLRP3 showed
higher expression of phagocytosis signatures (Fig. 6a, c), whereas
Macro-NRP2 exhibited higher pro-angiogenic signatures and
M2 signature (Fig. 6a, d and Supplementary Fig. 6f). Besides, the
M2 signature expression levels of Macro-NRP2 in the BMRCC
were significantly higher than primary ccRCC of both early and
late stages (Fig. 6e). In addition, high expression of Macro-NRP2
was associated with poor prognosis of primary ccRCC patients
(Supplementary Fig. 6g). The existence of Macro-NRP2 in
BMRCC was showed by mIHC (Fig. 6f). These results indicated
that Macro-NRP2 had anti-inflammatory and M2 polarization
characteristics in the BMRCC, and could also be used as a
predictive marker for prognosis of ccRCC.

Interaction between macrophages and T cells in the bone
metastatic environment. Given the dominance of macrophages in
the BMRCC and their potential role for regulating T cell activities
in the tumor microenvironment40, we next explored the cell-cell
interactions between macrophage subtypes and immune-inhibitory
T cells using CellPhoneDB41. Compared with primary ccRCC, we
found specific receptor-ligand pairs between macrophages and
immune-inhibitory T cells were enriched in BMRCC, including
pro-migratory interaction (CCL4L2-VSIR), and immune-inhibitory
interactions (SIRPA-CD47, LGALS9-HAVCR2, LGALS9-CD47,
TNF-FAS and TNF-ICOS) (Fig. 7a). Among them, the interaction
between SIRPA-CD47 pairs was widespread across diverse types of
macrophage and inhibitory T cells (Fig. 7a). In addition, the
interaction between macrophages and inhibitory T cells though
SIRPA-CD47 increased with the malignant progression of ccRCC,
with the lowest in the early stage of ccRCC and highest in the
BMRCC (Fig. 7b). Further analysis showed that expression levels of
CD47 in immune inhibitory T cells were much higher in BMRCC
than those of primary ccRCC, and PD-1 inhibitor treatment could
not decrease the CD47 expression (Fig. 7c and Supplementary
Fig. 7a). SIRPA was found to be highly expressed in macrophages
of BMRCC (Fig. 7d and Supplementary Fig. 7b), and expression
level was further elevated in macrophages of treated BMRCC
(Fig. 7d and Supplementary Fig. 7b). These results were confirmed
by the higher expression of SIRPA and CD47 in patients with late-
stage ccRCC (Fig. 7e, Supplementary Fig. 7c, d). Consistently,
compared with the primary ccRCC, we observed the simultaneous
enrichment of SIRPA and CD47 in the BMRCC by immuno-
fluorescence staining (Fig. 7f, g). Interestingly, the co-expression of
SIRPA and CD47 was significantly associated with poor prognosis
for ccRCC patients (HR= 1.39, P= 0.032) (Fig. 7h), while high
expression of CD47 or SIRPA only slightly contribute to poor
prognosis of ccRCC patients (HR= 1.34, P= 0.054 for CD47;
HR= 1.33, P= 0.078 for SIRPA) (Supplementary Fig. 7e, f). Taken
together, the expression of SIRPA-CD47 pair could serve as a
potential bone metastasis signal with poor prognosis for RCC
(Fig. 7i).

Fig. 4 Inhibitory T cell subtypes were enriched in the microenvironment of BMRCC. a UMAP plot showing the 13 subtypes of T cells. The colors of the
cell indicate the cell type marked by legend. b Bar plot showing the fractions of CD8+ T, CD4+ T and mitotic T cells in the primary ccRCC of early and
advanced stages and BMRCC with or without treatment. Colors on the columns indicate cell type marked by legend. c Correlation heatmap showed the
differences among T cell subtypes. Colors on heatmap indicate the correlation value. Color from pink to white indicates a high to low correlation. d The
distribution of CD4+ T and CD8+ T subtypes among the primary ccRCC of early and advanced stages and BMRCC with or without treatment. Colors on
the columns indicate cell type marked by legend. e Immunostaining experiments showing the existence of CD8-Tem in BMRCC. The green color indicates
the expression of CD8 protein. The purple color indicates the expression of GZMB protein. f Violin plot showing the expression levels of indicated marker
genes among the indicated groups. Colors on the columns indicate groups marked by x-axis. g, h Developmental trajectory of inhibitory T cell subtypes in
the treatment-naïve (g) and treated (h) BMRCC. Colors of cell indicate the cell type markered by legend. i Differentially enriched TFs between the
treatment-naïve and treated BMRCC. Colors on heatmap indicate TF AUC score of CD8-Tem1 in treatment-naïve and treated BMRCC group. Color from
red to pink indicates a high to low AUC score. j Bar plot showing the enriched pathways of regulons of the TFs in CD8-Tem1 from the treatment-naïve and
treated BMRCC. The red columns indicate BMRCC Untreat group. The green columns indicate BMRCC Treat group.
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Discussion
Here, we provide a high-resolution landscape of human primary
(early and advanced stages) and BMRCC, and the underlying
molecular mechanisms for bone metastasis of RCC. Based on the
scRNA-seq data, we compared the transcriptomic profiles of

