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Modular subgraphs in large-scale connectomes
underpin spontaneous co-fluctuation events in
mouse and human brains
Elisabeth Ragone1, Jacob Tanner2,3, Youngheun Jo 4, Farnaz Zamani Esfahlani5, Joshua Faskowitz4,

Maria Pope3,6, Ludovico Coletta7, Alessandro Gozzi 8 & Richard Betzel 2,4,6✉

Previous studies have adopted an edge-centric framework to study fine-scale net-

work dynamics in human fMRI. To date, however, no studies have applied this framework to

data collected from model organisms. Here, we analyze structural and functional imaging

data from lightly anesthetized mice through an edge-centric lens. We find evidence of

“bursty” dynamics and events - brief periods of high-amplitude network connectivity. Further,

we show that on a per-frame basis events best explain static FC and can be divided into a

series of hierarchically-related clusters. The co-fluctuation patterns associated with each

cluster centroid link distinct anatomical areas and largely adhere to the boundaries of

algorithmically detected functional brain systems. We then investigate the anatomical con-

nectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce

modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we

replicate these same findings in a human imaging dataset. In summary, this report recapi-

tulates in a model organism many of the same phenomena observed in previously edge-

centric analyses of human imaging data. However, unlike human subjects, the murine ner-

vous system is amenable to invasive experimental perturbations. Thus, this study sets the

stage for future investigation into the causal origins of fine-scale brain dynamics and high-

amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings

enhances the likelihood of future translation.

https://doi.org/10.1038/s42003-024-05766-w OPEN

1 Neuroscience Program, Oberlin College, Oberlin, OH 44074, USA. 2 Cognitive Science Program, Indiana University, Bloomington, IN 47401, USA. 3 School
of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47401, USA. 4Department of Psychological and Brain Sciences and
Cognitive Science Program, Indiana University, Bloomington, IN 47401, USA. 5 Stephenson School of Biomedical Engineering, The University of Oklahoma,
Norman, OK 73019, USA. 6 Program in Neuroscience, Indiana University, Bloomington, IN 47401, USA. 7 Fondazione Bruno Kessler, Trento, Italy. 8 Functional
Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy. ✉email: rbetzel@iu.edu

COMMUNICATIONS BIOLOGY |           (2024) 7:126 | https://doi.org/10.1038/s42003-024-05766-w |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05766-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05766-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05766-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05766-w&domain=pdf
http://orcid.org/0000-0003-1428-6348
http://orcid.org/0000-0003-1428-6348
http://orcid.org/0000-0003-1428-6348
http://orcid.org/0000-0003-1428-6348
http://orcid.org/0000-0003-1428-6348
http://orcid.org/0000-0002-5731-4137
http://orcid.org/0000-0002-5731-4137
http://orcid.org/0000-0002-5731-4137
http://orcid.org/0000-0002-5731-4137
http://orcid.org/0000-0002-5731-4137
http://orcid.org/0000-0001-9200-1681
http://orcid.org/0000-0001-9200-1681
http://orcid.org/0000-0001-9200-1681
http://orcid.org/0000-0001-9200-1681
http://orcid.org/0000-0001-9200-1681
mailto:rbetzel@iu.edu
www.nature.com/commsbio
www.nature.com/commsbio


A growing body of literature has shown that coordinated
brain activity supports ongoing neural, behavioral, and
cognitive processes. These activity patterns are con-

strained by the brain’s underlying structural connectivity (SC),
whose network configuration organizes brain activity into cohe-
sive and correlated patterns—i.e., functional connectivity (FC)1,2.

The correlation structure of neural activity is not static; rather,
it fluctuates from moment to moment3,4. There exist many
techniques for tracking these rapid fluctuations, including sliding
window5 and kernel-based methods6. However, these approaches
generate estimates of time-varying FC (tvFC) that are temporally
imprecise. That is, the estimate of FC at time t depends not only
on the state of the brain at that instant but also on its state at
nearby time points7.

Recently, we built upon existing frameworks for estimating
changes in functional network structure8–12 to develop a
technique–referred to as edge time series—for tracking instanta-
neous co-fluctuations between pairs of brain regions—i.e., net-
work edges13,14. Applying this framework to human functional
imaging recordings at rest, we found evidence of global events—
brief periods of high amplitude and brain-wide co-fluctuation.
We showed that events express subject-specific information15,16,
can be used to approximate static FC and enhance brain-behavior
associations13,17, and can be partitioned into clusters of repeating
patterns15,18 whose relative frequency may be linked to variation
in endogenous hormone fluctuations19. We refer to studies that
calculate and analyze edge time series or the correlation structure
of edge time series (so-called edge FC20–23) as edge-centric.

Developing insight into the origins of events is the subject of
ongoing work24–26. First, several studies have shown that event
timing is correlated across individuals during movie-
watching13,27,28, suggesting that naturalistic audiovisual stimuli
can initiate cascades of neuropsychological processes that act to
support the appearance of events in fMRI time series. Second,
other studies have demonstrated that events can occur sponta-
neously in networked dynamical systems29. For instance, Pope et
al.30, found that when the underlying constraint matrix—i.e., SC
—exhibits modular structure, events naturally occur and that
their topography aligns closely with the boundaries of anatomical
modules. In aggregate, these findings suggest that event-like
activity has both a cognitive underpinning and can also emerge
due to modularity in the underlying system structure.

Despite the fact that many studies have applied this edge-
centric framework to human imaging data, to our knowledge, it
has never been extended to non-human data. Such an extension
could prove particularly useful, as the rich set of (sometimes
invasive) perturbations31,32 that can be applied to non-human
subjects could help address open controversies and questions
surrounding the origins of events and the importance of time-
varying coupling between brain areas. Additionally, few empirical
analyses have examined the link between SC and high-amplitude
edge-centric co-fluctuations (though see29).

Here, we take the initial step in that direction, applying event
detection to two datasets: first to fMRI BOLD data acquired from
18 anesthetized mice and subsequently to a large human cohort
(Human Connectome Project33). In line with previous studies, we
find evidence of events, show that events are highly predictive of
static FC, and can be grouped into hierarchically related co-
fluctuation patterns. As demonstrated in Sporns et al.34, each
cluster centroid results in a bipartition of the brain into two
disjoint sets of nodes, one positively co-fluctuating and the other
negatively co-fluctuating. Finally, we show that the bipartitions
are underpinned by highly modular sub-networks in SC, positing
an anatomical basis for opposed co-activity. Further, we replicate
all of these findings using human functional imaging data. Col-
lectively, our findings set the stage for future, more targeted, and

hypothesis-driven investigations into the anatomical under-
pinnings of network-level co-fluctuations at the fine-scale—i.e., a
temporal resolution equivalent to that of the acquisition
frame rate.

Results
The aims of this paper are twofold. First, we seek to replicate,
using mouse imaging data, several key findings that have pre-
viously been made using data acquired from human participants.
Namely, on a per-frame basis, high-amplitude events better
recapitulate static FC (correlation networks) than middle-/low-
amplitude frames, and events can be meaningfully partitioned
into a small set of recurring states or event clusters. The second
aim of this paper is to link events detected in both mouse and
human imaging data to anatomical connectivity—interareal
axonal projections in the mouse and interregional white-matter
fiber tracts in humans. In this section, we report the results of
these analyses.

