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Contextualising the developability risk of antibodies
with lambda light chains using enhanced
therapeutic antibody profiling
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Antibodies with lambda light chains (λ-antibodies) are generally considered to be less

developable than those with kappa light chains (κ-antibodies). Though this hypothesis has

not been formally established, it has led to substantial systematic biases in drug discovery

pipelines and thus contributed to kappa dominance amongst clinical-stage therapeutics.

However, the identification of increasing numbers of epitopes preferentially engaged by λ-

antibodies shows there is a functional cost to neglecting to consider them as potential lead

candidates. Here, we update our Therapeutic Antibody Profiler (TAP) tool to use the latest

data and machine learning-based structure prediction, and apply it to evaluate developability

risk profiles for κ-antibodies and λ-antibodies based on their surface physicochemical prop-

erties. We find that while human λ-antibodies on average have a higher risk of developability

issues than κ-antibodies, a sizeable proportion are assigned lower-risk profiles by TAP and

should represent more tractable candidates for therapeutic development. Through a com-

parative analysis of the low- and high-risk populations, we highlight opportunities for stra-

tegic design that TAP suggests would enrich for more developable λ-antibodies. Overall, we

provide context to the differing developability of κ- and λ-antibodies, enabling a rational

approach to incorporate more diversity into the initial pool of immunotherapeutic candidates.
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Antibodies are the dominant category of biotherapeutics;
more than 140 therapeutic antibodies have now been
approved by regulators with over 550 currently active in

clinical trials1,2. Their popularity is tied to their use by natural
immune systems and their ability to achieve high affinity/speci-
ficity for seemingly any targeted pathogen (antigen), enabling its
selective eradication3.

Conventional antibodies are dimeric, comprise two identical
heavy and light chains and accomplish precise antigen recogni-
tion through two dedicated antigen binding sites, termed the
variable regions (Fvs). These Fvs are identical and structurally/
chemically intricate, containing six proximal complementarity-
determining region (CDR) loops — three on the variable domain
of the heavy chain (VH, CDRH1-3) and three on the variable
domain of the light chain (VL, CDRL1-3).

A large portion of the VH sequence derives from the recom-
bination of a heavy V, D, and J gene, while most of the VL
sequence is analogously the product of recombination of a light V
and J gene. These heavy and light chain immunoglobulin germ-
line genes are encoded at different loci across the chromosomes.
For example, in humans, the heavy chain V, D, and J genes
(IGHV, IGHD, IGHJ) lie solely on chromosome 14, while light
chain V and J genes exist at two loci; a kappa (κ, IGKV and IGKJ)
locus on chromosome 2, and a lambda (λ, IGLV and IGLJ) locus
on chromosome 224,5.

Within each locus, different V(D)J genes recombine to create a
considerable baseline diversity in both the VH and VL sequence6.
Nucleotide insertions/deletions in the junction region between
genes (which falls within the CDR3 loops) further contribute to
exceptional VH and VL sequence diversification. Pairing of the
recombined heavy and light chains then adds an additional com-
binatorial diversity; in this manuscript we term antibodies con-
taining a κ light chain as κ-antibodies, and those containing a λ light
chain as λ-antibodies. Finally, antibody sequence diversity is mag-
nified through somatic hypermutation during an immune response.
This process is often artificially mimicked during therapeutic
development through in vitro affinity maturation/engineering.

Although the VH sequence is more diversified, the VL
sequence is often critical to an antibody’s function. For example,
it has been observed in different toxin, virus, and vaccine
response contexts that κ- and λ-antibodies are expressed in
characteristic proportions with restricted usages, and that they
tend to have different antigen specificities7. Amongst the thou-
sands of anti-coronavirus antibodies independently isolated
throughout the pandemic, the same VL germline genes have been
frequently observed amongst antibodies with a high confidence of
engaging the same epitope8,9. This link between VL germline
genes and function has recently been shown to apply more
generally, as evidenced by Jaffe et al. who found light chain
coherence of memory B-cell compartments10, and by Shrock et al.
who identified the presence of germline amino acid-binding
motifs—many of which lie in the VL sequence11. Together, these
phenomena are likely by-products of the documented
sequence11–14 and structural11,15–17 differences between κ- and λ-
VLs, which may have evolved to increase the efficacy of receptor
editing18, a process during which maturing BCRs can exchange
their initial recombined κ light chain for a λ light chain to prevent
autoreactivity.

Despite their functional utility, λ-antibodies are currently
under-represented across clinical-stage therapeutic antibodies
(CSTs). Of a set of 242 CSTs curated in 201919, all of which were
designed for human application, only around 10% derived from
λ-genes. By comparison, λ-antibodies are estimated to comprise
roughly 35% of natural human repertoires20,21.

The precise reasons behind the paucity of λ-antibodies in the
clinic are unknown, but there are several probable origins. These

include factors related to the dominant methods of therapeutic
discovery22,23, such as unintended selection bias in screening
library design24 and the higher κ: λ ratios (up to 20:1) seen in
mouse antibody repertoires25.

There are also reports that suggest that λ-antibodies may fail
more frequently than κ-antibodies to advance through pre-
clinical development26. Several studies have identified that λ-VLs
exhibit a higher average hydrophobicity than κ-VLs12,13,18,19;
higher hydrophobicity suggests an increased propensity towards
the formation of aggregates via the hydrophobic effect. This
mechanism is understood to be the primary force driving light
chain amyloidosis, where free light chains self-associate, and data
suggest that λ-VLs prone to dimerisation outnumber κ-VLs27.

This has earned λ-antibodies a reputation for poor developability
that has fed back into systematic discovery biases, such as through
the intentional development of κ-only screening libraries28, or,
when given a choice of progressing κ- or λ-antibodies to down-
stream lead optimisation, a tendency to prioritise the former.
However, it is probable that a sizeable proportion of λ-antibodies
are indeed developable, and that rational engineering could be used
to make some more challenging λ-antibodies biophysically
tractable29. In general, better distinction between more developable
and less developable λ-antibodies should be applied to limit the
degree to which we artificially restrict candidate diversity, and
therefore targetable epitope space, during early stage discovery.