cancer cells from primary ccRCC with BMRCCs. We also
observed major lineages of cell types together with subtypes of
fibroblasts, myeloid cells and T cells that enriched in the BMRCC,
which were supported by their association with poor prognosis.
The SIRPA-CD47 interaction between myeloid subgroups and

Fig. 5 Different trajectory paths of macrophages between the primary ccRCC and BMRCC. a UMAP plot showing the four myeloid cell types in the
cohort. The colors of the cell indicate the cell type marked by legend. b UMAP plot displaying the marker genes of macrophages (APOE), DC (HLA-DQA2),
MDSC (S100A12), and monocytes (HES4). Orange color indicates higher expression of these genes, pale yellow indicates lower expression of these genes.
c Bar plot showing the fractions of macrophages, DC, MDSC, and monocytes in the primary ccRCC of early and advanced stages and BMRCC. Colors on
the columns indicate cell type marked by legend. d Developmental trajectory of macrophages, MDSC, and monocytes in the primary and bone metastatic
ccRCC. Colors of cell indicate cell type marked by legend. e UMAP plot showing the MDSC and macrophage subtypes by re-clustering analysis. Colors of
cell indicate cell type marked by legend. f Bar plot showing the fractions of MDSC and macrophage subtypes in the primary ccRCC of early and advanced
stages and BMRCC. Colors on the columns indicate cell type marked by legend.
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specific T cell clusters pointed to molecular-targeted immu-
notherapy as potential therapeutic solutions to be further
explored for the treatment of BMRCC.

As the most common subtype of RCC, previous studies have
applied scRNA-seq to identify cell of origin and transcriptomic
differences among different cell types in ccRCC4,42. Ke et al.
reported that hypoxia response, lipid biosynthesis, and localiza-
tion pathways were enriched in malignant renal cells compared
with normal renal cells43. Here, we found cancer cells in BMRCC
showed stronger migration ability and angiogenesis ability in
comparison with primary tumor cells of RCC. Together, the
alteration from metabolic capacity to migratory capacity might

point to the malignant evolution of renal tumor cells to RCC
metastasis.

Our scRNA-seq analysis revealed that genes enriched in tumor
cells with evident copy number amplifications were associated
with the WNT signaling pathway in the bone metastatic envir-
onment. WNT signaling is critically involved in both the devel-
opment and homeostasis of tissues via regulation of their
endogenous stem cells44. In tumor microenvironment, aberrant
WNT signaling was considered to play a key role in the initiation,
maintenance and development of multiple cancers by regulating
the behavior of cancer stem cells45,46. Previous studies have
demonstrated WNT signaling pathway as a good therapeutic

Fig. 6 The differential trajectory of myeloid cell subtypes in the BMRCC. a Developmental trajectory of MDSC and macrophage subtypes in the BMRCC.
Colors of cell indicate cell type marked by legend. b The expression patterns of genes associated with the pseudotime and their functional enrichment.
Colors on heatmap indicate the genes expression. Color from red to blue indicates a high to low expression. c. The expression levels of phagocytosis
signatures among the macrophage subtypes in BMRCC. Colors on the columns indicate cell type marked by x-axis. P values were calculated by Kruskal
−Wallis test, n= 5172 biologically independent cells. d Comparison of the M1- and M2-associated signature gene expression levels in the Macro-NRP2
cells in BMRCC. Blue columns indicate M1 type, yellow columns indicate M2 type. P values were calculated by Student’s t test, n= 887 biologically
independent cells. Effect size of Cohen’s d: 1.826. e The expression levels of M2-associated signature genes in Macro-NRP2 among the primary ccRCC of
early and advanced stages and BMRCC. Blue columns indicate primary ccRCC early group, yellow columns indicate primary ccRCC advanced group. The
gray columns indicate BMRCC group. P values were calculated by Student’s t test, n= 1833 biologically independent cells. Effect size of Cohen’s d: primary
ccRCC early group vs BMRCC: 1.059; primary ccRCC advanced group vs BMRCC: 0.811. f mIHC showing the existence of Macro-NRP2 in BMRCC. The
green color indicates the expression of SPP1 protein. The red color indicates the expression of NRP2 protein. The purple color indicates the expression of
CD68 protein. Box-and-whisker plots (c–e): centre line indicates median, box represents first and third quantiles, and whiskers indicate maximum and
minimum values.
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target for primary renal cancer47,48. Potential therapeutic reagents
targeting this pathway might work as efficient treatment solutions
for BMRCC in clinic.