High-amplitude co-fluctuations recapitulate static FC. One of
the first observations made using edge time series was that with
only a small subset of high-amplitude frames—putative events—it
was possible to accurately reconstruct static FC13. Note that here,
we define whole-brain FC as the matrix of all interregional cor-
relations. To date, these types of analyses have been carried out
largely using functional imaging data acquired from awake
humans; whether such events exist in data acquired from animals
has been underexplored. Here, we assess whether a similar effect
is evident when we apply edge time series to functional imaging
data acquired from anesthetized mice.

Our procedure for testing this hypothesis included a series of
post-processing analysis steps. First, we transformed the fMRI
BOLD time series from N= 182 parcels (Fig. 1a) into an edge
time series. This procedure involved standardizing (z-scoring)
each time series and, for each of the N(N− 1)/2= 16,471 pairs,
calculating their framewise product (Fig. 1c). The result is a co-
fluctuation or edge time series for every pair of nodes whose
elements encode the timing, amplitude, and sign of interregional
co-fluctuations (Fig. 1d). Notably, the temporal average of a given
edge time series is exactly the bivariate product-moment
correlation—i.e., FC (Fig. 1b). Thus, edge time series can be
viewed as exact decompositions of static FC into time-varying
(framewise) contributions.

To detect events, we analyzed all edge time series collectively
(Fig. 1e). At each frame, we calculated the global co-fluctuation
amplitude as the root mean square (RMS) across all edge time
series (Fig. 1f). This step yielded a single time series whose peaks
could be detected easily (using MATLAB’s findpeaks.m
function). The amplitudes of these peaks were compared
against a null distribution generated by independently circularly
shifting parcel time series, recalculating edge and RMS time
series, and aggregating peaks of the null RMS time series across
100 runs. Empirical peaks whose amplitude was significantly
greater than that of the null distribution were categorized as
events (statistical significance was established at the subject level;
critical p-value adjusted to maintain a false-discovery rate fixed
at q= 0.05).

Following event detection, which was performed separately for
each animal, we aggregated co-fluctuation patterns across
animals, computed their pairwise concordance between all
patterns (Fig. 1g), and clustered this matrix using modularity
maximization. We then averaged the patterns within each of the
clusters to obtain cluster centroids globally but also at the single-
animal level. We then calculated the similarity (correlation) of
these patterns with static FC. Across all animals, the number of
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events was fewer than the total number of non-event peaks (peaks
in the RMS time series that did not reach the statistical criterion
for being considered an event), troughs (local minima in the RMS
time series), and the total number of frames (by definition). To
assess whether events were more similar to these other categories
and to control for differences in the number of frames associated
with each category, we randomly subsampled a number of frames
equal to the number of events from within each category,

averaged the co-fluctuation patterns across these frames, and
calculated its similarity with respect to static FC (we performed
100 repetitions of this subsampling procedure; see Fig. 2a for an
example of a single set of subsamples and Fig. 2b for the results
from 100 sub-samples from one subject).

We then averaged similarity scores across the 100 repetitions
for each subject and compared the mean similarity across the four
categories of frames: events, non-event peaks, troughs, and
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Fig. 1 Schematic illustrating edge time series construction and clustering. a Array of parcel time series. Rows and columns correspond to parcels
(ordered by anatomical division) and frames, respectively. b Whole-brain functional connectivity is typically estimated as the correlation matrix of parcel
time series. That is, the weight of the functional connection between nodes i and j is specified as the product-moment correlation coefficient, rij. c The
procedure for estimating rij entails z-scoring each parcel time series, calculating their elementwise product—i.e., zi(1) × zj(1),…, zi(T) × zj(T)—and taking the
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show time series for regions i and j (green and blue curves) and their corresponding edge time series (gray). d We can calculate edge time series for all
node pairs (edges) in the network and arrange them as rows in an edge-by-frame matrix. e Previous studies identified infrequent and short-lived high-
amplitude bursts. These bursts or events can be detected by calculating the root mean square (RMS) across all edges at each frame and identifying peaks
whose amplitude exceeds that of a null distribution (estimated using the same procedures as empirical RMS but starting with circularly shifted parcel time
series). f The co-fluctuation patterns expressed during events are very different than those expressed during low-amplitude frames. Here, we highlight
approximately 175 frames and show whole-brain co-fluctuation matrices for three local maxima (events; red border) and three local minima (troughs; gray
border). g Although no two events are identical in terms of co-fluctuation patterns, events can be grouped (broadly) into clusters—i.e., groups of co-
fluctuation patterns whose mutual similarity to one another exceeds what would be expected by chance. We detect them by computing the similarity
(concordance) between all pairs of events and directly clustering the resulting matrix using a hierarchical algorithm. Here, we highlight two large clusters
and their respective centroids (the mean co-fluctuation pattern across all events assigned to each cluster).
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random sets of frames (Fig. 2c). We observed that across all
subjects, events were significantly more similar to static FC than
other frame categories on a per frame basis. The mean similarity
of non-event peaks was not significantly different from random
samples, while all other frames were significantly more similar to
FC than troughs were to FC (false discovery rate fixed at q= 0.05
and critical p-value adjusted accordingly).

Note that while these observations are consistent with previous
findings13,15, other studies have reported that the highest-
amplitude frames may not be optimal in terms of recapitulating
static FC (see for example16,26). Rather, those studies find that the
second-highest amplitude bin outperforms the highest. Why
might this be? We investigate this question in Fig. S1. We
compared the binning of all frames approach of Cutts et al.16 and
Ladwig et al.26 with peak binning, an approach that is more
similar to what we report in Fig. 2. We find that using all frames
approach, we could replicate the effect described by Cutts et al.16

and Ladwig et al.26. With this approach, the extreme bins—the
highest- and lowest-amplitude frames—are comprised of co-
fluctuation patterns that are temporally proximal to one another.
This is likely due to the strong serial correlation of the fMRI
BOLD signal, the relative infrequency of events, and the increased
number of frames necessary to rise to a high-amplitude event
relative to lower-amplitude peaks18. In contrast, the peak binning
procedure exhibited no such bias. Therefore, a possible explana-
tion for the apparent superior performance of the second-highest
amplitude bin is that it tends to sample the entire scan session
better than the highest-amplitude bin.

Collectively, these findings suggest that a small fraction of
high-amplitude frames explain the structure of time-averaged,
static FC. Importantly, these findings extend previous lines of
research linking events and FC in human brains to mouse
models. In the following section, we explore the spatial structure
of mouse events in greater detail.

High-amplitude events can be sub-divided into recurring
network states. Previous studies have shown that high-amplitude
and network-level events can be clustered into putative states on
the basis of their topographic similarity to one another15,18,19. It
is unclear whether the same is true for the mouse edge time series
data analyzed here. Further, if events can be grouped into clusters,
the features that distinguish events in one cluster from those in
another are unknown.