In 2019, we published the Therapeutic Antibody Profiler
(TAP), a method for the computational developability assessment
of lead candidates based on comparing their 3D biophysical
properties to those of CSTs19. At the time, we had access to only
25 λ-based CST sequences and artificially-paired representations
of natural human antibodies. Now, through dedicated efforts to
track the sequences of CSTs as they are designated by the World
Health Organisation (WHO)1 and increased public availability of
paired-chain natural antibody repertoires30, we are able to more
confidently profile the physicochemical properties of therapeutic
and natively-expressed human λ-antibodies.

In this paper, we first improve TAP by incorporating
ABodyBuilder231, a state-of-the-art deep-learning based antibody
structure prediction method and highlight changes and robust-
ness of the new guideline values. We then use our updated pro-
tocol to characterise developability-linked biophysical differences
across CST and natural κ- and λ-antibodies. Finally, we probe the
subset of red-flagging antibodies for recurrent features associated
with extreme scores, and which may be avoided to derisk the
incorporation of λ-antibodies into screening libraries.

Overall, our study provides an improved methodology for
therapeutic antibody profiling and adds context to the develop-
ability of λ-antibodies, facilitating their selective consideration as
leads during early-stage drug discovery.

Results
Curating datasets of therapeutic and natural antibodies. We
first curated the latest set of non-redundant, post Phase-I clinical
stage therapeutics (CSTs) designated for use in humans from
Thera-SAbDab1 (25th January, 2023). We obtained 664 CST Fv
sequences (the CSTall dataset), compared to the 242 used in our
previous analysis19. To obtain a reference set of natural human
antibodies, we utilised the paired Observed Antibody Space
(OAS) database30, which tracks, cleans, and annotates single-cell
antibody V(D)J sequencing datasets in the public domain. We
curated all 79,759 non-redundant natively-paired human anti-
body sequences from paired OAS (25th January, 2023), which we
term the Natall dataset. This compares to datasets of between
14,000–19,000 artificially-paired human antibody sequences used
in our previous analysis19.
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Benchmarking a new TAP modeling protocol. The original
Therapeutic Antibody Profiler used the homology modeling tool
ABodyBuilder32 (ABodyBuilder1, for clarity) for antibody struc-
tural modeling. In 2018, this was the state-of-the-art tool for
high-throughput antibody modeling. However, recent advances
in deep learning have yielded several pretrained ab initio struc-
ture prediction architectures that can be applied or adapted to the
task of rapid antibody/CDR loop modeling31,33–35. Their average
performance has been shown to be consistently higher than that
of homology-based antibody modeling methods. Since better
models of antibodies should improve the reliability of our
developability guidelines, we explored the case for updating our
TAP protocol to use a more recent machine learning-based tool
(ABodyBuilder231) for 3D structural modeling. We selected
ABodyBuilder2 as it has been shown to outperform other
antibody-specific modelling methods31, while being competitive
with AlphaFold Multimer33 at orders of magnitude faster
modelling rates.

We first confirmed that ABodyBuilder2’s improved general
performance translates specifically to CSTs, observing increased
backbone and side chain modeling accuracy relative to ABody-
Builder1 across a set of recently-solved therapeutics (Supplemen-
tary Note 1, Supplementary Tables 1–2). This motivated us to
formally adopt ABodyBuilder2 as the tool for 3D modeling prior
to computation of the TAP metrics.

We next analysed the impact of using ABodyBuilder2 versus
ABodyBuiler1 for structural modeling on the TAP developability
guidelines calculated across the CSTall set. We measure this based
on their impact on the amber and red flagging thresholds —
characteristic percentile values used to demark the extrema of
each TAP property distribution linked to poor developability19.

For reference, amber flags for Total CDR Length (Ltot) or
Patches of Surface Hydrophobicity (PSH) are assigned to scores
in the 0th-5th or 95th-100th percentiles relative to CSTs, while
red flags are assigned if the Ltot/PSH score falls below the 0th or
above the 100th percentile. Amber flags for Patches of Positive
Charge (PPC) or Patches of Negative Charge (PNC) are assigned
if a score falls in the 95th–100th percentile range relative to CSTs,
and red flags are assigned to scores above the 100th percentile.
Finally, amber flags are assigned for the Structural Fv Charge
Symmetry Parameter (SFvCSP) metric if the score falls between
the 0th-5th percentile values relative to CSTs, while red flags are
assigned to scores below the 0th percentile.

The ABodyBuilder2-modeled CSTall flagging thresholds show
high similarity to those obtained by ABodyBuilder1 (Table 1,
Supplementary Fig. 1). There is, however, some evidence of a
systematic bias associated with the different modeling protocol.
Comparing the amber flag thresholds (less volatile than red flag
thresholds as they capture 5% of the data) shows that

ABodyBuilder2-modeled CSTs have lower PSH scores than
ABodyBuilder1-modeled CSTs. This drop in PSH score is
consistent with ABodyBuilder2’s more accurate modeling; we
found in our original TAP paper that PSH values calculated over
solved crystal structures (theoretically perfect predictions) were
lower on average (a difference of c. 10) than those calculated over
ABodyBuilder1 models of the same CSTs19. This emphasises the
need to use the same modelling tool for setting the guidelines and
evaluating new candidates.

Testing the robustness of the TAP developability guidelines.
We then probed the robustness of our developability guidelines to
various perturbations. TAP values calculated on the subset of
CSTs modeled with higher certainty should be more reliable.
Model confidence can be estimated through the frame-aligned
prediction error (FAPE) metric, a property minimised as part of
the ABodyBuilder2 loss function that can be interpreted as a
measure of backbone prediction uncertainty for each residue31.
To investigate the impact of FAPE-based confidence filtering on
our guidelines, we first determined an appropriate CDRH3 root-
mean squared predicted error threshold that would filter out the
least-confidently modeled CDRH3s (1.31 Å, see Methods for the
derivation), then calculated our developability guidelines based
only on the subset of most confident CST predictions (the
CSTconf set, see Supplementary Fig. 2, Supplementary Table 3).
This set of generally higher quality models provides a more
accurate reference set of physicochemical distributions, which, if
they were to differ substantially from the general set, would imply
that ABodyBuilder2’s model accuracy has a systematic impact on
the aggregate guidelines set over all CSTs. Overall, the guidelines
derived from only the most confident models aligned closely with
those set over all CSTs, suggesting that the new TAP guidelines
are robust to the variable prediction accuracy of ABodyBuilder2.

