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Single-cell analysis reveals the stromal dynamics
and tumor-specific characteristics in the
microenvironment of ovarian cancer
Linan Zhang 1,2,3,10, Sandra Cascio 2,4,5,10, John W. Mellors6, Ronald J. Buckanovich2,4,7 &

Hatice Ulku Osmanbeyoglu 1,2,8,9✉

High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a high-

stromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome.

Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated

mesenchymal stem cells, establish a complex network of paracrine signaling pathways

with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and

inhibit the antitumor immune response. In this work, we integrate single-cell transcriptomics

of the HGSOC TME from public and in-house datasets (n= 20) and stratify tumors based

upon high vs. low stromal cell content. Although our cohort size is small, our analyses

suggest a distinct transcriptomic landscape for immune and non-immune cells in high-

stromal vs. low-stromal tumors. High-stromal tumors have a lower fraction of certain T cells,

natural killer (NK) cells, and macrophages, and increased expression of CXCL12 in epithelial

cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell

communication indicate that epithelial cancer cells and CA-MSCs secrete CXCL12 that

interacte with the CXCR4 receptor, which is overexpressed on NK and CD8+ T cells. Dual

IHC staining show that tumor infiltrating CD8 T cells localize in proximity of CXCL12+ tumor

area. Moreover, CXCL12 and/or CXCR4 antibodies confirm the immunosuppressive role of

CXCL12-CXCR4 in high-stromal tumors.
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Ovarian cancer (OvCa) is a common gynecologic malig-
nancy with high mortality, although the outcome of
patients with OvCa has improved over time. Platinum

and taxane chemotherapy has been the standard of care for three
decades. Although immunotherapy could improve long-term
survival, only 10–15% of patients treated with single-agent
immunotherapy have a favorable clinical outcome1. Therefore,
it is important to determine why immunotherapy is not effective
in some patients and to develop rational therapeutic strategies to
overcome resistance to treatment.

Mechanisms intrinsic or extrinsic to tumors can drive resis-
tance to therapy. For example, the heterogeneity of the OvCa
tumor immune microenvironment (TIME) is important in
determining the response to therapy. OvCa patients with an
immune-infiltrated molecular signature have a better prognosis
than patients with a stromal signature2,3. Stromal cell subtypes,
including cancer-associated mesenchymal stem cells (CA-MSCs),
fibroblasts, and myofibroblasts, establish a complex network of
paracrine signaling pathways with tumor-infiltrating immune
cells that inhibit the antitumor immune response4. Highly stro-
mal human cancers, in which CD8+ T cells are localized pri-
marily to the peritumoral stroma, respond poorly to anti-PD1/
PD-L1 immunotherapy5–7. Understanding the complexity of the
interactions between cancer cells and their microenvironment,
including immune and stromal cells, is important for elucidating
the mechanisms of drug resistance, identifying new molecular
targets, and developing more effective OvCa treatments.

Transcriptomic profiles can identify molecular subtypes of
high-grade serous ovarian cancer (HGSOC)2,8. Patients with
desmoplastic/mesenchymal tumors have the worst prognosis,
whereas patients with a high degree of immune infiltration have
the best prognosis. However, bulk RNA sequencing (RNA-seq)
gives only an average value for gene expression across all cells and
does not provide the contribution of each cellular subset. In
contrast, single-cell genomics provides cell-type-specific infor-
mation on pathological changes in cancer and other diseases. For
example, single-cell RNA-seq (scRNA-seq) is a powerful tool to
interrogate tumor composition, revealing cellular heterogeneity
and pathways at single-cell resolution. Likewise, spatial tran-
scriptomics provides a transcriptional profile of cells in their
native context9–12 and information on how location affects cell
types. These innovative technologies provide biological and
therapeutical insights for cancers, including OvCa. In HGSOC
ascites specimens, scRNA-seq showed that inhibition of the JAK/
STAT pathway has potent antitumor activity13. The cellular
composition of infiltrated, excluded, and desert tumor immune
phenotypes have also been characterized14. A recent report
described the role of certain stromal cell phenotypes in the reg-
ulation of the TME in HGSOC, including TGFβ-driven cancer-
associated fibroblasts (CAF), lymphatic endothelial cells, and
mesothelial cells15. A scRNA-seq study described the hetero-
geneity in the cell-of-origin for HGSOC tumors and revealed that
a high epithelial-mesenchymal transition (EMT) subtype was
associated with a poor prognosis16. In fact, the spatial interactions
between cell clusters may influence chemo-responsiveness more
than cluster composition alone3. Similarly, Ferri-Borgogno et al.
found increased apolipoprotein E-LRP5 cross-talk at the stroma-
tumor interface in OvCa tumor tissues from short-term survivors
compared with long-term survivors17.