To address these questions, we followed the analysis pipeline
from Betzel et al.18. Briefly, this involved aggregating event co-
fluctuation patterns across all subjects, calculating the similarity
(Lin’s concordance) between all pairs of events (Fig. 3a), and
recursively applying modularity maximization (coupled with
consensus clustering and a statistical criterion for terminating the
recursion) to obtain a hierarchy of statistically significant event
clusters (Fig. 3b, c). Note that for two co-fluctuation patterns with
identical means and variances, Lin’s concordance resolves to the
familiar correlation similarity metric. However, unlike correla-
tion, Lin’s concordance decreases as the difference between
means and variances grows (see Materials and methods).
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Fig. 2 Differential correlation between frame categories and static FC. Previous studies have documented a strong correspondence between static FC
and high-amplitude frames (events). Here, we compare four categories of frames: high-amplitude peaks (Events), peaks that are not considered high-
amplitude (Peaks), low-amplitude frames (Troughs), and random selections of frames (Random). a The diagonal shows example co-fluctuation matrices
from each of the four categories as well as static FC. The off-diagonal blocks show example scatterplots between each pair of categories. Matrices and
scatterplots depicted here come from a single mouse and for the sub-sampled categories, a single sub-sample. b Example correlations from a single subject
over 100 random sub-samples from within each category. Each sub-sample contained the same number of frames as the number of detected events.
c Median correlations aggregated across all 18 mice. Lines connect data points from the same mouse. Vertical lines represent ±1 standard deviation. Error
bars in panels b and c correspond to one standard deviation.
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Across subjects, we identified 624 putative events (34.7 ± 10.2
events per animal out of 1500 frames; maximum of 49; minimum
of 16). The hierarchical clustering procedure grouped the
corresponding co-fluctuation patterns into ten hierarchical levels,
eight of which were non-trivial (the first and last levels
corresponded to a single community and no communities,
respectively). For brevity, we focus on the second hierarchical
level (the first non-trivial level), which exhibited a total of 12
distinct event clusters, three of which stood out as they
collectively accounted for 39.3%, 31.7%, and 9.5% of all co-
fluctuation patterns (the next largest cluster contained 5.1% of
patterns).

To characterize each cluster further, we estimated and analyzed
their respective centroids—i.e., the mean co-fluctuation pattern
across all patterns assigned to that cluster. The first event cluster
was typified by opposed activation of the isocortex with the
midbrain and the hippocampal formation (Fig. 3d, g; see Fig. S2
for details of anatomical labels). This pattern of connectivity has
been described at length in mouse imaging literature as a murine
analog of the default mode network35,36. It also mirrors findings
made in the human literature, where the largest event cluster also
implicates default mode co-fluctuations13,15,18,19. Cluster two was
typified by strong co-fluctuations of the hippocampal formation,

an area thought to support memory formation and recall, with
components of the isocortex and thalamus, which have been
implicated in attention and perception (Fig. 3e, h). Finally, cluster
three involved strongly opposed activity of regions in the
striatum, isocortex, and the cortical subplate with regions in the
hippocampal formation, other isocortical parcels, and midbrain
(Fig. 3f, i). Whereas clusters one and two are mostly refined
across hierarchical levels, cluster three neatly splits into two sub-
clusters in the third hierarchical level, the first of which
emphasized opposed activity of the hippocampal formation with
the cortical subplate, striatum, and pallidum, while the second
emphasized opposed activity of thalamus with isocortex and to a
lesser extent, the cortical subplate (see Fig. S3). Note that the
topography of these cluster centroids are largely unaffected by
motion correction strategies (Fig. S7).

An alternative and complementary view of high-amplitude
events can be obtained by considering their alignment with
respect to functional systems obtained using data-driven
techniques—e.g., clusters or modules derived from static FC. To
this end, we performed a hierarchical decomposition of static FC,
revealing multi-level network organization (Fig. S4). Interestingly,
the co-fluctuation patterns associated with the event clusters
described above neatly align with these static modules.
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For instance, the first event cluster corresponds to strong co-
fluctuations of module 1 (M1) with the other three modules. The
second and third event clusters correspond to opposed co-
fluctuations of module 4 (M4) with modules 1 and 2 (M1; M2)
and module 2 with, largely, the rest of the brain (Fig. S5). Note
that we also recapitulate these findings using high-resolution
near-voxel-level data (Fig. S6).

Collectively, and like the results described in the previous sub-
section, these findings closely align with analyses of events
detected in human functional imaging data. Namely, we show
that event co-fluctuation patterns can be described with a
relatively small number of clusters, hinting at an approximately
finite and discrete repertoire of co-fluctuation states. An
important open question, however, is how these patterns emerge
from the static underlying anatomical connectivity—i.e., the
connectome. We explore this question in the following section.

High-amplitude co-fluctuation patterns reflect modular sub-
divisions of mouse anatomical connectivity. One of the most
important questions in neuroscience is how brain structure
relates to brain function. This question can be reframed in the
context of this present study: how does the static scaffolding of
anatomical connectivity imprint upon measures of brain
function–i.e., event co-fluctuation patterns? In Pope et al.30, the
authors detected events in synthetic fMRI BOLD data generated
by an anatomically constrained oscillator model. The co-
fluctuation patterns associated with these events could be map-
ped back to the underlying anatomical network, specifically its
modular structure. However, the relevance of anatomical modules
for high-amplitude edge-level events has never been validated
empirically (with human data or otherwise). Moreover, human
SC derived from water-diffusion statistics—as used by Pope
et al.30—exhibits some biases37–39, including difficulty in accu-
rately tracking interhemispheric fibers40,41, thereby making a
direct empirical replication of Pope et al.30 less likely.

Instead, we examine the high-amplitude co-fluctuations in
mice and their structural underpinnings. Here, the murine
connectome was invasively mapped using viral tracers and
tract-tracing techniques42, thereby circumventing some of the
known limitations associated with tractography and diffusion
MRI data. In addition, the invasive tracing technique allows for
the mapping of directed connections, a feature not resolvable
using water-diffusion methods.

Our strategy for comparing event co-fluctuations and anato-
mical connectivity deviated from that of Pope et al.30, which
depended upon a specific definition of anatomical modules.
Instead, our approach was to recover the bipartition of network
nodes into positively and negatively fluctuating groups associated
with each event cluster centroid34. If we were to examine a single
co-fluctuation pattern, its bipartition is defined unambiguously.
However, for event cluster centroids, which reflect the mean over
many co-fluctuation patterns, recovering the bipartition is not as
straightforward and requires additional analysis. One possible
solution is to apply clustering algorithms—e.g., modularity
maximization—to the centroid networks (see Materials and
methods). This procedure is not guaranteed to return a perfect
bipartition—i.e., exactly two communities—but we can heuristi-
cally treat the two largest and anticorrelated modules as estimates
of the bipartition. Any other communities, which by definition
are smaller, are considered peripheral and not included in
subsequent analyses.

Given an estimate of the bipartition, we then imposed this
partition onto the network of structural connections and
calculated the modularity that it induced43. That is, we calculated
the extent to which structural connections concentrate within

communities compared to chance. We compared the observed
modularity against two null models: one in which we randomly
assign nodes to either group, destroying spatial autocorrelations
(independent permutation), and another in which we approxi-
mately preserve the variogram—i.e., the spatial dependencies—of
the original data (geometry preserving permutation)44.