Next, we examined the effect of ABodyBuilder2’s non-
deterministic side chain modeling to explore statistically how
side chain conformational uncertainty impacts the guidelines. We
ran the TAP protocol three times per CST and investigated the
consistency of structure-dependent TAP metrics for each CST
(Supplementary Fig. 3). The results for all metrics were all highly
consistent between runs. PPC, PNC, and SFvCSP values were the
most consistent, with Pearson’s coefficient values in the range of
0.993–0.996. Due to their sensitivity to structural variations in
any CDR vicinity residue, we expected the PSH values to be more
susceptible to inter-run fluctuations. This was borne out, however
PSH remained strongly correlated between two independent
modeling runs (ρ: 0.945), and even more strongly correlated
between one run and the mean of three independent runs
(ρ: 0.981). The proportions of flagging inconsistencies (instances
where a CST would be flagged for that property based on one

Table 1 Latest TAP thresholds based on ABodyBuilder1 or ABodyBuilder2 models.

TAP Property ABodyBuilder1 ABodyBuilder2

Amber Flag Region Red Flag Region Amber Flag Region Red Flag Region

Ltot 37 to 42 <37 37 to 42 <37
55 to 63 >63 55 to 63 >63

PSH 90.88 to 114.61 <90.88 95.58 to 110.11 <95.58
174.26 to 219.20 >219.20 168.06 to 201.59 >201.59

PPC 1.27 to 4.21 >4.21 1.32 to 4.22 >4.22
PNC 1.93 to 4.36 >4.36 2.00 to 4.42 >4.42
SFvCSP −30.00 to −6.00 <−30.00 −30.60 to −6.00 <−30.60

Flagging regions across the five TAP developability metrics calculated over the CSTall dataset (See Methods), when therapeutics are modeled by ABodyBuilder1 or by ABodyBuilder2. As ABodyBuilder1
could not find sufficiently homologous templates to produce a model for Basiliximab, Iscalimab, and Netakimab, its statistics are calculated over 661/664 CSTs. Amber and red flag percentiles were set
as per Raybould et al. 201919. Ltot Total CDR Length, PSH Patches of Surface Hydrophobicity metric, PPC Patches of Positive Charge metric, PNC Patches of Negative Charge metric, SFvCSP Structural Fv
Charge Symmetry Parameter.
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TAP run but not based on three repeats), were as follows: PSH
(lower): 3.31%, PSH (upper): 1.81%, PSH (overall): 5.12%, PPC:
0.30%, PNC: 0.30%, SFvCSP: 0.75%.

To capture the absolute variability of scores across repeats, we
evaluated for each metric/CST the variance across the three runs
and averaged these values on a per metric basis across the CSTall

dataset. The mean PSH variance was 10.53 while the mean PPC,
PNC, and SFvCSP variances were below 1 (Supplementary
Table 4). When values from three runs were amalgamated to
establish aggregate TAP guidelines, this translated to a very small
variation in threshold values from those obtained based on a
single model of each CST (Supplementary Table 5).

In addition to this statistical sampling of energy-minimised
side chain conformations, we also evaluated the variation in TAP
scores calculated over the course of molecular dynamics
simulations; incorporation of dynamics in guideline evaluation
was suggested in a recent study on computational developability
prediction36. We selected 14 case study CSTs, seven of which had
solved Fv coordinates in the ABodyBuilder2 training set and
seven of which did not; for details of the molecular dynamics
simulation and TAP calculations, see Methods.

The profiles for each of the four structure-dependent TAP
metrics are shown in the Supplementary Information (Supple-
mentary Figs. 4–7). The mean value of the TAP properties over
the course of the simulation showed good agreement with an
ensemble of three TAP predictions on the static Fv models output
directly by ABodyBuilder2. Based on a paradigm where if a
developability flag is raised on any of the repeat calculations we
consider the antibody formally flagged for that property, the
ensemble of direct ABodyBuilder2 outputs agreed with the flag
assigned to the simulation mean for 12/14 calculations for PSH,
13/14 calculations for PPC, and 14/14 calculations for PNC and
SFvCSP. Furthermore, we tested whether three ABodyBuilder2
modelling runs were sufficient to explore the diversity of side
chain conformations by doubling to six runs and comparing the
results. Based on an analogous ensemble paradigm, the agreement
remained the same. However, there was some evidence that the
additional runs helped to improve statistical consensus with the
simulation-mean flag (Supplementary Table 6). For example,
Simaravibart and Regdanvimab - which were assigned flags for
PSH based on the molecular dynamics - flagged in a higher
proportion of the six runs than the first three (1/3 vs. 3/6 runs,
and 2/3 vs. 5/6 runs, respectively).

TAP metric profiles over time and by development status.
Finally, we investigated the impact on our metric distributions of
filtering our CSTs by metadata properties.

To assess the properties of CSTs over time, we split the set by
the year they were given a proposed WHO International Non-
proprietary Name, yielding 356 named between 1987–2017 and
308 named between 2018 and the present day. Comparing their
TAP property distributions (Supplementary Fig. 8) indicates that
while their charge metrics are similar, the amber and red flag
thresholds of the Ltot and PSH properties have shifted to more
extreme values at both tails, suggesting an increased willingness to
push CST design into new property spaces and perhaps reflecting
formulation advances able to accommodate more extreme
physicochemical properties.

Recent studies have suggested that developability guidelines
may be better derived from marketed therapeutics36,37; we
evaluated our TAP distributions for the subsets of CSTs in
Phase-II (341), Phase-III (141), or in Preregistration/Approved
(182), however observed no clear trend in their properties along
the clinical progression axis (Supplementary Fig. 9). Equally, we
saw little difference in the properties of CSTs known to be in

active development or that completed the development pipeline
versus CSTs whose campaigns were terminated before reaching
approval (Supplementary Fig. 10). These observations are
consistent with the principle that CSTs with unmanageable
developability issues do not tend to progress past pre-clinical/
Phase-I development, and that decisions to terminate campaigns
at later clinical stages are often attributable to other causes.