Here, we combined in-house and public scRNA-seq datasets to
create a comprehensive single-cell atlas of the HGSOC TME. We
determined the effect of a high-stromal TME on cell-type-specific
regulatory pathways, such as alterations in cytokines, surface
receptors, signaling proteins, and transcription factors (TF) and
their interconnections. We also analyzed an ovarian cancer spatial
transcriptomics dataset, and we performed in vitro and ex-vivo

experiments using non-immune cells and immune cells freshly
isolated from HGSOC samples to validate our integrative scRNA-
seq analysis. We focused on HGSOC, the most common histo-
logic type, which is responsible for approximately 80% of all
OvCa deaths18. The features that are associated with high- and
low-stromal HGSOC can inform therapeutic strategies to
improve treatment outcomes for patients with these phenotypes.

Results
A single-cell atlas for treatment-naïve, high- and low-stromal
high-grade ovarian serous cancers. We performed scRNA-seq to
characterize the malignant, immune, and stromal cells associated
with two treatment-naïve HGSOC samples—one high-stromal
and one low-stromal according to stromal cell-type abundance
(see MATERIALS AND METHODS and below). To increase
statistical power and to ensure the generalizability of our results,
we integrated our dataset with three public, treatment-naïve,
primary HGSOC scRNA-seq datasets from Regner et al. 19

(n= 2), Xu et al. 20 (n= 7), and Hornburg et al. 14 (n= 9)
yielding 106,521 cells from 20 treatment-naïve primary HGSOC
tumors (Fig. 1a). Sample and dataset information is summarized
in Table S1. We performed principal component analysis (PCA)
using the top 2000 variably expressed genes across all
106,521 cells. For the top 30 principal components (PCs), we
classified cells into transcriptionally distinct clusters using graph-
based clustering (Fig. 1b, Fig. S1a). The clustering of scRNA-seq
samples based on nearest neighbors did not match clustering by
patient or by study, suggesting successful mitigation of batch
effects.

Using the integrated scRNA-seq data and canonical marker
genes, we quantified 13 coarse cellular lineages and constructed a
cell-type map (Fig. 1c, d). Immune cell types included macro-
phages, dendritic cells (DCs), CD4+ and CD8+ T cells, B cells,
natural killer (NK) cells, and NK CD3+ cells (NK T). Non-
immune cells included epithelial cancer cells (ECCs), endothelial
cells, and stromal cells, which had subcategories of fibroblasts,
myofibroblasts, and CA-MSCs. Interestingly, we identified a cell
subpopulation defined as cancer stem cells with a transcriptomic
phenotype similar to ECCs and CA-MSCs (EPCAM, MUC1,
PROM121, ALDH1A3) (Fig. S1b, c). The stromal cell subclusters
had both common and distinctive transcriptomic profiles (Fig.
S1d, e). In line with previous findings, immune and stromal cells
were clustered by cell identity rather than patient origin. Thus,
the core HGSOC atlas integrated the 106,521 single cells, which
were annotated to 13 coarse cell types, including 36,869 epithelial
cells, 54,936 immune cells, 13,324 stromal cells, and 1392
endothelial cells.

We divided the samples into a high-stromal group comprising
those that were densely populated with fibroblasts and CA-MSCs
and a low-stromal group comprising those sparsely populated
with fibroblasts and CA-MSCs according to cell-type abundance
(Fig. 1e, f). Compared to high-stromal tumors, low-stromal
tumors had a higher proportion of immune cells (Fig. S2a),
specifically CD8+ T cells (p-value < 0.01, Wilcoxon signed-rank
test) and NK cells (p-value < 0.05) (Fig. 1g). However, apparent
biological differences in cell-type proportions between individual
samples and groups can be caused by differences in cell isolation
protocols and scRNA-seq platforms. After performing dimension
reduction using PCA on cells by cell type, we observed larger
variations for PC1 and PC2 among high- and low-stromal tumors
for major cell types, including CA-MSCs, fibroblasts, and ECCs
(Fig. S2b), indicating cell-type-specific gene expression differ-
ences between high- and low-stomal tumors.