CAFs are the most prominent stromal components in solid
tumors and rarely studied in RCC. Four transcriptionally diverse
subpopulations of CAFs were defined in breast cancer49, which
three groups were also found in primary ccRCC and BMRCCs

(Fig. 3). The iCAF cluster was a specific CAF subpopulation
found in primary ccRCC and BMRCCs, and it was also described
in pancreatic ductal adenocarcinoma30. Interestingly, we found a
mCAF cluster (mCAF_2) with high expression of FAP and
MMP13 dominant in BMRCC (Supplementary Fig. 4g). FAP is a
dimeric Type II transmembrane glycoprotein with proteolytic
activity, and was reported to be highly expressed in tumor

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05772-y ARTICLE

COMMUNICATIONS BIOLOGY |            (2024) 7:91 | https://doi.org/10.1038/s42003-024-05772-y | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


stroma50. FAP was also considered as a promising target for
radionuclide-based approaches for diagnosis and treatment of
tumors51. Our results here showed that FAP+ CAFs might be
associated with bone metastasis of RCC, and the underlying
mechanism deserves further investigation.

T cells are the most abundant and best-characterized popula-
tion in the tumor microenvironment of solid tumors. Here we
revealed the dominance of inhibitory T cells and higher expres-
sion of exhaustion-related genes in the BMRCC, consistent with
previous findings that exhausted T cells are enriched in advanced
tumors52,53. In addition to the PDCD1, the LAG3 and CXCL13
were also overexpressed in the bone metastatic samples. Previous
studies have shown that CXCL13 could reshape the lymphoid
structures and promote response to immunotherapy in multiple
advanced cancers54–56. Thus, restoring the exhausted T cells
provides a promising strategy for preventing tumor progression.
Our results showed that the trajectory path of CD8-Tem1
reversed from CD8-Tex and differentiated into CD8-Tem2 cells
after treatment, suggesting the effectiveness of PD-1 inhibitor to
the BMRCC. The distinct differentiation directions of CD8-Tem1
in the BMRCC after treatment might be partially explained by the
differential activation of TFs and their downstream gene
expressions, which needs to be further explored for better
understanding of potential regulatory mechanisms.

In addition, we also found the enrichment of MDSCs and
macrophages in the bone metastatic tumors of RCC. The MDSCs
are a population of myeloid cells and immature myeloid cells could
convert to immunosuppressive MDSCs under pathologic
conditions57. The abundance of MDSCs in the BMRCC might
represent a pathogenic state of activation of monocytes in the bone
metastasis environment. Our trajectory analysis revealed that both
MDSCs and monocytes are both progenitors of macrophages, and
macrophages differentiate from monocytes in the primary ccRCC,
consistent with previous reports24,58]. The differentiation trajectory
of macrophages from MDSCs in the BMRCC was also different
from that of normal bone marrows, hinting that targeting MDSC
may provide tangible clinical benefits in the BMRCC. We also
identified a bone metastasis-enriched macrophage subtype with
high expression of NRP2 gene, which is a single transmembrane