Updated comparison of CSTs to natural human antibodies. A
key biotechnological advance in recent years has been the advent of
high-throughput paired B-cell receptor (BCR) sequencing38. Pub-
licly available paired antibody sequences are increasingly
abundant30 and provide a higher fidelity comparison set than the
artificially-paired natural single chain reads we used in previous
repertoire characterisation work19,39. These samples, coupled with
the availability of 2.75 times as many CSTs and a more accurate/
versatile modeling protocol, provides an ideal opportunity to revisit
prior analyses and explore whether we observe similar trends in the
biophysical properties of therapeutics and natural antibodies.

We calculated the TAP profiles for our new curated datasets of
naturally-paired human sequences (Natall, N= 88,274) and CSTs
(CSTall, N= 664). The patterns of the distributions aligned with
our findings in the original paper (Fig. 1a–e). CSTs and natural
human antibodies adopted similar PPC, PNC, and SFvCSP
distributions, but natural antibodies were even more enriched at
longer CDRs and higher PSH scores than observed previously
(30.16% and 24.23% fall above the upper amber flag thresholds
set by the top-5% of CSTs, respectively). To ensure the length bias
was not the sole driver of higher PSH scores, we plotted the Ltot
against the PSH score for the Natall and CSTall datasets (Fig. 1f).
While almost all the natural antibodies found at extreme Ltot
values flag for PSH, so too do a disproportionate number of
natural antibodies at more moderate CDR lengths, even down to
the smallest recorded Ltot value.

To further test the robustness of these conclusions, we then
restricted our analysis to a confidence-filtered subset of ABody-
Builder2 models of the CSTs (CSTconf, N= 510) and the natural
data (Natconf, N= 30,402), generated using the FAPE threshold
benchmarked on CSTs (see Methods). In these sets a much
smaller fraction of natural antibodies survived the filtering cut-off
(~38% of Natallversu ~75% of CSTall), likely due to the fact that
natural antibodies sample longer CDRH3 lengths — which are
both more conformationally diverse and harder to crystallise —
as well as the general under-representation of natural antibodies
in the Protein Data Bank40, on which ABodyBuilder2 is trained.

The resulting CSTconf and Natconf TAP distributions show
analogous relative positioning to our original results19, with CSTs
occupying shorter Ltot and smaller PSH values than natural
antibodies, but having similar charge characteristics (Supplemen-
tary Fig. 2). Quantitatively, over 16% and over 18% of Natconf
antibodies surpassed the Ltot and PSH upper amber thresholds set
by the CSTconf set (compared with ~30% and ~24% on the Natall
set, respectively). The large reduction in the number of natural
antibodies flagging for Ltot confirms that antibodies with longer
CDR loops are modeled with lower confidence. The smaller
percentage reduction in natural antibodies flagging for PSH
reflects the increased tendency for natural antibodies of all
lengths to occupy higher PSH values.

In summary, our investigations strengthen the evidence that
CSTs and natural antibodies differ in their CDR length and
surface hydrophobicity properties.

Using the new TAP protocol to explore λ-antibody develop-
ability. We then used our updated TAP protocol to explore the
relative developability of κ- and λ-antibodies.
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We examined the growth trends of κ- and λ-CSTs. Plotting
their numbers over time reveals distinct patterns in usage (Fig. 2).
For example, while novel κ-CST Fvs have been continuously
released in double-digit quantities per year since 2007, new λ-CST
Fvs only reached this level in 2018. In 2019, for example, the
industry developed 53 new κ-CST Fvs, but only 10 new λ-CSTs.

This lag has led to a disparity in the abundance of κ- and λ-
CSTs. As of January 2023, Thera-SAbDab contained 576 non-
redundant κ-CST Fvs (86.7%) and 88 non-redundant λ-CST Fvs
(13.3%); far below the relative abundance of human λ-antibodies

(30–35%20,21). However, prior to the disruption of the pandemic,
there were signs of an upwards growth trend in λ-CSTs (Fig. 2).
There is evidence to suggest this is driven by the propensity of
λ-VLs to bind different targets/epitopes to κ-VLs; amongst the
therapeutics designated by the WHO since 2022, six λ-antibodies
(Acimtamig, Firastotug, Golocdacimig, Temtokibart, Tolevibart,
and Zinlivimab) are first-in-class clinical candidates against novel
antigen targets or epitopes (FCGR3A, HHV gB AD, OLR1,
IL22RA1, HPV Envelope Protein, and the HIV-1 gp120 V3
epitope, respectively1). Overall, the 88 sequence non-redundant

Fig. 1 TAP metric distributions based on ABodyBuilder2 models of the latest therapeutic data. a–e The five TAP developability metric distributions set
by using ABodyBuilder231 (ABB2) to model the curated CSTall (blue) and Natall (orange) datasets. f A plot displaying the trend between Ltot and PSH Score
for both datasets. Amber and red flag thresholds are shown with dashed lines of corresponding color. The percentages of Natall antibodies lying above the
Ltot and PSH upper thresholds are highlighted.
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λ-CSTs now in Thera-SAbDab represents a 250% increase on the
25 λ-CSTs we had access to when developing our original
guidelines.

TAP distributions across κ- and λ-antibodies. We studied the
CST biophysical property distributions for the two types of light
chain (Fig. 3a–e; kappa N= 576, lambda N= 88).

λ-CSTs disproportionately amber flag at the upper extrema of
the Ltot (3.1% κ, 27.27% λ) and PSH (2.7% κ, 21.1% λ)
distributions, and, to a lesser extent, for PPC (4.1% κ, 11.8% λ).
In contrast, κ-CSTs predominate in the lower extrema of the Ltot
(10.4% κ, 1.3% λ) and PSH (5.8% κ, 0% λ) distributions. While
the relative proportions in the flagging region for the SFvCSP
score are similar, only κ-CSTs occupy the most extreme values
(below −15).

As PSH values correlate to some extent with Ltot, we checked
whether the preponderance of λ-CSTs at high PSH values was
simply a by-product of length (Fig. 3f). Our results indicate that
λ-CSTs are not noticeably more driven towards high PSH scores
by longer CDR lengths than κ-CSTs are, with λ-CSTs having
higher average PSH scores than κ-CSTs at every sampled
Ltot value.