To determine whether the proportion of stromal cells affects
disease progression and outcome, we analyzed bulk
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transcriptomic data from 248 OvCa samples profiled by the
Cancer Genome Atlas Program (TCGA)8. With the scRNA-seq
data as a reference, we used the bMIND deconvolution
algorithm22 to infer the proportion of epithelial, endothelial,
immune, and stromal cells for each sample from the bulk RNA-
seq data (Fig. S2c). Based on the correlation between the
proportion of each cell type with patient-matched overall survival,
we found that a high abundance of stromal cells was associated

with a lower survival rate for OvCa patients (p-value= 0.029, log-
rank test) (Fig. 1h).

Stromal features associated with high- and low-stromal TME.
Analysis of the patterns of differentially expressed genes (DEGs)
for ECCs, CA-MSCs, fibroblasts, and myofibroblasts revealed that
several cytokines and surface proteins (SPs) were differentially

Fig. 1 Characterization of endothelial, immune, stromal, and tumor cell types in HGSOC. a Summary of the data integration and analysis workflow.
b Uniform manifold approximation and projection (UMAP) clustering of the integrated scRNA-seq data, colored by dataset and c by cell type. Each dot
represents a single cell. d Dot plot showing the expression levels of selected canonical cell markers that were used to identify the clusters for each cell type.
e Stacked bar plots showing the fraction of endothelial, immune, stromal, and tumor cell types and f the refined cell types for all samples. g Box plot
showing the fractions of selected cell types in each sample, colored by tumor group (high-/low-stromal groups). The p-values are computed from the two-
sided Wilcoxon signed-rank test between the two groups for each cell type. Statistical significance is coded by the following symbols. p-value < 0.1, * p-
value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. h Kaplan–Meier survival curve for TCGA-OvCa samples split by the high-/low-stromal groups. The
high- and low-stromal tumors patients were defined by the expression of COL1A1.
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expressed between high- and low-stromal tumors (Fig. 2a, Fig.
S3). The expression of CD40 and TNFRSF1A, both members of
the TNF-receptor superfamily; CXCL1, a factor known to induce
myeloid cell recruitment23,24; IFNGR2; and LIF were higher in
ECCs of high-stromal tumors than low-stromal tumors. Com-
pared to low-stromal tumor samples, CA-MSCs, fibroblasts, and
myofibroblasts from high-stromal samples showed higher
expression of immunosuppressive cytokines, including CXCL8

and CXCL12, and the fibroblast growth factor receptor FGFR1,
which is involved in tumor growth and angiogenesis25 (Fig. 2a,
Fig. S3a).

We analyzed cell-type specific TF activity using SCENIC26,27

and characterized the associations between inferred TF activity
and cytokine/SP expression. For each cell type, we computed
Spearman correlation coefficients (Rho) for each TF and
cytokine/SP pair, yielding two-way clustering for these pairwise