Interestingly, we found that for the two largest event clusters,
their induced modularity exceeded what was expected under both
null models (1000 permutation tests; p < 10−3 for the indepen-
dent permutation model; maximum p-value of p= 0.03 for the
geometry-preserving model; Fig. 4). For cluster three, the
modularity was significantly greater than that of the independent
permutation model (p < 10−3) but not significantly greater than
the geometry-preserving model (p= 0.194). For event cluster one,
these results were not dependent on the resolution parameter
used to define the cluster—a free parameter that controls the
number and size of detected communities. However, for clusters
two and three, there were select ranges where the geometry-
preserving model achieved modularity scores consistent with
what was observed in the empirical network, underscoring the
role of geometry in constraining both the configuration of
anatomical connections as well as functional patterns of activity/
connectivity (Fig. S8). Interestingly, event co-fluctuation patterns
induced greater structural modularity than non-event peaks
(p < 10−3; Fig. S9), suggesting that the link between structural
modularity and co-fluctuation patterns is uniquely strong for
events. Indeed, this observation speaks to a more general
relationship between co-fluctuation patterns and SC, in which
the correspondence between the two is greatest during periods of
high-amplitude co-fluctuations (Fig. S10). As before, this effect
holds with networks defined at finer spatial scales (Fig. S6).

Replicating event-module relationships using human
imaging data. One of the aims of this study was to replicate,
using mouse imaging data, several key findings that have already
been made using human data. In the previous section, however,
we identified a link between SC and event co-fluctuations using
mouse imaging data. In this section, we reverse our course and
seek to replicate this finding in human data. Unlike the mouse
connectome, the human connectome is typically reconstructed
non-invasively from tractography and diffusion MRI. Although
human connectome data has known limitations37–39, its promise
for translation and for understanding uniquely human neu-
ropsychiatric disorders is greater. In this section, we replicate the
main results from the previous section, demonstrating that event
co-fluctuation patterns correspond to modular subgraphs in the
human connectome.

Briefly, our replication involved detecting events in resting-
state data from the Human Connectome Project. We focused on a
subset of the 100 unrelated participants that passed quality checks
and motion exclusion criteria (see14,16). For each subject and scan
(95 subjects × 4 scans each), we performed event detection,
aggregating event co-fluctuation patterns across individuals. This
procedure resulted in 12854 events, which were subsequently
partitioned hierarchically (Fig. 5a). As with the mouse data, we
focused on the second hierarchical level, which yielded three large
clusters (Fig. 5b, c, e, f, h, i). These cluster centroids were in line
with those reported in other studies of event clusters15,18,19. Next,
using a group-representative SC matrix45, we calculated the
modularity induced by each cluster. As in the previous sections,
we compared the observed modularity against a null distribution
generated under a permutation-based model in which nodes were
randomly assigned to one of the two bipartition communities and
a geometry-preserving spin test46,47. In all cases, the observed
modularity exceeded that of both null models (10,000s
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permutations; p < 10−4; Fig. 5d, g, j). Note that in the supplement,
we also replicate the earlier finding that time-varying structure-
function coupling depends on RMS using human imaging data
(Fig. S11). Note that here, the claim is not that the co-fluctuation
patterns in mice and human brains are analogous in terms of
their topography. Rather, the claim is that despite differences in
species (mouse versus human), level of consciousness (anesthe-
tized versus away), and modality from which the structural

connectomes were derived (diffusion MRI and tractography
versus axonal tract tracing), the whole-brain co-fluctuation
patterns are underpinned by modular sub-networks in the
structural connectome.

These results reify, using human imaging data, the observations
made using mouse brain networks and suggest that events
detected using human fMRI may also be underpinned by
modular sub-divisions of the connectome.
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Discussion
Here, we applied edge time series to functional imaging data
recorded from anesthetized mice. In agreement with findings
made using human imaging data, we find evidence of high-
amplitude events. Further, we show that on a per-frame basis,
events best predict static FC and can be meaningfully grouped
into putative co-fluctuation states. Lastly, we show that the co-
fluctuation patterns expressed during events correspond to highly
modular anatomical subgraphs, positing a structural scaffold for
events to emerge. This study is one of the first to apply edge-
centric network methods to non-human imaging data (mouse).
Further, this study adds nuance to and contextualizes analogous
observations made using human imaging data while paving the
way for future work to investigate the origins of high-amplitude
BOLD fluctuations using perturbative and possibly invasive
experimental techniques.

Numerous studies have shown that patterns of brain activity
and connectivity approximately recur within a given scan
session8,48–50. These observations are not limited to human fMRI
but have been made in other mammals, including mice51–53, and
with other imaging modalities, including two-photon and
mesoscale calcium imaging54.

Here, we partition events into non-overlapping clusters using a
bespoke hierarchical and recursive variant of modularity max-
imization. Not only do we find evidence of shared co-fluctuation
patterns that recur across time and different mice, but we also
find that they can be meaningfully described at different orga-
nizational levels. We focus on the coarsest level, where we detect
three large and distinct patterns of high-amplitude co-fluctuation
that cross-link well-known anatomical and functional divisions of
the mouse brain. Critically, the network organization of static FC
is well-explained by these high-amplitude states alone, mirroring
findings made using human imaging data15,18,19.

We also examined the activity modes that underlie each of
these clusters. Interestingly, they bore a striking resemblance to
the results of a recent analysis of high-amplitude mouse activa-
tions, in which the authors detected six co-activation patterns
(CAPs) that were present in both awake and anesthetized mice55.
These patterns could be grouped into anti-correlated pairs, such
that the spatial patterns of CAPs that correspond to a given pair
are approximately anticorrelated with one another.

Notably, the reported CAPs resembled the activity modes that
underpinned the event cluster centroids described here (CAPs 3
and 4, 1 and 2, and 5 and 6 mapped onto clusters 1–3, respec-
tively). This is not a coincidence; mathematically, co-fluctuation
matrices are calculated as the product of an activation vector with
itself transposed. Consequently, an activation pattern (or the
same pattern where the sign of each element is flipped) would
generate an identical co-fluctuation matrix34. Hence, events can
be viewed as a connectivity-based analog of the activation-centric
CAPs and likely explain the parallels between results presented
here and in other studies that analyzed this same dataset55,56 and
others57–59 using CAPs. In fact, we speculate that in most studies
that report CAPs, there will be a two-to-one mapping of CAPs to
event co-fluctuation patterns. Both are detected as frames with
exceptionally high-amplitude activity (CAPs) or co-fluctuations
(edge time series), and the mathematical relationship between
activations and edges stipulates that every co-fluctuation pattern
can arise from two perfectly anti-correlated activation maps.

In the context of these observations and the long history of
detecting and tracking network states, our observations suggest
that while time-varying FC is, in principle, a high-dimensional
construct, its temporal evolution can be described in terms of
relatively few relevant dimensions—i.e., transitions to and from
different network states.