The observation that λ-CSTs sit at such longer average Ltot
values than κ-CSTs was surprising. While λ-CDRL3s are known
to be longer on average than their κ equivalents18, this alone
cannot explain the shift. Instead, for this dataset, the disparity is
also driven by biased pairing of λ-VLs with VH chains with longer
average CDRH3 lengths (μκ-CST, H3: 12.53 ± 3.07, μλ-CST, H3:
14.30 ± 3.87).

We then studied the biophysical property distributions for the
natural human sets of κ- (N= 44,420) and λ-antibodies
(N= 35,341; Fig. 4). On these datasets we found a much smaller
difference in Ltot scores between the natural κ-antibody and
λ-antibody models than observed in the CSTs; an offset fully
explained by CDRL3 length biases across the two types of light
chain (μκ-Nat, L3: 9.12 ± 0.8, μλ-Nat, L3: 10.61 ± 1.03). This result is
consistent with Townsend et al.18 and provides strong evidence

that the longer CDRH3 lengths seen in λ-CSTs are due to a bias
(e.g. species origin19) in therapeutic development.

Analogous to the CSTs, natural human λ antibodies were
disproportionately flagged for high PSH relative to human
κ-antibodies, but both were flagged at an even higher rate: 11.26%
of natural κ-antibodies and 40.52% of natural λ-antibodies flagged,
relative to 1.91% and 26.14% of κ-CSTs and λ-CSTs, respectively.

Both κ-CSTs and λ-CSTs therefore occupy a lower-risk region
of CDR length and PSH property space relative to natural
antibodies, strengthening the findings from the original TAP
paper19 where we suggested that CSTs in general require more
conservative values of these properties than natural antibodies to
be amenable to therapeutic development. It also highlights the
complexity of developability optimisation in drug discovery:
improvements in the humanness of the antibodies in screening
libraries can have the unintended byproduct of enhanced
therapeutic aggregation risk, regardless of the genetics of the
VL sequence.

The charge properties of the natural κ- and λ-antibodies can be
found in Supplementary Fig. 11. The natural λ-antibodies also
show an enhanced propensity for PPC values over 1 relative to
their kappa equivalents, suggesting a natural origin for the
disproportionate flagging of λ-CSTs for PPC.

Residue positions associated with driving λ-antibodies towards
high PSH scores. Our analyses suggest that the structure-
dependent property biases across λ-CSTs are inherited from
natural trends, especially for the PSH score. We therefore
examined the λ-CSTs to determine which features in the Fv tend
to correlate with their high PSH scores, with a view to guiding
rational engineering and library design.

We selected the upper red-flagging sets of natural κ- (N= 134)
and λ-antibodies (N= 968) and decomposed the overall TAP
PSH score into its pairwise-residue component parts. We
investigate in more detail the top-20-most hydrophobic
sequence-adjacent interactions, and top-20-most hydrophobic
sequence non-adjacent interactions, across antibodies red-
flagging for PSH.

We observed a broad diversity of VH (Supplementary Fig. 12)
and VL (Supplementary Fig. 13) residues involved in driving
extreme PSH scores, emphasising the challenge of finding
molecular rules of thumb for antibody optimisation. However,
the VH residue positions involved in elevating the PSH of either
κ-antibodies or λ-antibodies were highly similar, suggesting
minimal bias in the physicochemical properties of VH sequences
associating with κ- or λ-VLs.

Of particular interest to antibody optimisation engineers are
positions outside of the CDR regions, since mutations at these
sites are less likely to impact antigen specificity. Amongst the
dominant residues contributing to high PSH scores were κ-VL
positions 1–3 (framework region L1) and 79–85 (framework
region L3), and λ-VL positions 24–26 (framework region L1) and
71–72 (framework region L3); while not in the formal CDRs,
these residues lie in the vicinity of the CDRs and may be serving
to extend hydrophobic self-association surfaces.

As a case study, we investigated in more detail VL positions
24–26, which drive higher PSH scores in λ-antibodies but not
κ-antibodies (Fig. 5a, Supplementary Fig. 14). The λ-antibodies
exhibit a broader diversity of amino acids at these positions than
κ-antibodies, although, with the exception of leucine at position
25 (Supplementary Fig. 14), do not exhibit particularly hydro-
phobic residues. However, we observed that over 90% of
κ-antibodies have positively-charged residues at position 24, while
λ-antibodies almost exclusively use smaller, less polar residues
(Fig. 5a), which would be expected to be more accommodating of a

Fig. 2 Progression of kappa and lambda therapeutic antibodies into late-
stage clinical trials, by year. Tracking the numbers of 100% sequence non-
redundant κ and λ variable regions (Fvs) across post Phase-I sequence non-
redundant clinical stage therapeutics (NR CSTs) from 1988 to 2023. The
x-axis reflects the year in which each CST was granted a proposed
International Non-proprietary Name (INN) by the World Health
Organisation (WHO). Cumulative totals are shown through a stacked bar
chart, while year-by-year totals are shown in the line graph. 2021–2023 are
shown in dashed lines; these totals will likely change markedly once more
therapeutics first reported in these years have had time to advance past
Phase-I Clinical Trials.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05744-8

6 COMMUNICATIONS BIOLOGY |            (2024) 7:62 | https://doi.org/10.1038/s42003-023-05744-8 | www.nature.com/commsbio

www.nature.com/commsbio


hydrophobic self-association interface. Meanwhile, though serine is
the most commonly observed residue at position 26 in λ-antibodies
(and seen in 100% of κ-antibodies, Supplementary Fig. 14),
threonine becomes by far the most prevalent residue amongst red-
flagging λ-antibodies when position 26 is involved in the subset of
most hydrophobic interactions (Fig. 5b). This is due both to its
slightly higher intrinsic hydrophobicity and to more complex co-
associations with other residues.

In summary, by decomposing TAP scores such as the PSH into
pairwise residue components, we can elucidate the regions driving

high risk scores for individual or classes of antibodies and help to
orient developability-motivated mutagenesis studies.