Fig. 2 Stromal features associated with high- and low-stromal TIME. a Average expression of selected cytokines and surface proteins (SPs) in each cell
type and tumor group. Dot plot showing the mean gene expression z-score of differentially expressed cytokines and SPs across cell types. The expression
of each gene is normalized to a mean value of zero and unit standard deviation. Expression values are indicated by color. Adjusted p-values for each
differentially expressed gene between high- and low-groups are indicated by circle size. Statistical significance is coded by the following symbols. p-
value < 0.1, *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001. b Heatmap revealing correlations between inferred TF activities (columns) and SP/
cytokine expression (rows) in CA-MSCs, fibroblasts, and myofibroblasts. For clarity, we selected highly correlated SP/cytokine-TF pairs (Table S4) and
used the union of the selected genes. The correlation coefficients of the top correlated TFs with each SP/cytokine are shown for each cell type. c, d Scatter
plots of selected highly correlated gene-TF pairs for each cell type. Each dot represents a cell colored by the tumor group.
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correlations in CA-MSCs, fibroblasts, and myofibroblasts
(Fig. 2b). We identified both novel and known relationships for
each cell type. Activities of CEBPB, FOSL1, RELB, and XBP1
correlated highly with expression of CXCL1 and CXCL8 in
fibroblasts and myofibroblasts (Fig. S4a, b); activities of FOSL1
and RELB also correlated with expressions of CXCL1 and CXCL8
in CA-MSCs (Fig. S4c). This is consistent with previous studies
reporting that NF-κB (NFKB1) and RELB interact with CAAT
enhancer binding protein (C/EBP) elements modulating CXCL8
transcription28. Importantly, the analysis suggests that cytokines
and SPs couple with shared, context-dependent downstream TFs
in various cell types associated with stromal cell infiltration. For
example, FOS and JUNB correlated highly with the expression of
CXCL12 and EGR1 in CA-MSCs and fibroblasts (Fig. 2c, d). In a
similar analysis of ECCs (Fig. S5a), we found that ECCs from
high-stromal tumors had higher levels of ATF5, RELB, and
TRIM28 that correlated with CXCL1 expression (Fig. S5b). In
contrast, levels of BCL3, HIVEP1, and ZBTB7A were higher in
ECCs of low-stromal tumors and correlated with the expression
of MUC1 (Fig. S5c). We found elevated levels of EGFR, estrogen,
MAPK, PI3K, TGFβ, VEGF, and WNT signaling in ECCs in
high-stromal tumors compared to low-stromal tumors (adjusted
p-value < 10−20, Wilcoxon signed-rank test) (Fig. S5d, e) and
elevated levels of JAK-STAT and p53 in ECCs and fibroblasts in
low-stromal tumors compared to high-stromal tumors (adjusted
p-value < 10−20) (Fig. S5d).

Stromal cells modulate the phenotypes of innate immune cells.
Using a murine model, we showed previously that CA-MSCs
modulate gene expression in macrophages, inducing
immunosuppression4. Here, we evaluated the effect of stromal
cells on various human myeloid cell types. Macrophages and DCs
from high- and low-stromal tumor tissues showed different gene
expression signatures (Fig. 3a, Fig. S3b). IL1RN and CCL20
expression was higher in macrophages from high-stromal vs. low-
stromal tumors, whereas NFKB1 and CXCL8 were upregulated in
both macrophages and DCs from high-stromal tumors compared
to low-stromal tumors. Conversely, both macrophages and DCs
infiltrating high-stromal tumors showed lower expression of
CXCL9 and CXCL10, two cytokines that contribute to the gen-
eration of a “hot” tumor microenvironment29 (Fig. 3b, Fig. S6a).
Further, macrophages infiltrating high-stromal tumors displayed
high levels of chemokines CXCL1, CXCL5, and IL1A, which
suppress anti-cancer immunity30 (Fig. 3c, Fig. S6b). DCs infil-
trating high-stromal tumors showed upregulation of CXCL2,
CXCL3, CXCL8, NFKB1, and VEGFA compared to DCs infil-
trating low-stromal tumors (Fig. 3d, Fig. S6c).

To confirm that CA-MSCs reprogram myeloid cells, we
evaluated the protein expression of 80 cytokines and chemokines
from the supernatant of macrophages cultured with the
conditioned medium (CM) of OVCAR3 tumor cells (TC),
ovarian MSC cultured alone (MSC), or OVCAR3 cells co-
cultured with MSC (TC/MSC) as described in Materials and
Methods. We found that the addition of MSCs to a tumor cell
culture induced the expression of chemokines CXCL1, CXCL5,
and CXCL13 (Fig. 3e, f). These cytokines are known to induce
proliferation, migration, and metastasis of cancer cells31,32.

We also determined pairwise TF-cytokine/SP correlations for
innate immune cells (Fig. S7a). Levels of CEBPB, ETS2, FOSL1,
and NFE2L2 correlated highly with expression of CXCL2, CXCL8,
CXCL16, IL1B, PLAUR, and VEGFA in DCs (Fig. S7b). Levels of
BCL3, CEBPB, ETS2, NFE2L2, NFKB1, and XBP1 correlated
highly with expressions of CXCL2, CXCL3, CXCL8, IL1B, and
PLAUR in macrophages (Fig. S7c). This is consistent with
previous reports that CEBPB regulates CXCL1 expression28,

whereas NF-κB is an essential modulator of transcription of
CXCL-1/-2/-3/-833.