We note, however, that the functional/behavioral relevance of
these states remains undisclosed. However, given the anesthetized
state of the animals, the link to ongoing behavior is tenuous.
Rather, they may play a role associated with homeostatic
processes60. Future studies should investigate this question in
greater detail.

Many studies have shown that anatomical connectivity serves
as a powerful constraint on both static1,2,61–63, as well as time-
varying FC64–67. To date, however, few studies have examined
structure-function relationships when the function was defined
using edge time series (though see29,68 for examples).

Here, we study structure–function relationships using an
invasively mapped, directed, and weighted connectome through
two complementary approaches. First, we show that high-
amplitude events result in a division of network nodes into
positively and negatively co-fluctuating clusters and that this
bipartition is undergirded by highly segregated structural mod-
ules. This observation is directly in line with Pope et al.30 and
other studies demonstrating that in modular networks, modules
easily synchronize69–71, possibly building to network-wide events.
The present study, therefore, represents the first empirical cor-
roboration of Pope et al.30. Importantly, we verified that this
effect was not driven by module size or spatial extent (distance),
the parameter combinations needed to detect the bipartition, and
was replicated it using human imaging data.

Secondly, in a supplementary analysis, we tracked moment-to-
moment structure-function coupling as the correlation between
instantaneous co-fluctuation matrices and SC. This analysis was
similar to Liu et al.68, who predicted co-fluctuation patterns using
stylized measures of inter-regional communication capacity72.
Here, we opted for a simpler metric of coupling based on edge
weight correlations, discovering modest coupling across time.
Interestingly, however, we found that structure-function coupling
was maximized during high-amplitude frames, supporting our
previous finding that event co-fluctuations are well-aligned with
anatomical connectivity.

Perplexingly, this observation deviates from previous findings.
A number of studies using sliding-window methods for tracking
time-varying connectivity reported the presence of hyper-
connectivity states when the global coupling is dis-
proportionately strong73,74. In these studies, hyper-connectivity
corresponded to decoupling from the underlying anatomical
network65,66, with stronger coupling observed in lower amplitude
states. There are, of course, a number of possible explanations.
For instance, edge time series and sliding windows measure global
amplitude in different ways; whereas sliding window estimates of
time-varying connectivity define edge weights as correlation
coefficients, effectively placing an upper limit on the global mean
connectivity, edge time series have no such bound. Therefore,
high-amplitude/hyperconnected time points may not align across
methods. This agrees with previous studies that reported only a
modest correspondence between time-varying networks esti-
mated using those two techniques7.

Notably, the observation that modular network structure plays
a key role in shaping (near) synchronization patterns is a well-
documented phenomenon in complex systems and network
science71,75. Assortative modules are characterized by dense,
recurrent connectivity patterns, allowing for the self-excitation of
individual modules76. On the other hand, the relative segregation
of modules from one another ensures that synchronization effects
remain localized to subsets of modules, rarely inducing global
synchronization stats69 (though in clustered networks, a path to
global synchrony becomes possible through the synchronization
of the clusters themselves77). Though not explicitly tested here,
these mechanisms explain observations made in previous
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simulation studies29,30 and align with the empirical findings
reported here.

Our findings suggest that the modular structure of long-
distance anatomical connectivity helps shape the organization of
high-amplitude co-fluctuation patterns. Our analyses are moti-
vated by a century of neuroscientific observations, demonstrating
that perturbations to long-distance connectivity result in acute
changes to function78,79. However, a recent study has challenged
this very premise, positing that long-distance connections play
only a small role in shaping brain function80. Rather, that study
claims that brain function emerges from modes derived from
short-range, regular connectivity patterns that reflect the brain’s
intrinsic geometry. While this perspective has yet to be fully
embraced by the neuroscientific community81,82, high-amplitude
events could serve as another feature along which to compare and
adjudicate between the two theories. That is, given the apparent
ubiquity of events in large-scale imaging data, it would be
interesting to assess whether events appear in simulated time
series generated by the geometric models and, if so, to explore
their structural underpinnings. We leave this exploration for
future studies.

Here, we show that events in both mouse and human func-
tional imaging data are undergirded by modular structural net-
works. This cross-species convergence is particularly interesting
given differing levels of consciousness—mice were anesthetized
while human participants were awake. Although previous studies
have suggested that event timing is modulated by sensory
inputs13,27,28, this observation indicates that consciousness is not
a requirement for the emergence of events. Broadly, this obser-
vation is aligned with the work of Pope et al.30, who demon-
strated that events can occur in the absence of exogenous input if
the structural network is sufficiently modular.

On the other hand, these results raise the question: exactly
what is the purpose of events? Clearly, they have both online and
offline contributions. Focusing on the offline component, one
possibility is that spontaneous co-fluctuations (including events)
reflect Hebbian tuning of synaptic weights, reinforcing network
modules60. Another possibility, also outlined by Laumann and
Snyder60, is that spontaneous co-fluctuations have a restorative,
homeostatic effect and return neuronal populations towards
excitatory/inhibitory balance. Notably, these processes occur
offline and could, therefore, also explain the observation of events
in the brains of anesthetized mice.

More broadly, these observations underscore the need to more
clearly elucidate not only the network-level mechanisms that
support the emergence of events, but the contributions of neu-
robiological, physiological, molecular, and environmental factors,
as well. Addressing this question requires challenging cross-
disciplinary and multi-scale research but could shed light on the
role(s) of events in normative brain function.

This study presents a number of opportunities for future work
but also suffers from some limitations. Most notably, to the best
of our knowledge, this study represents the first to examine event
structure in a model organism. This extension of the edge time
series is critical; its application to human subjects has left a
number of questions unanswered. Namely, it remains unclear
why events occur and what brain/physiological processes they
support. These questions are difficult to answer in the absence of
direct, and possibly invasive, measurements and perturbations.

Additionally, future work should consider extending the edge-
centric approach from fMRI to other imaging modalities—e.g.,
widefield calcium imaging83 or voltage-sensitive indicators84.
Although the fMRI BOLD signal enjoys a broad agreement with
these signals85, its neuronal provenance is oftentimes unclear and
indirect. Relatedly, future studies should also investigate edge
time series and events in recordings made in non-mammal brains

—e.g., larval zebrafish86,87—where whole-brain activity can be
recorded at single-cell resolution88 and for which anatomical
connectivity is mapped at an areal level89.

There are also a number of limitations associated with this
work. For instance, due to the inability to map axonal projections
at the level of individual mice (the connectome from Oh et al.42 is
a composite of many brains), all structure–function associations
were calculated with respect to a single reference connectome.
There are many challenges and issues associated with group or
consensus-based connectomes in human imaging45 and even if
such issues are successfully mitigated with invasive tract tracing,
the current analysis makes it impossible to calculate measures of
structure-function correspondence for individual brains.