receptor and plays a key role in promoting tumor proliferation,
invasion and metastasis by interacting with vascular endothelial
growth factors58,59. NRP2 is not detectable in the bone marrow or
monocytes of humans60,61, and the expression of NRP2 in myeloid
cells is upregulated during the differentiation to macrophages62.
Consistent with our findings that Macro-NRP2 was characterized
by high expression of M2 macrophage features, a previous study
reported that reduced expression of NRP2 after LPS stimulation of
macrophages triggers M1 polarization63. Given the M2 polariza-
tion and pro-angiogenesis features of Macro-NRP2 and its poten-
tial in regulating immune inhibitory T cells in the BMRCC, this
macrophage subgroup emerged as a potential therapeutic target for
further investigations in the BMRCCs. The CD47 expression on
inhibitory T cells might inhibit macrophage-mediated elimination
in a manner that bears a superficial resemblance to the inhibition
of macrophages by CD47+ cancer cells15,64. The inhibition of
macrophage function favors the survival of inhibitory T cells and
cancer cells, which in turn contributes to the malignancy of
tumors. Thus, the interaction between macrophages and inhibitory
T cell clusters through SIRPA ligand and CD47 receptor serves as
an alternative way for understanding the bone metastasis of RCC.

Limitations of this study include unpaired primary and bone
metastatic biopsy tissues and the small sample size. The uncer-
tainty in the development of bone metastatic tumors from the
initial treatment of ccRCC limited the ability to collect paired
primary and BMRCC samples from the same patient in clinical
practice. The findings might thus be confounded by the variations
of genetic background and somatic mutations. Although the
inclusion of single-cell data from late-stage primary ccRCC,
normal kidney and healthy bone marrow tissues could reduce
some of the confounding factors, further studies are needed to
investigate the gene signatures in patients after controlling such
clinical variables. Besides, the small sample size of the cohort
limited the power of statistical significance in the results. Biolo-
gical variation between samples may be confusing some of the
results and more study samples will be needed in the future to
confirm these results. In addition, the BMRCC patients included
in our cohort are treated with immunotherapy and TKIs, which
hinders the possibility to explore the influence of single regimen.

Fig. 7 Cell-cell communication between macrophages and immune inhibitory T cells. a Bubble plot showing the interaction activities of different ligand-
receptor pairs across macrophage subtypes and immune inhibitory T cell subtypes. Dot size indicates –log 10 (P value). Dot color indicates mean of
interaction activities. Dot color from red to yellow indicates a high to low interaction activity. b Heatmap displaying the interaction activities of SIRPA-CD47
pair between macrophage and immune inhibitory T cell subtypes. Colors on heatmap indicate mean of SIRPA-CD47 interaction activities. Color from red to
blue indicates a high to low interaction activity. c Comparison of CD47 expression levels in the inhibitory T cell subtypes among primary ccRCC of early and
advanced stages and BMRCC with or without treatment. Blue columns indicate primary ccRCC_early group, yellow columns indicate primary
ccRCC_advanced group, gray columns indicate BMRCC_Untreat group, red columns indicate BMRCC_Treat group. P values were calculated by wilcox rank
sum test, n= 24157 biologically independent cells. Effect size of Cohen’s d: BMRCC_Treat vs BMRCC_Untreat: 0.027; primary ccRCC early vs
BMRCC_Untreat: 0.516; primary ccRCC_advanced vs BMRCC_Untreat: 0.292; primary ccRCC_early vs primary ccRCC_advanced: 0.282. d Comparison of
SIRPA expression levels in the Macro-NRP2 subtype among primary ccRCC of early and advanced stages and BMRCC with or without treatment. Blue
columns indicate primary ccRCC_early group, yellow columns indicate primary ccRCC_advanced group, gray columns indicate BMRCC_Untreat group, red
columns indicate BMRCC_Treat group. P values were calculated by wilcox rank sum test, n= 1833 biologically independent cells. Effect size of Cohen’s d:
BMRCC_Treat vs BMRCC_Untreat: 0.666; primary ccRCC early vs BMRCC_Untreat: 0.424; primary ccRCC_advanced vs BMRCC_Untreat: 0.187; primary
ccRCC_early vs primary ccRCC_advanced: 0.262. e Comparison of CD47 and SIRPA co-expression levels between the early (Stage I/II) and late (Stage III/
IV) staged primary ccRCC in TCGA. Blue columns indicate stage I/II samples, yellow columns indicate stage III/IV samples. P values were calculated by
wilcox rank sum test, n= 606 biologically independent samples. Effect size of Cohen’s d: 0.307. f Immunofluorescence staining showing the expression of
CD47 and SIRPA in the primary ccRCC and BMRCC. The green color indicates the expression of CD47 protein. The red color indicates the expression of
SIRPA protein. The blue color indicates nucleus of cell. g Barplot showing the fluorescence intensity of CD47+ cells and SIRPA+ cells in primary ccRCC and
BMRCC. Blue dots indicate primary ccRCC samples, red dots indicate BMRCC samples. P values were calculated by Student’s t test. n= 12 biologically
independent samples. Effect size of Cohen’s d: CD47: 4.182; SIRPA: 2.912. h Kaplan–Meier plots showing the survival probability of primary ccRCC patients
with high and low co-expression levels of CD47 and SIRPA. Red line indicates patients expressed higher CD47 and SIRPA co-expression. grey line indicates
patients expressed lower CD47 and SIRPA co-expression. P values were calculated by log-rank test. i The model of the action of macrophages and T cells
through SIRPA-CD47. HR, hazard ratio. Box-and-whisker plots (c–e): Centre line indicates median, box represents first and third quantiles, and whiskers
indicate maximum and minimum values.
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The treatment of collected samples are anti-vascular and anti-PD-
1 therapy, so we mainly included the treatment for stratification
in these cell cancer cells and T cells. The effect of these treatments
on other cell types like CAF and macrophages might be indirect
and complicated, further studies are needed for better under-
standing of different treatment options on the microenvironment
of BMRCC. Furthermore, despite of the survival analysis using
TCGA cohort suggested that the signatures enriched in BMRCC
might be markers indicating malignant tumor progression, our
results have shown BMRCC was different from late-stage primary
ccRCC (Supplementary Fig. 2d, 5d, Fig. 5c, f, and Fig. 6e), raising
the necessity of generating large cohorts of BMRCC samples for
further exploration.