λ-VL genes harbour characteristic risk profiles. Associations of
certain genes or gene families with PSH flagging propensity
would offer a simple strategy to develop diverse but developable
screening libraries, for example by incorporating only select
lambda genes with a more moderate risk of poor developability.
To investigate if such associations exist, we evaluated the gene

Fig. 3 TAP properties of kappa and lambda therapeutic antibodies. a–e Plots of the five TAP properties for the κ (seagreen) and λ (plum) CSTs, and (f)
the trend of the Patches of Surface Hydrophobicity (PSH) score with Ltot, using ABodyBuilder2 for structural modeling (ABB2). Amber thresholds are set
based on the 5th and/or 95th percentile values of the combined set of kappa and lambda CSTs. Percentage values reflect the proportions of the
correspondingly coloured light-chain class of antibody within the amber-flagged region of each distribution.
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usages of λ-antibodies that green-flagged (N= 21,001) or red-
flagged (N= 968) for PSH (Fig. 5c, d). From a gene family per-
spective (Fig. 5c), IGLV1 and IGLV3 were associated with a lower
PSH-mediated developability risk, while others such as IGLV2,
were highly enriched amongst red-flagging λ-antibodies. IGLV9 is
almost exclusively found amongst flagging antibodies. These risk
profiles are supported by the gene family usages across λ-CSTs
(Supplementary Table 7): IGLV1 and IGLV3 are over-represented
relative to their natural abundances, while IGLV2 is under-
represented, and no CST has yet derived from an IGLV9 gene.

To study what features might be driving differential risk across
families, we generated separate sequence logo plots of all IGLV2
sequences and all non-IGLV2 sequences (Supplementary Fig. 15).
This highlighted positions that are commonly more hydrophobic
among IGLV2 antibodies. For example, position 57 is mostly
valine with a trace of glycine in IGLV2 antibodies, whereas it is
predominantly asparagine or aspartate in antibodies from the
other families. Similarly, position 3 is entirely hydrophobic across
IGLV2 antibodies but is found to be glutamate in roughly 1/3 of
the other LV gene subgroups. Consistent with Fig. 5b, position 26

Fig. 4 TAP properties of natural and therapeutic antibodies, split by light chain type. Plots of the Total CDR Length (Ltot) and Patches of Surface
Hydrophobicity (PSH) metric scores across different datasets split by light chain isotype. a, b Ltot and PSH for the κ-Natall and λ-Natall subsets. c, d Ltot and
PSH for the κ-CSTall and κ-Natall subsets. e, f Ltot and PSH for the λ-CSTall and λ-Natall subsets. Highlighted percentages show the proportions of κ-Natall
and λ-Natall antibodies exceeding the upper TAP thresholds. ABB2: ABodyBuilder2 models.
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is almost entirely threonine in IGLV2 antibodies, while other
families tend to use the less hydrophobic serine and highly polar
residues such as asparagine and aspartate. Additionally, we
observed that the CDRL1 loop, which typically bears a central
motif containing hydrophobic residues, is frequently longer, and
therefore more protruding, in IGLV2 antibodies.

We then dissected the TAP PSH risk profiles for the IGLV2
antibodies into profiles for individual genes (Fig. 5d). This
demonstrated that the higher developability risk associated with
the family is not shared evenly amongst its constituent genes: for
example, IGLV2-14*01 is found in a higher fraction of green-
flagging antibodies than red-flagging antibodies, while every allele
of IGLV2-23 is associated with enhanced abundance among red-
flagging λ-antibodies. Again, this is supported by gene usages
across λ-CSTs: IGLV2-14 is the dominant gene observed amongst
the relatively small number of CSTs deriving from the IGLV2
family (Supplementary Table 8).

Together these results suggest that a λ-antibody’s germline V
gene contributes substantially to its developability risk profile,
and that TAP can be used to stratify lower from higher risk
scaffolds.

Discussion
In this paper, we benchmarked the latest machine learning-based
antibody modeling technology for use in the Therapeutic Anti-
body Profiler19.

We found that, while the precise guideline values we derived in
2019 have modulated slightly due to the availability of nearly
three-times as many CST datapoints, the broad trends in property
distribution between CSTs and natural antibodies have remained

consistent; i.e. CSTs as a whole have shorter CDR loops and
smaller patches of surface hydrophobicity, while their charge
properties are highly similar. The patterns also hold when limited
to the subset of higher-certainty models (based on ABody-
Builder2’s statistical heuristic31).

When split by year of designation by the WHO, new ther-
apeutics are more frequently sampling the extremes of CDR and
PSH property space, indicating that our definitions of druglike-
ness are likely to continue evolving over time. This phenomenon
has also been observed in small molecule drug discovery, where
several typical properties of today’s drugs differ from the original
trends documented by Lipinski et al.41,42, and may be related to
advances in developmental/formulation technologies.

On the other hand, we observe no obvious trends in the
properties of post-Phase I active/approved therapeutics versus
discontinued therapeutics, nor in therapeutics that have advanced
to different clinical stages, suggesting that, at least in terms of the
TAP properties, we would not expect predictive power to improve
by only considering therapeutics that have advanced to later
stages. Unfortunately, there remains a void in publicly available
data on antibodies that failed pre-clinical evaluation due to poor
developability, against which physicochemical property guideline
thresholds could be benchmarked.

Due to ABodyBuilder2’s modeling protocol, statistical uncer-
tainty in side chain positioning can now be captured to some
extent through repeat modeling and TAP calculations. Guidelines
derived from repeat runs are almost identical to the guidelines
derived from a single run per therapeutic, while mean variances
of property values of the CST therapeutics are near-0 for charge
metrics and only around 10 for the PSH metric. Variances on this
order can lead to classification disparities across repeat runs

Fig. 5 Features of green- and red-flagging kappa and lambda antibodies. a Bar charts showing the amino acid usages at IMGT position 24 amongst
natural λ-antibodies (plum) and natural κ-antibodies (seagreen). b Bar charts showing the amino acid usage at IMGT position 26 across natural λ-
antibodies that are green-flagged for PSH, or that are red-flagged where position 26 is involved in the subset of most hydrophobic interactions. c, d Bar
charts showing (c) the light V gene subgroup usages amongst natural λ-antibodies that are green-flagged or red-flagged for PSH, and (d) the IGLV2 gene
usages amongst natural λ-antibodies that are green-flagged or red-flagged for PSH.
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between adjacent boundaries (i.e. green/amber risk, or amber/red
risk) but are extremely unlikely to result in the same antibody
being assigned green risk and red risk for a given property.