Stromal cells modulate the phenotype of adaptive
immune cells. Adaptive immune cells infiltrating high- and low-
stromal tumors showed different gene signatures (Fig. 4a, Fig.
S3c). Interestingly, CXCR4, the receptor of CXCL12 and one of
the immunosuppressive cytokines upregulated in the stromal cells
of high stroma tumors, was upregulated in CD8+ T and NK cells
of high-stromal samples. EGR4, FOSL2, GTF2B, and NFKB1
levels correlated with the expression of CXCR4 in CD8+ T and/or
NK cells (Fig. 4b–d). ETV7 and IRF2 levels correlated with the
expression of GZMA, GZMB, and IL2RG genes that are associated
with CD8+ T and NK cell activation (Fig. S8a). Levels of RUNX3
and IRF2 correlated with expressions of CCL4, CCL5, GZMA, and
GZMB in CD8+ T cells (Fig. S8b). In NK cells, levels of ETV7,
IRF2, IRF7, IRF9, STAT1, and STAT2 correlated with expressions
of FASLG, GZMA, LAG3, and TNFSF10 (Fig. S8c).

Using gene expression data from adaptive immune cells, we
analyzed cell-specific pathway enrichment to determine whether
a high- vs. low-stromal TME affected similar or different
molecular pathways (Fig. S5e). High-stromal tumors showed
high levels of (1) estrogen signaling in macrophages, DCs, NK,
CD4+ T, and CD8+ T cells; (2) MAPK in B cells, NK,
macrophages, and T cells; and (3) TNF and NK-KB in DCs
and macrophages (all with adjusted p-value < 10−20, Wilcoxon
signed-rank test). In particular, estrogen and JAK-STAT path-
ways were up- and down-regulated, respectively, in most immune
cells of high-stromal tumors. As expected, TNFα (a marker of the
activated adaptive response) was down-regulated in CD4+ T,
CD8+ T, and NK cells (Fig. S5e).

The CXCL12–CXCR4 axis reduces the cytotoxic activity of
CD8+ T cells and NK cells in high-stromal tumor samples.
Communication among the many TME components plays a
critical role in tumor progression and treatment response. Using
the CellPhoneDB ligand–receptor complexes database34, we
determined the interactions between immune cells and non-
immune cells in high- and low-stromal tumors. We found that
both CA-MSC-secreted and fibroblast-secreted CXCL12 inter-
acted with the CXCR4 receptor on CD8+ T and NK cells (Fig. 5a,
b), and we saw over-expression of CXCL12 in CA-MSCs and
fibroblasts in high-stromal tumors (Fig. 5c, Fig. S9a). Consistent
with those results, we found that CXCR4 was overexpressed in
CD8+ T and NK cells of high-stromal tumors (Fig. 5d, Fig. S10b).

CXCL12 induces immune suppression in the TME by
sequestering CD8+ T cells in the tumor stroma, away from
tumor islets, and it induces the accumulation of myeloid-derived
suppressor cells35–37. When we measured the expression of
markers associated with activated CD8+ T and NK cells, we
found that CXCR3, Granzyme B (GZMB), Interferon Gamma
(IFNG), and IL2R were significantly upregulated in low-stromal
samples in both cell populations (Fig. 5e, f; Fig. S10a, b).
Moreover, NCR3 (NKp30), a receptor associated with NK cell
activation, was upregulated in low-stroma tissues (Fig. 5f). To
confirm the immune suppressive activity of CA-MSC-secreted
CXCL12, we performed an in vitro assay. We cultured CD8+