In summary, our comprehensive characterization of cell
landscape of BMRCC revealed that intra-tumoral heterogeneity of
primary and bone metastatic ccRCC. Our study identified key cell
subsets and molecular features enriched in the bone metastatic
environment of ccRCC. The development trajectory and cell-cell
interaction analyses also revealed immune cell subtypes served as
targets for BMRCC. Although the descriptive nature of this study,
our data offer a rich resource to better understand various cell
types in BMRCCs and thus provide valuable insights for ther-
apeutic solutions.

Methods
Patient information. Fourteen patients who were pathologically
diagnosed with clear cell renal cell carcinoma, were enrolled in
this study. A total of fifteen samples were obtained with two bone
metastatic samples (P11_M1, P11_M2) were collected from one
single patient. Six out of fifteen samples were collected from
primary tumor site and nine of fifteen samples were collected
from bone metastatic tumor site. Their clinical characteristics are
summarized in Supplementary Table 1. All samples were dis-
carded tissue after surgery. Written informed consent was pro-
vided from each patient prior to sample collection. This study was
reviewed and approved by the Institutional Review Board of
Fudan University Shanghai Cancer Center.

Sample collection. The femur metastasis sample was resected
from tumor mass around the bone after pathological fracture, and
only metastasis tumor sample was obtained to avoid potential
influence of bone healing process. Similarly, surgical resection of
rib metastasis included resection of the affected rib, adjacent
muscles, and any other tissues adherent to the tumor. The spe-
cimen was also obtained from tumor mass without involvement
of the osseous tissue. For the sacral and spinal (vertebral) sample,
en bloc resection was performed in those patients to minimize the
tumor residue, following a posterior spinal fixation using spinal
instruments. In most patients, the pedicle screw fixation was used
for posterior stabilization, in order to achieve biomechanical
stability after vertebral resection.

Single-cell isolation, cDNA amplification and library con-
struction. Fresh samples isolated from patients in operation were
preserved in MACS Tissue Storage Solution (Miltenyi Biotec) at 4
°C. Tumor tissues were cut into a range of 0.2–1.0 g small pieces
and dissociated in 5 mL enzyme mix containing 4.7 ml RPMI
1640 (Gibco), 200 μL Enzyme H, 100 μL Enzyme R and 25 μL
Enzyme A (Miltenyi Biotec, MACS Tumor Dissociation Kit,
human). The samples were subsequently incubated in a 37 °C
thermostatic shaker for 35 min. Then suspended samples were
filtered through a 40-μm Cell-Strainer nylon mesh (BD) with
30 mL of RPMI 1640 and centrifuged at 300 × g for 7 min. After
removing the supernatant, we used Red Blood Cell Lysis Solution
(Miltenyi Biotec #130-094-183) and the Dead Cell Removal Kit

(Miltenyi Biotec #130-090-101) to remove red blood cells and
obtain live cells. Cell suspension was centrifugated at 300 × g for
7 min and the pellet was re-suspended in 1 mL PBS solution.
Once the desired cell suspension was obtained, the sample was
immediately placed on ice for subsequent GEMs preparation and
reverse transcription. The single cell libraries were prepared
according to the standard protocols and sequenced on Illumina
NovaSeq 6000 Systems using paired-end sequencing (150 bp in
length).