Molecular dynamics simulations of a representative set of CST
Fab models indicate that the flags assigned by an ensemble of
repeat static ABodyBuilder2 predictions are highly consistent
with simulation-average flags. Best agreement with simulation is
obtained by considering an antibody to have flagged for a
property if a flag is seen on any of the repeat runs. As running
TAP multiple times takes a few minutes, several orders of mag-
nitude faster than running molecular dynamics, repeat TAP
calculations may offer a sensible strategy for high-throughput
developability screening with consideration for side chain
mobility.

We then used our new TAP protocol to investigate
developability-linked property biases across κ- and λ-antibodies,
exploiting the rise in both CST and paired-chain natural sequence
data. λ-VLs have distinct epitope specificities to κ-VLs, driven by
features such as locus-specific germline-encoded amino acid
binding-motifs11. However λ-antibodies have been suggested to
be less developable than κ-antibodies26 and are heavily under-
sampled amongst CSTs relative to their natural abundance.
Therapeutic antibody profiling adds quantitative evidence that
natural λ-antibodies are generally at higher risk of developablity
issues, especially hydrophobicity-driven aggregation, than natural
κ-antibodies. Indeed, the mean of the natural λ-antibody dis-
tribution sits just below the amber-flagging threshold; a sub-
stantial population of λ-antibodies are prone to being nudged into
being flagged by, say, an affinity maturation pipeline based on
unconstrained mutagenesis.

However, through a quantification of the risk of each λ-anti-
body, TAP profiles can now enable us to identify subpopulations
expected to be more amenable to therapeutic development, and
therefore to offer strategies towards augmenting the targetable
epitope space through rational design. The observation of parti-
cular lambda gene associations with higher risk profiles, and a
preliminary concomitant signal in the germline gene origin dis-
tributions of λ-CSTs that have so far progressed to the clinic,
suggest that approaches such as family-holdout (e.g. all IGLV2) or
gene-holdout (e.g. all IGLV2-23) libraries should enrich for λ-
antibodies with lower expected developability risk. Alternatively,
libraries could be constructed at a more granular level, incor-
porating more risk-prone genes but only when the associated
sequence is considered by TAP to be lower risk. While sequence-
by-sequence in vitro screening library design may still be a distant
prospect, such approaches are gaining traction in the field of in
silico library design39,43.

The interpretability of the TAP metrics means they can be
readily deconstructed to explore which regions of the CDR vici-
nity tend to contribute to higher developability risk. We show
that the positions that contribute most to high risk scores in both
κ- and λ-antibodies are diverse and distinct. Differences lie in the
VL sequence itself rather than through any biases in the prop-
erties of their paired VH sequences. While preliminary, we note
that some residues in the periphery of the CDR vicinity can help
drive antibodies towards being red flagged; on a case-by-case
basis, mutations to these regions may impact developability while
being less likely to affect antibody specificity.

To date, TAP has primarily found use in industry for the early-
stage removal of candidate antibodies more likely to suffer from
developability issues. This increases the efficiency of drug dis-
covery, but risks artificially constraining diversity, reinforcing
current established property trends. We have shown how TAP,
applied to identify more nuanced λ-VL residue and λ-gene
associations with developability risk, could also guide selective

consideration of a broader diversity of lead candidates and so
enable access to a wider pool of epitopes.

Methods
Dataset curation. The Therapeutic Structural Antibody Database
(Thera-SAbDab) was downloaded on 25th January, 20231. The
entries were filtered for those designed for human application,
that have reached at least Phase-II of clinical trials, and that have
complete variable regions (Fvs, i.e. no single domain antibodies
were carried forward). This set was then mined for sequence non-
redundant Fv regions (at the level of 100% identity), to filter out
biosimilars with no changes to the Fv and to reduce biases caused
by the use of previously-developed monoclonal Fv domain
sequences in new multispecific formats. This resulted in 664 non-
redundant CST Fvs (the CSTall dataset), of which 576 were
κ-based (86.7%) and 88 were λ-based (13.3%). Thera-SAbDab
light-gene locus labels were confirmed via alignment to the latest
set of human and mouse IMGT V domains using ANARCI44.

The sequence non-redundant (100% identity) Fv sequences of
88,274 natural human antibodies were retrieved from the
Observed Antibody Space (OAS) database30 (timestamp: 25th
January 2023). These were filtered for sequences with complete
CDRs45, leaving 79,761 antibodies (the Natall dataset): 44,420
(55.7%) κ-antibodies, 35,341 (44.3%) λ-antibodies.

Benchmarking TAP modeling methods. ABodyBuilder132 was
run using template databases built on a copy of SAbDab45,46

timestamped to 30th April 2022, and with a template sequence
identity cut-off of 99% to ensure genuine models were
produced32. ABodyBuilder2 was run using the pre-trained
weights from the paper35. Relative performance to ABody-
Builder1 was evaluated by root-mean-squared deviation (RMSD)
by IMGT-defined region47 and was calculated with an in-house
script that first aligns each model structure to the ground truth
structure based on the backbone atoms of the framework region
of the investigated chain and then calculates the RMSD over the
backbone atoms of the residues of the region (for heavy or light
chains in the IMGT numbering scheme, CDR1: residues 27–38,
CDR2: 56-65, CDR3: 105-117).

The classification of residues as solvent exposed or buried was
based on an in-house implementation of the Shrake and Rupley
algorithm48, using a spherical probe of radius 1.4 Å. A residue ‘X’
was considered exposed if its solvent-accessible surface area
(SASA) was ≥7.5% of its theoretical maximum value (based on
the open-chain form of Alanine-X-Alanine)19. In accordance
with the parametrisations of these theoretical maximum SASAs,
all hydrogen atoms were stripped out of ABodyBuilder2
predictions prior to SASA calculations.