T cells, freshly isolated from peripheral blood mononuclear cells
(PBMC), with the CM of CA-MSCs that were isolated from
human HGSOC ascites. To determine the inhibitory activity of
CXCL12, CD8+ T cells were treated with recombinant protein
CXCL12 (Fig. 5g). CA-MSC CM significantly reduced the
secretion of GZMB and IFNG. However, the addition of CXCR4
antibody (Ab) to CA-MSC CM restored GZMB and IFNG
secretion.
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To validate the findings based on the OvCa spatial transcrip-
tomics dataset from Stur et al. 3, we divided eleven samples into
high-stromal (blue, with high expression of COL1A1 and ACTA2)
and low-stromal (yellow, with low expression COL1A1 and
ACTA2) samples (Fig. 6a). We identified features whose
variability in expression could be explained to some degree by
spatial location via Moran’s I test, which showed a strong spatial
autocorrelation for CXCL12 across all samples (Fig. 6b). CXCL12
was highly expressed in the stromal area (indicated by higher
expression of COL1A1 and ACTA2) (Fig. 6c, d; Fig. S11).
Interestingly, both CD8+ T and NK cells were also in close
proximity to the CXCL12+ ACTA2+ tumor area (Fig. 6c, Fig.
S11a) in high-stromal samples, which suggested that CXCL12
could keep CD8+ T and NK cells from trafficking into the tumor
islets. In low-stromal tumors, CXCL12 was expressed at low
levels, and immune cells infiltrated the tumor area (Fig. 6d, Fig.
S11b). Additionally, we computed the Spearman correlation

between expression of CXCL12 and COL1A1 and ACTA2 across
samples, and we observed a positive correlation between CXCL12
and COL1A1 and ACTA2 (Fig. 6f). Our immunohistochemistry
assay further confirmed that in OvCa tissues, CXCL12 was
expressed mainly in stromal cells and co-localized with CD8+

T cells (Fig. 6f).

Discussion
Here, we identified the molecular signatures of the TME of high-
vs. low-stromal OvCa tumors. We hypothesized that a systems
biology approach to characterizing the TIME in these two tumor
types would identify differences that could be used for the
development of combinatorial targeted therapy and immu-
notherapies. We combined in-house and public scRNA-seq,
spatial transcriptomics data, and our immunological assays to
define the OvCa TIME and characterize the biology underlying
the low- and high-stromal phenotypes. We found that high- and

Fig. 3 Impact of stromal cells on myeloid cell-secreted cytokines. a Average expression of selected cytokines and SPs in each cell type and tumor group.
Dot plot showing the mean gene expression z-score of differentially expressed cytokines and SPs across different cell types. The expression of each gene is
normalized to a mean value of zero and unit standard deviation. Expression values are indicated by color. Adjusted p-values for each differentially
expressed gene between high- and low-groups are indicated by circle size. b Violin plots showing the expression of CXCL9 and CXCL10 in macrophages and
dendritic cells (DCs). c The expression of CXCL1, CXCL5, IL1A, and NFKB1 in macrophages, and d the expression of CXCL8 and NFKB1 in DCs by high-/low-
stromal group. P-values are computed from the two-sided Wilcoxon test, adjusted based on Bonferroni correction using all genes in the dataset. Statistical
significance is coded by the following symbols. p-value < 0.1, *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001. e Top, human cytokine arrays used
macrophage supernatants cultured with mesenchymal stem cells (MSC), tumor cells (TC), or MSC/TC conditioned media as described in Material and
Methods. f Bar plot summarizing relative intensities of cytokines with the greatest increase, plotted in Image J.
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low-stromal tumors present very different immune landscapes.
Stromal cells regulate innate and adaptive immune responses,
thereby enhancing their immunosuppressive properties. In par-
ticular, the immunosuppressive CXCL12–CXCR4 cell signaling
axis is prominent in high-stromal tumors.

We showed previously that stromal cells, particularly CA-
MSCs, inhibit the response to anti-PD-L1 therapy in an
immunotherapy-responsive syngeneic mouse model of OvCa4.
Moreover, in our mouse model, scRNA-seq analysis revealed that
myeloid cells mediate the resistance to immunotherapy-induced
stromal cells4. Consistent with those results, here we found that in
human OvCa tissues, infiltrating myeloid cells, including mac-
rophages and DCs, were modulated by stromal cells. In high-
stromal tumors, our scRNA-seq and cytokine array analyses
revealed that myeloid cells expressed high levels of CXCL1,
CXCL5, and CXCL13 chemokines. CXCL1 and CXCL5 are known
to (a) recruit myeloid-derived suppressor cells (MDSC) into the
TIME, which suppress T cells and NK cells30,38, and (b) promote