Single-cell RNA-seq data processing. The scRNA-seq data
generated from the 10× Genomics platform were aligned and
quantified using CellRanger (version 6.0.2) against the GRCh38
human reference genome. A raw gene expression matrix for each
scRNA-seq sample was generated by CellRanger. Cell-free RNA
was removed using SoupX (version 1.5.2), and doublets were
predicted and filtered using DoubletFinder (version 2.0.3). Then
these matrices were combined as an integral gene expression
matrix for all samples using the Seurat package (version 4.0.5)
implemented in R (version 4.1.0). Further quality control was
applied to cells, cells with less than 500 detected genes, more than
8000 detected genes, 20000 UMI counts and 10% mitochondrial
gene count were filtered (Supplementary Fig. 2a). RunHarmony
function in R Seurat package was applied to remove batch effects
between data from different sources. The integrated gene
expression matrix was used for the downstream analyses. The
differences in cell abundances among samples and groups was
calculated using the Milo framework65.

Identification of the major cell types and their subtypes. The
Seurat R package was applied to identify major cell types. First,
scTransform function66 was used to normalize the influence of
sequencing depth, mitochondria and other factors. Then 3000
highly variable genes were generated, and used to perform prin-
cipal component analysis (PCA). The top 30 principal compo-
nents were calculated to reveal the main axes of variation and
denoise the data. Cells were clustered by unsupervised graph-
based clustering algorithm using their expression profiles. For
visualization, UMAP and t-SNE dimensionality reduction were
applied by using RunUMAP and RunTSNE functions. The
cluster-specific marker genes were identified by running Fin-
dAllMakers function with default parameters. Ten major cell
types were identified: T cells (CD3D, CD3E), nature killer T-like
(NKT) cells (GNLY, FGFBP2), myeloid cells (CD14, FCGR3A,
LYZ), nature killer (NK) cells (XCL2, KLRC1), endothelial cells
(PLVAP, PECAM1), cancer cells (KRT18, VEGFA), cancer-
associated fibroblasts (CAFs) (COL1A1, COL1A2), B cells
(CD79A, MS4A1), mast cells (TPSB1, TPSAB1), and neutrophils
(S100A8, S100A9). Second, to identify subclusters within major
cell type, the cells belonging to each cell type were re-analyzed
separately with scTransform, dimensionality reduction, and
clustering by unsupervised graph-based clustering algorithm.
Then the subclusters were annotated to cell subtypes by
subcluster-specific marker genes shown in the corresponding
figures and Supplementary Data 1.

Tissue distribution of clusters. The ratio of observed to expected
cell numbers (Ro/e) was calculated for each cell type or subtype
between primary ccRCC and BMRCC to quantify the tissue
preference of each cell type or subtype67,68. The expected cell
numbers for each combination of cell type or subtype and tissues
were obtained from the chi-square test. Ro/e > 1 suggested that
one cell type or subtype was identified as being enriched in a
specific tissue.
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Copy number variations analysis for tumor cells. To further
investigate genetic heterogeneity between tumor cells in primary
and bone metastatic tumors, inferCNV (https://github.com/
broadinstitute/inferCNV) was used to infer copy-number altera-
tion for all the tumor cells. The copy number variations scores of
the fibroblasts and endothelial cells were also calculated as a copy
number variations control. Then the whole copy number varia-
tions profiles were normalized by subtracting the average
expression profiles of control. The scores were restricted to the
range −1 to 1 by replacing all values >1 with 1 and all values <−1
with −1, and any score between −0.3 and 0.3 was set to 0.

Transcription factor analysis. Activated TFs regulons in each
CD8+Tem subset were analyzed using SCENIC36. The pySCE-
NIC package (version 0.11.2) was applied with raw count matrix
as input. Briefly, the regulons were identified by RcisTarget and
the co-expression network was calculated using GRNBoost2.
Next, the regulon activity foreach cell was scored by AUCell.