A threshold to filter out the least confident ABodyBuilder2
models was obtained by a two-step process. First, the 119/664
CST Fv domains for which 100% sequence identical X-ray crystal
structures exist (identified using Thera-SAbDab metadata1,
Supplementary Table 2), were filtered out of the CSTall dataset.
The root-mean-squared predicted error for each remaining CST

CDRH3 was then calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑resðCDRH3ÞPE
2

LCDRH3

q

, where PE represents

backbone predicted error, res(CDRH3) represents the sum over
all CDRH3 residues and L(CDRH3) represents the length of the
CDRH3. Finally, the threshold was derived by evaluating the 75th
percentile (1.31Å). This filter was applied to retain the 510 most
confidently-modeled CSTs (the CSTconf dataset), and applied to
the Natall dataset to derive the 30,402 most confidently modeled
natural antibodies (the Natconf subset).
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Running TAP on ABodyBuilder2 models. Sets of CST and
natural antibody Fv domains were run through TAP and their
five computational developability metrics calculated (Total
IMGT-defined47 CDR Length [Ltot], Patches of Surface Hydro-
phobicity using the Kyte and Doolittle scale [PSH], Patches of
Surface Positive Charge [PPC], Patches of Surface Negative
Charge [PNC] and Structural Fv Charge Symmetry Parameter
[SFvCSP])19. PSH, PPC, and PNC metrics were calculated across
the CDR vicinity (IMGT-defined CDR residues ±2 on each side
plus any other surface exposed residue within 4.5Å of one of
these residues). Throughout the work, amber and red thresholds
and were set at the percentile values suggested in the original
paper19.

Whenever the properties of κ- and λ-antibodies where
compared, threshold values were calculated from the CSTall set
(i.e. not evaluated separately by light chain type).

Assessing TAP score variation over molecular dynamics tra-
jectories. 14 CST Fab regions were modelled by grafting the
constant regions of their crystal structures (see Supplementary
Table 9) onto the Fv models generated by ABodyBuilder2,
obtaining the initial arrangement by aligning the crystal and
model Fv backbones (full Fab regions were used instead of Fv
regions based on the results of previous studies49). We then
modelled-in missing residues in the constant region using
MODELLER v10.250 and generated 10 models using the ‘very
slow’ refinement setting, selecting the lowest energy model. All
systems were prepared and simulations performed using
OpenMM v7.751. N-methyl groups were used to cap C-termini
using an in-house script. Next, using pdbfixer51, we protonated
the models at a pH of 7.5, soaked them in truncated octahedral
water boxes with a padding distance of 1 nm, and added sodium
or chloride counter-ions to neutralise charges and then NaCl to
an ionic strength of 150 mM. We parameterised the systems using
the Amber14-SB forcefield52 and modelled water molecules using
the TIP3P-FB model53. Non-bonded interactions were calculated
using the particle mesh Ewald method54 using a cut-off of dis-
tance of 0.9 nm, with an error tolerance of 5x10-4. Water mole-
cules and heavy atom-hydrogen bonds were rigidified using the
SETTLE55 and SHAKE56 algorithms, respectively. We used
hydrogen mass repartitioning57 to allow for 4 fs time steps.
Simulations were run using the mixed-precision CUDA platform
in OpenMM using the Middle Langevin Integrator with a friction
coefficient of 1 ps−1 and the Monte-Carlo Barostat set to 1 atm.
We equilibrated systems using a multi-step protocol detailed in
Supplementary Table 10. Following equilibration, we performed
200 ns of unrestrained simulation of the NPT ensemble at 300K,
calculating TAP properties over the final 120 ns of each simula-
tion, when all systems had reached relatively stable RMSD values
from their initial coordinates (Supplementary Fig. 16). To esti-
mate convergence, we aligned Fv regions on the starting structure
using mdtraj v1.9.658 and calculated the RMSD of the Fv domains
relative to the starting structure.

Determining molecular correlates with poor developability.
Natural human antibodies lying above the red flag thresholds
set by TAP across all CSTs were investigated for recurrent
molecular patterns that contribute towards their high scores.
The PSH scores for each antibody were split into components
from sequence-adjacent residues and components from
sequence non-adjacent residues, and these pairwise interactions
were separately rank-ordered by hydrophobicity. Germline
assignments for natural sequences were taken from the OAS
Paired metadata30, which derives from IgBlast59 alignments of
each nucleotide sequence to a recent set of human genes from

the IMGT GeneDB5. Germline assignments for CSTs were
evaluated using ANARCI44 on amino acid sequences (allele
predictions were ignored here due to the difficulty of accurately
assigning alleles at the amino acid level). All percentage abun-
dances of gene/gene family usages across λ-CSTs were calcu-
lated based the subset that mapped closest to human rather
than mouse germlines.

Visualisations. All visualisations were made using open-source
PyMOL or matplotlib version 3.5.2.

Statistics and reproducibility. All statistics were calculated using
the numpy Python package (version 1.23.3). For fairness, the
relative performance of ABodyBuilder1 and ABodyBuilder2 was
benchmarked using CSTs whose structures were not available in
the database or training set of the model, respectively. Addi-
tionally, TAP metrics were calculated across a redundancy-
filtered set of CSTs to reduce bias caused by biosimilars with no
changes to the Fv and by the use of the same variable domain
sequence in multiple formats. We explored the impact of per-
forming up to six independent ABodyBuilder2 modeling runs on
TAP metric values, thresholds, and agreement with molecular
dynamics simulations.

Data availability
All crystal structures of antibodies were downloaded from SAbDab45. Numerical source
data for all figures and tables is supplied as Supplementary Data 1. Additional
supplementary files can be accessed on Zenodo (10.5281/zenodo.10357509), including
the curated structures used for ABodyBuilder2 benchmarking and the ABodyBuilder2
models of all CSTs analysed in this study. ABodyBuilder2 models of natural paired-chain
human antibodies were released in the Supplementary Materials of Abanades et al.31,60.

Code availability
The updated TAP protocol is available on our web application (https://opig.stats.ox.ac.
uk/webapps/tap) and the source code is available under a free academic licence via the
Vagrant Virtual Machine (https://process.innovation.ox.ac.uk/software/p/15303a/
sabbox-academic/1) and Singularity container (https://process.innovation.ox.ac.uk/
software/p/20120-a/sabbox-singularity-platform---academic-use/1) releases of our
SAbDab-SAbPred codebase. The ABodyBuilder2 source code is available from GitHub
(https://github.com/oxpig/ImmuneBuilder), with model weights used in this study
available on Zenodo (https://doi.org/10.5281/zenodo.7258552).
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