Our study relies on connectome data reconstructed using two
distinct techniques: invasive tract tracing in mice and non-
invasive tractography and diffusion MRI in humans. Although we
report converging evidence across both modalities showing that
high-amplitude events are underpinned by modular structural
networks, there are a number of dissimilarities worth noting
explicitly. Critically, the mouse connectome is directed, i.e.,
Wij ≠Wji, and capable of resolving asymmetries in connection
weight, whereas the human connectome is not. Additionally, it is
well-established that tractography algorithms struggle to resolve
crossing fibers90, recover superficial tracts38, and, even across
well-established pipelines, can lead to variability in tract
reconstructions39. Nonetheless, the non-invasive nature of MRI
means that human connectomes can be reconstructed at a whole-
brain level for individual participants. In summary, we identify
comparable effects using both techniques but note that in future
studies, it may be advantageous to focus on dissimilarities—e.g.,
the specific contributions of directed connections.

Yet another potential limitation concerns the null models used
to assess the statistical significance of induced modularity. For the
mouse data, we compared the observed modularity against an
ensemble of equal-sized subgraphs with equal-sized communities
but otherwise selected at random. This model does not preserve
the geometry of the observed bipartition—i.e., the randomly
generated communities are much less spatially compact with no
guarantees of spatial contiguity. This is an important feature in
brain networks, as both anatomical and functional connection
weights are distance dependent91–96. Addressing this limitation
with mouse data is not straightforward. The accepted approach
uses spin models to project spatial maps to a spherical surface,
rotate the surface randomly, and then project the rotated values
back to anatomy47. Here, we work with mouse volumetric data,
making the implementation of spin tests challenging. To partially
address this concern, we replicate our findings using surface-
based human imaging data where spin tests are easily performed.
There, we found that, like the unconstrained permutation test, the
observed modularity exceeded that of the null distribution, sug-
gesting that the mouse results may generalize as well. However,
future work is needed to confirm that this is the case.

Methods
Mouse dataset. All in vivo experiments were conducted in
accordance with the Italian law (DL 2006/2014, EU 63/2010,
Ministero della Sanitá, Roma) and the recommendations in the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. Animal research protocols were
reviewed and consented by the animal care committee of the
Italian Institute of Technology and the Italian Ministry of Health.
The rsfMRI dataset used in this work consists of n= 19 scans in
adult male C57BL/6J mice that are publicly available97,98. Animal
preparation, image data acquisition, and image data preproces-
sing for rsfMRI data have been described in greater detail
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elsewhere98. Briefly, rsfMRI data were acquired on a 7.0-T
scanner (Bruker BioSpin, Ettlingen) equipped with a BGA-9
gradient set, using a 72-mm birdcage transmit coil and a four-
channel solenoid coil for signal reception. Single-shot BOLD echo
planar imaging time series were acquired using an echo planar
imaging sequence with the following parameters: repetition time/
echo time, 1200/15 ms; flip angle, 30°; matrix, 100 × 100; field of
view, 2 × 2 cm2; 18 coronal slices; slice thickness, 0.50 mm; 1500
(n= 19) volumes; and a total rsfMRI acquisition time of 30 min.
Mice were anesthetized with isoflurane (5% induction), intubated,
and artificially ventilated (2% surgery). The left femoral artery
was cannulated for continuous blood pressure monitoring and
terminal arterial blood sampling. At the end of surgery, isoflurane
was discontinued and substituted with halothane (0.75%).

Image preprocessing has been previously described in greater
detail elsewhere98. Briefly, timeseries were despiked, motion
corrected, skull stripped, and spatially registered to an in-house
EPI-based mouse brain template. Denoising and motion correction
strategies involved the regression of the mean ventricular signal plus
6 motion parameters. The resulting time series were band-pass
filtered (0.01–0.1 Hz band) and then spatially smoothed with a
Gaussian kernel of 0.5 mm full width at half maximum. After
preprocessing, mean regional time series were extracted for 182
regions of interest (ROIs) derived from a predefined anatomical
parcellation of the Allen Brain Institute (ABI42,99).

The mouse anatomical connectivity data used in this work
were derived from a voxel-scale model of the mouse connectome
made available by the Allen Brain Institute100,101 (https://data.
mendeley.com/datasets/dxtzpvv83k/2). Here, we preserved the
directionality of connections—i.e., no symmetrization step was
included in the pre-/post-processing pipelines.

Briefly, the mouse structural connectome was obtained from
imaging-enhanced green fluorescent protein (eGFP)-labeled
axonal projections derived from 428 viral microinjection experi-
ments and registered to a common coordinate space42. Under the
assumption that SC varies smoothly across major brain divisions,
the connectivity at each voxel was modeled as a radial basis
kernel-weighted average of the projection patterns of nearby
injections101. Following the procedure outlined in100, we re-
parcellated the voxel scale model in the same 182 nodes used for
the resting state fMRI data, and we adopted normalized
connection density (NCD) for defining connectome edges, as
this normalization has been shown to be less affected by regional
volume than another absolute and/or relative measure of
interregional connectivity102.

Human imaging dataset. The Human Connectome Project
(HCP) 3T dataset33 consists of structural magnetic resonance
imaging (T1w), functional magnetic resonance imaging (fMRI),
and diffusion magnetic resonance imaging (dMRI) young adult
subjects, some of which are twins. Here we use a subset of the
available subjects. These subjects were selected as they comprise
the 100 Unrelated Subjects released by the Connectome Coor-
dination Facility. After excluding data based on completeness and
quality control (4 exclusions based on excessive framewise dis-
placement during scanning; 1 exclusion due to software failure),
the final subset included 95 subjects (56% female, mean age=
29.29 ± 3.66, age range= 22–36). The study was approved by the
Washington University Institutional Review Board and informed
consent was obtained from all subjects.

A comprehensive description of the imaging parameters and
image preprocessing can be found in103. Images were collected on
a 3T Siemens Connectome Skyra with a 32-channel head coil.
Subjects underwent two T1-weighted structural scans, which were
averaged for each subject (TR= 2400 ms, TE= 2.14 ms, flip

angle= 8°, 0.7 mm isotropic voxel resolution). Subjects under-
went four resting state fMRI scans over a 2-day span. The fMRI
data was acquired with a gradient-echo planar imaging sequence
(TR= 720 ms, TE= 33.1 ms, flip angle= 52°, 2 mm isotropic
voxel resolution, multiband factor= 8). Each resting-state run
duration was 14:33 min, with eyes open and instructions to fixate
on a cross.

Finally, subjects underwent two diffusion MRI scans, which were
acquired with a spin-echo planar imaging sequence (TR= 5520ms,
TE= 89.5 ms, flip angle= 78°, 1.25mm isotropic voxel resolution,
b-vales= 1000, 2000, 3000 s/mm2, 90 diffusion weighed volumes
for each shell, 18 b= 0 volumes). These two scans were taken with
opposite phase encoding directions and averaged.