Trajectory analysis. To characterize the developmental state of
MDSC and macrophages, the Monocle (version 2.20.0)
algorithm35 was applied with significant genes (q < 0.05, top 3000
genes) of the studied cells were identified by using the differ-
entialGeneTest function. Cell differentiation trajectory was con-
structed on these signature genes with the default parameters of
Monocle after dimension reduction and cell ordering.

Polarization state and functional phenotypes analysis of mac-
rophages subtypes. To further define dichotomous M1/M2
dualistic polarization state and functional phenotypes of macro-
phages subtypes, gene sets associated with M1/M2 state and
angiogenesis/Phagocytosis phenotypes (Supplementary Table 3)
were analyzed by comparing the mean expression values of cells
in each macrophages subtype.

Cell–cell communication analysis. To explore the potential
interactome between different cell types in RCC tumor micro-
environment, the CellPhoneDB algorithm41 was used to infer
cell-cell communication. Single-cell transcriptomic data of all
macrophage subtype and immune inhibitory T cells (CD4-Treg,
CD8-Tex, CD8-Tem1) was analyzed by using CellPhoneDB
package (version 3.0.0). The mean value of interactions was
assessed for BMRCC vs primary ccRCC.

Function analysis. Metascape69 (https://metascape.org/gp/index.
html) was used for functional enrichment of different gene sets.
The GSVA R package (version 1.40.1)70 from Bioconductor was
used to assign pathway activity (c2BroadSets), which were
described in the molecular signature database71. Gene Set
Enrichment Analysis (GSEA) in the clusterProfiler R package
(version 4.0.5)72 to evaluate the activation of hallmark pathways
from the molecular signature database.

Bulk RNAseq datasts analysis. RCC expression data, mutation
information and clinal information were performed using
TCGAbiolinks R packages73. For survival analysis, the top ten
significant genes of each cell subtype were used as gene set to
evaluate the correlation between each cell subtype and the sur-
vival state of RCC patients by Kaplan-Meier Plotter (https://
kmplot.com/analysis/index.php?p=background). Mutation ana-
lysis was performed using maftools R package (version 2.8.5)74.
The RCC FPKM data was analyzed to compare the expression
levels of genes (CD47, SIRPA, and the mean of CD47 and SIRPA)
at different clinical stages for RCC patient.

Immunofluorescence staining. Formalin-fixed, paraffin-
embedded (FFPE) tissues containing primary and bone meta-
static tumors of RCC were sliced into 4 μm sections and stained
with antibodies against FAP (abcam, ab218164, Rabbit pAb,
1:1000), Vimentin (CST, 5741, Rabbit mAb, 1:1000), CD8A
(abclonal, A0663, Rabbit mAb, 1:1000), PD-1 (abclonal, A20217,
Mouse mAb, 1:1000), GZMB (abclonal, A22993, Rabbit mAb,
1:1000), CD68 (abclonal, A23205, Rabbit mAb, 1:1000), NRP2
(proteintech, 11268-1-AP, Rabbit pAb, 1:1000), SPP1 (pro-
teintech, 22952-1-AP, Rabbit pAb, 1:1000), CD47 (SCBT, sc-
12730, Mouse mAb, 1:500), and SIRPA (abcam, ab260039, Rabbit
mAb, 1:1000) according to the standard protocols.

Statistics and Reproducibility. Mann-Whitney U test and Stu-
dent’s t test for non-parametric samples were used to calculate p
values between the two groups. For TCGA datasets, P values
between two conditions were adjusted for multiple test correc-
tions using the Benjamini–Hochberg algorithm to control the
false discovery rate using DESeq2.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The scRNA-seq dataset of primary and bone metastasis RCCs developed by this study are
available at the National Omics Data Encyclopedia (NODE) under accession number
OEP00467875 (https://www.biosino.org/node/project/detail/OEP004678). Other
sequencing data that support the findings of this study have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO)76

under the GEO Series accession number: GSE120221, GSE131685, the website under
address: https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-
immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#
study-summary, and paper supplementary files under address: https://www.sciencedirect.
com/science/article/pii/S153561082100115X?via%3Dihub#sec5.2. Source data are
included in Supplementary Data 2.

Code availability
All computer code used in this study is publicly available. The code can be obtained by
visiting https://doi.org/10.5281/zenodo.1032153677.
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