migration and metastasis of TC39. Previous studies have shown
that MSCs induce the recruitment of macrophages into the
tumors and convert them into an M2-like signature via secretion
of inflammatory factors, including IDO, IL-10, IL-6 PEG2, TGF-
beta, and TNF-alpha40,41. The expression of CXCL13 is mainly
induced by TNF-a and IL-1042,43, whereas CXCL1 and CXCL5
expression levels are modulated by TNF-a32,39. Therefore, a
potential mechanism of CA-MSCs to induce the expression of
CXCL1, CXCL5, and CXCL13 in macrophages is via the secretion
of cytokines and chemokines, including TNF-alpha, IL-10, and
TGF-beta. We also found that in low-stromal tumors, myeloid
cells secreted high levels of CXCL9 and CXCL10, factors asso-
ciated with tumor-infiltrating CD8+ T cells44 and a positive
response to immune checkpoint therapy45.

Our integrative scRNA-seq analysis and dual IHC staining
revealed that the CXCL12–CXCR4 axis is a key inhibitor of
antitumor immunity in high-stromal OvCa samples. CXCL12 is
expressed in a variety of cells in bone marrow, liver, lungs, lymph

Fig. 4 Stromal cells modulate the phenotype of adaptive immune cells. a Average expression of selected cytokines and SPs in each cell type and tumor
group. Dot plot showing the mean gene expression z-score of differentially expressed cytokines and SPs across different cell types. The expression of each
gene is normalized to a mean value of zero and unit standard deviation. Expression values are indicated by color. Adjusted p-values for each differentially
expressed gene between high- and low-groups are indicated by circle size. Statistical significance is coded by the following symbols. p-value < 0.1, *p-
value < 0.05, **p-value < 0.01, and ***p-value < 0.001. b Heatmap revealing correlations between inferred TF activities (columns) and SP/cytokine
expression (rows) in CD8+ T cells and NK cells. For clarity, we selected highly correlated SP/cytokine-TF pairs (Table S4) and used the union of the
selected genes. Correlation coefficients of the top correlated TFs with each SP/cytokine are shown for each cell type. c Scatter plots of selected highly
correlated TF-CXCR4 pairs for CD8+ T cells and d for NK cells. Each dot represents a cell, colored by tumor group.
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nodes, stromal cells (e.g., fibroblasts), and endothelial cells46–48.
CXCL12 bound to its specific G protein-coupled receptor CXCR4
induces a plethora of downstream signaling events involving
ERK1/2, RAS, PLC/MAPK, p38 MAPK, and SAPK/JNK, which
are in turn responsible for various biological and pathological
processes including angiogenesis and tumor metastasis49. We
found that both CD8+ T cells and NK cells are abundant in the
CXCL12+ tumor area. This is consistent with previous studies in
pancreatic cancer showing that CAF-secreted CXCL12 attracts
peripheral CXCR4+ CD8+ T cells toward activated CAFs located
in the stromal regions surrounding the tumor36,50. This leads to

the sequestration of CD8+ T cells in the stromal compartment
and reduced migration into tumor islets36,50. In addition, pre-
clinical studies showed that both pharmacological inhibition of
CXCR4 and genetic ablation of CXCL12-producing CAFs led to a
rapid accumulation of CD8+ T cells within the tumor and
reduced tumor growth36. Moreover, the blockade of CXCR4
alleviates tumor desmoplasia and increases T-cell infiltration in
metastatic breast cancer49. Despite reports of the expression of
CXCL12 in various tumors, there is little information on the role
of the CXCL12–CXCR4 axis in the OvCa TIME and the