Structural, functional, and diffusion images were minimally
preprocessed according to the description provided in103 as
implemented and shared by the Connectome Coordination
Facility. Briefly, T1w images were aligned to MNI space before
undergoing FreeSurfer’s (version 5.3) cortical reconstruction
workflow as part of the HCP Pipeline’s PreFreeSurfer, FreeSurfer,
and PostFreeSurfer steps. Functional images were corrected for
gradient distortion, susceptibility distortion, and motion and then
aligned to the corresponding T1w with one spline interpolation
step. This volume was further corrected for intensity bias
and normalized to a mean of 10,000. This volume was then
projected to the 2 mm 32k_fs_LR mesh, excluding outliers, and
aligned to a common space using a multi-modal surface
registration104. The resultant CIFTI file for each HCP subject
used in this study followed the file naming pattern: *_Atlas_-
MSMAll_hp2000_clean.dtseries.nii. These steps are
performed as part of the HCP Pipeline’s fMRIVolume and
fMRISurface steps. Each minimally preprocessed fMRI was
linearly detrended, band-pass filtered (0.008–0.008 Hz), confound
regressed, and standardized using Nilearn’s signal.clean
function, which removes confounds orthogonally to the temporal
filters. The confound regression strategy included six motion
estimates, the mean signal from a white matter, cerebrospinal
fluid, and whole brain mask, derivatives of these previous nine
regressors, and squares of these 18 terms. Spike regressors were
not applied. Following these preprocessing operations, the mean
signal was taken at each time frame for each node, as defined by
the Schaefer 400 parcellation105 in 32k_fs_LR space. Diffusion
images were normalized to the mean b0 image, corrected for EPI,
eddy current, and gradient non-linearity distortions, and motion,
and aligned to the subject anatomical space using a boundary-
based registration as part of the HCP pipeline’s Diffusion
Preprocessing step. In addition to HCP’s minimal preprocessing,
diffusion images were corrected for intensity non-uniformity with
N4BiasFieldCorrection106. The Dipy toolbox (version
1.1)107 was used to fit a multi-shell, multi-tissue constrained
spherical deconvolution108 to the data with a spherical harmonics
order of 8, using tissue maps estimated with FSL’s fast109.
Tractography was performed using Dipy’s Local Tracking
module107. Multiple instances of probabilistic tractography were
run per subject110, varying the step size and maximum turning
angle of the algorithm. Tractography was run at step sizes of 0.25,
0.4, 0.5, 0.6, and 0.75 mm with the maximum turning angle set to
20°. Additionally, tractography was run at maximum turning
angles of 10°, 16°, 24°, and 30° with the step size set to 0.5 mm.
For each instance of tractography, streamlines were randomly
seeded three times within each voxel of a white matter
mask, retained if longer than 10 mm and with valid endpoints,
following Dipy’s implementation of anatomically constrained
tractography111, and errant streamlines were filtered based on the
cluster confidence index112. For each tractography instance,
streamlined count between regions of interest were normalized by
dividing the count between regions by the geometric average
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volume of the regions. Since tractography was run nine times per
subject, edge values were collapsed across runs. To do this, the
weighted mean was taken with weights based on the proportion
of total streamlines at that edge. This operation biases edge
weights towards larger values, which reflect tractography
instances better parameterized to estimate the geometry of each
connection.

Edge time series. FC refers to the magnitude of statistical
dependence between activity recorded from distant brain sites. In
the present study, we define FC as the bivariate product-moment
correlation. Consider regions i and j whose activity is denoted by
the vectors xi= [xi(1),…, xi(T)] and xj= [xj(1),…, xj(T)]. We can
estimate their FC as rij ¼ 1

T�1∑
T
t¼1 ziðtÞ � zjðtÞ, where zi(t) and

zj(t) represent the standardized (z-scored) regional time series.
Suppose we omitted the summation in calculating FC. Rather

than the correlation coefficient rij, we would obtain the time series
rij(t)= [zi(1) ⋅ zj(1),…, zi(T) ⋅ zj(t)]. The elements of this time
series have intuitive interpretations; they encode the magnitude,
direction, and timing of co-fluctuations between regions i and j.
For instance, rij(t) > 0 if at time t regions i and j both deflect in the
same direction with respect to their means–i.e., sign(zi(t))=
sign(zj(t)). On the other hand, if i and j were deflecting in
opposite directions, the rij(t) < 0. Relatedly, if at time t, the activity
of i and j only slightly deviated from their respective means, the
∣rij∣ ≈ 0. However, if the activity of either region deviates far from
its mean, then ∣rij∣ > > 0.

Co-fluctuation time series have other useful properties. By
design, they are an exact decomposition of a functional
connection into its time-varying contributions. In previous
studies, we found that most frames contribute little to the static
connection weight. Rather, FC was driven by a select subset of
high-amplitude frames. Across node pairs, these high-amplitude
co-fluctuations tended to occur synchronously, giving rise to
brain-wide high-amplitude events. In previous studies, we
detected events by identifying frames where a measure of
whole-brain co-fluctuation amplitude was statistically greater
than that of a null model. Specifically, we calculated the root
mean square (RMS) of all co-fluctuation time series:

RMSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
NðN�1Þ ∑i;j > i rijðtÞ2

q

. From this time series, we

identified its peaks—their amplitude and their timing. We then
calculated RMS time series using co-fluctuation time series
estimated after circularly shifting the regional (parcel) time series.
We repeated this procedure 1000 times, building up a null
distribution of peak RMS values, against which we compared the
empirical values using non-parametric statistics. Events were
defined as peaks in the intact co-fluctuation time series whose
amplitude was statistically greater than that of the null
distribution (false discovery rate fixed at 5% and critical p-value
adjusted accordingly).

Lin’s concordance. We measured the similarity between co-
fluctuation patterns using Lin’s concordance as opposed to the
bivariate product-moment correlation. For two patterns with
equal means and variances, these measures are identical. How-
ever, the concordance measure penalizes the similarity if the
means differ from one another. For two vectorized co-fluctuation
patterns x and y, concordance is calculated as:

Cxy ¼
2 � Cov x; y

� �

VarðxÞ þ VarðyÞ þ ðμx � μyÞ2
ð1Þ

where Cov(x, y) is the covariance, Var(x) is the variance, and μx is
the mean.

Modularity heuristic. Many networks exhibit mesoscale or
community structure. This implies that they can be meaningfully
decomposed into sub-networks referred to as modules or com-
munities. The identity of these sub-networks is usually unknown
ahead of time and cannot be determined from visual inspection
alone, necessitating algorithmic approaches for estimating nodes’
community assignments. The modularity heuristic is an objective
function that maps a network and partition its nodes into non-
overlapping communities to a scalar measure of quality, Q43.
Intuitively, larger values of Q are considered better partitions.

In more detail, Q can be defined as:

Q ¼ ∑
ij
Bijδðσ i; σ jÞ ð2Þ

where Bij is {i, j} element of the modularity matrix, B=W− P,
where W is the observed connectivity matrix and P is the
connectivity matrix expected under a null model. The function
δ(x, y) is the Kronecker delta and is equal to 1 when x= y and 0
otherwise. The variable σi denotes the community assignment of
node i. In short, Q is calculated as the sum of all within-
community elements of the modularity matrix, B. It takes on a
large value when the observed weights of those connections
exceed their expected weights.

The modularity, Q, can also be expressed as a sum over
communities. Given a partition of nodes into K communities, we
can write the contribution of community c∈ {1,…, K} to the total
modularity as qc=∑i∈c,j∈c Bij such that Q=∑c qc.

Previously we had described an algorithm for recursively
applying modularity maximization to obtain a hierarchical
partition of a network18. The algorithm works as follows. Given
a fully weighted, symmetric, and possibly signed network, we
denote its observed connectivity as C and define its expected
connectivity to be the mean of its upper triangle elements,
hCi ¼ 2

NðN�1Þ∑i;j > i Cij. We can then define the modularity
matrix, B= C− 〈C〉. Using the Louvain algorithm113, we
optimize QNiter times and perform consensus clustering on the
ensemble of high-quality partitions114 using a previously
described algorithm115. Briefly, the consensus clustering proce-
dure involves transforming the ensemble of partitions into a
N ×N coassignment matrix, whose elements count the fraction of
times that every pair of nodes is assigned to the same community.
We then calculate the expected coassignment matrix—i.e., how
often we would expect nodes to be assigned to the same
community given the same ensemble but where nodes are
assigned to communities by chance. We then construct a
consensus modularity matrix, Bconsensus=Coassignment−
Expected coassignment, and optimize the consensus modularity,
Qconsensus ¼ ∑ij B

consensus
ij δðσconsensusi ; σconsensusj Þ. Because the coas-

signment matrix reinforces communities by mutually connecting
all nodes assigned to the same community, it effectively reinforces
consistently detected communities, making them more easily
detectable when optimizing Qconsensus. Consequently, the varia-
bility across the ensemble of consensus partitions is typically
much less than the variability across partitions in the initial
ensemble. Frequently, the variability is zero—i.e., across all runs
the Louvain algorithm converged to an identical solution. In that
case, we regard the solution as the consensus partition. If the
algorithm fails to reach a consensus, then we re-estimate the
coassignment matrix and expected coassignment matrix given the
variable estimates of consensus partitions, repeating this proce-
dure until convergence. This step results in a consensus partition
of nodes into K communities and the contribution of each
community to the total modularity, qc, c∈ {1,…, K}.

Each of the K communities can be viewed as a child of the
parent network. To obtain a full multi-level and hierarchical
description of the network’s communities, we could recursively
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apply the above procedure to all child networks and subsequently
to the children of children and so on, until at the final level, every
node is its own community. However, this procedure would be
computationally expensive, especially for large networks. More-
over, many of the child networks may be poorly defined and not
composed of cohesively connected nodes.

Accordingly, we introduce a statistical criterion that prunes
branches from the hierarchy. Specifically, after obtaining the
consensus partition, we permute consensus community labels to
obtain a null distribution for communities’ modularity contribu-
tions. Any community whose contribution was consistent with
the null distribution was discarded and not subdivided further,
effectively pruning its children from the hierarchical tree.

In this manuscript, we used the hierarchical algorithm both to
partition static FC into communities at multiple resolutions as
well as to cluster high-amplitude events into putative states.

In a previous study, we showed that co-fluctuation time series
induces a bipartition of network nodes into two clusters34. One of
the clusters corresponds to nodes with positive activations, while
the other cluster corresponds to those with negative activations.
The temporal average of co-assignment matrices obtained from
these bipartitions was highly correlated with static FC.

When many co-fluctuation patterns are averaged together, as
they are when we estimate event cluster centroids, estimating the
bipartition is not straightforward. To obtain such an estimate we
resort to data-driven algorithms. Namely, modularity maximiza-
tion. Specifically, we define a modularity matrix by comparing the
observed co-fluctuation matrix against a uniform null model.
That is, Bij=Wij− P, where P is a constant and is the same for all
{i, j}. We optimize the corresponding modularity Niter= 1000
times and use consensus clustering to obtain a single representa-
tion partition. From this partition, we extract the two largest
clusters and, by inspection, ensure that they are anticorrelated
with one another. We retain these two clusters as an estimate of
the bipartition and discard any smaller clusters, assigning nodes
in those clusters to a single non-cluster label.

Given an estimate of bipartition, we wanted to assess whether
the two communities were also structurally segregated from one
another—i.e., whether the bipartition was modular. To do so, we
extracted the subgraph from the structural network—i.e., the
connectome—composed of nodes in either of the two clusters.
We also extracted the corresponding subgraph from the
structural modularity matrix. Here, the modularity matrix was

defined as Bsc
ij ¼ Wsc

ij �
ki;inkj;out

2m , where ki;in ¼ ∑jW
sc
ij weighted in-

degree of node i and ki;out ¼ ∑j W
sc
ji and 2m=∑i ki,in=∑i ki,out.

Suppose that we let c+ and c− correspond to the two clusters
detected in the bipartition analysis and represent groups of nodes
with high levels of positive and negative activity, respectively.
Note that cþ \ c� ¼ f;g. Then, we can calculate the induced
modularity of the bipartition as:

Qinduced ¼ ∑
i2cþ;j2cþ

Bsc
ij þ ∑

i2c�;j2c�þ
Bsc
ij ð3Þ

To assess the statistical significance of the induced modularity, we
compared the observed modularity against a null distribution
generated using permutation tests. For two non-overlapping
communities, c+ and c−, we generated a null distribution by
sampling n+ and n− at random and recomputing the induced
modularity. Note that for the human imaging data, rather than
using a random sample, we sampled communities using a spatially
constrained spin test46,47,116. To do this, we defined a community
vector of length N, where N is the number of nodes. Elements of
c+ and c− were assigned values of 1 and 2, respectively, while all
other elements were equal to 0. The spin test permutes this vector
while approximately preserving the spatial contiguity of neural

elements. After spinning the vector, we extracted the subgraph
corresponding to the non-zero elements in the community vector.
Thus, this null model assesses whether subgraphs with similar
spatial extent, equal size, and equal-sized communities could have
generated a similar induced modularity.

Statistics and reproducibility. Statistical analyses were carried
out using the full mouse dataset (n= 19 animals) and the 100
unrelated participants from the Human Connectome Project (of
which n= 95 were included based on data quality control cri-
teria). The primary claim of this paper is that event co-fluctuation
patterns are underpinned by modular SC. We report this first
using the mouse dataset and replicate it in the human dataset,
despite differences in spatial scale, acquisition parameters, pre-
processing pipeline, and modality used to reconstruct structural
networks (tract tracing in mouse; tractography in human).

In Fig. 2b, c we compare different strategies for reconstructing
FC. We compared strategy types using t-tests. In Fig. 4c, f, I, we
compare observed modularity scores, Q values, against two null
distributions, each estimated using permutation tests. For each
comparison we calculated a non-parametric p-value as the
fraction number of permutations that were at least as large as
the observed Q value. We used the same procedure to estimate p-
values for the data displayed in Fig. 5d, g, j.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Human Connectome Project data are available from https://db.humanconnectome.org/
after signing a data use agreement. Mouse data have been deposited and are available
https://data.mendeley.com/datasets/7y6xr753g4/1, https://data.mendeley.com/datasets/
r2w865c959/1, and https://data.mendeley.com/datasets/thpszcwcgx/2. The data used to
make the plots in Figs. 2–5 can be found in Supplementary Data 1–4, respectively.

Code availability
The code for detecting events is available here (https://github.com/brain-networks/
event_detection).
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