Fig. 5 The CXCL12–CXCR4 axis reduces the cytotoxic activity of CD8+ T cells and natural killer cells in high-stromal tumor samples. Statistically
significant interactions between a CA-MSCs, b fibroblasts, and other cell types using the CellPhoneDB pipeline. Size indicates p-values, and color indicates
the means of the receptor-ligand pairs between the two tumor groups. c Violin plots showing the expression of CXCL12 in CA-MSCs and fibroblasts by
high-/low-stromal group. The p-values are computed from the two-sided Wilcoxon tests, adjusted based on Bonferroni correction using all genes in the
dataset. Statistical significance is coded by the following symbols. p-value < 0.1, *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001. d Violin plots
showing the expression of CXCR4 in CD8+ T cells and natural killer (NK) cells by high-/low-stromal group. e Violin plots showing the expression of CXCR3,
GZMB, IFNG, and IL2RB in CD8+ T cells and f in NK cells by high-/low-stromal group. g Summary of enzyme-linked immunosorbent assay (ELISA) of GZMB
and IFNG secretion in splenic a-CD3/CD28+Il-2–activated CD8+ T cell (Pos Cont), recombinant CXCL12-treated cells, and CD8+ T cells cultured with
conditioned medium (CM) from CA-MSCs with or without anti-CXCR4 Ab. Unstimulated CD8+ T cells were used as negative control (Neg Cont).
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Fig. 6 Spatial distribution of CXCL12, CD8+ T cells, and NK cells in high- and low-stromal OvCa tissues. a Box plot showing the expression of selected
marker genes by sample. Based on the average expression of COL1A1, the samples were split into high-stromal (blue) or low-stromal (yellow) groups. b The
spatial autocorrelation of selected cytokines, SPs, and marker genes by sample. Moran’s I test, implemented in the Seurat FindSpatiallyVariableFeatures
function, was applied to compute the autocorrelation between the expression of each gene and its spatial location. c Representative spatial feature plots
showing mRNA levels of stromal markers (COL1A1, ACTA2, EPCAM), CXCL12, CD8+ T cell marker (CD8A) and NK marker (KLRB1) from two high-
stromal samples d and two low-stromal samples. Arrows indicate regions COL1A1, ACTA2 and CXCL12. e Heatmap showing the Spearman correlation
coefficients between the expression of COL1A1/ACTA2 and CXCL12. f Representative image of CD8 (brown) and CXCL12 (magenta) double stained in a
paraffin-embedded human OvCa tissue section. The scale bar equals 100mm.
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mechanisms by which this chemokine affects tumor growth and
spread as well as TIME dynamics.

Our findings are consistent with OvCa molecular subtyping
studies, which indicate that patients with a reactive stromal tumor
subtype tend to show early relapse and short overall survival2.
The association between many stromal cells and a poor clinical
outcome has also been observed in other cancers, including
prostate and pancreatic cancers51,52, and stromal cells impact
chemotherapy in OvCa53–55. Similarly, high desmoplasia is linked
to immunosuppression4,56. We and others found that in syn-
geneic and immunogenic mouse models, CA-MSCs inhibit anti-
tumor immunity via multiple mechanisms. By secreting cytokines
and chemokines such as CCL2, CX3CL1, and TGFß1, CA-MSCs
recruit monocytes and macrophages to the desmoplastic TME
and promote their differentiation into a pro-angiogenic and
immunosuppressive phenotype4. Moreover, CA-MSCs directly
inhibit CD8+ T cells and NK cell activity4,57–59. Importantly,
stromal cells drive tumor immune exclusion by blocking CD8+ T
cell trafficking into the tumor islets and inducing resistance to
immune therapy4. Similarly, OvCa patients with many T cells
infiltrating the tumor islets (“hot” tumors) have a better prognosis
than patients with either tumor immune exclusion, in which
T cells are restricted to the tumor stroma (“immune excluded”),
or with an absence of T cells in the tumor islets (immune
“desert”)60,61.

Nonetheless, this study has limitations. First, the relatively
small sample size imposes constraints on the flexibility of mul-
tivariable modeling. Given that our in-house cohort comprises
only two tumor types, we attempted to address this limitation by
integrating additional scRNA-seq datasets to capture the varia-
bility present across HGSOC tumors. To enable a joint analysis of
both in-house and public datasets, we had to choose a data
integration approach (for detailed information, please refer to the
“Materials and methods” section). It is important to note that
each cohort entails a batch effect due to slight variations in
sample processing and differences in scRNA-seq library pre-
paration and sequencing. However, the integration of several
datasets has the advantage of mitigating biases related to cell
preparation and dissociation, such as the preferential liberation of
specific cell types during tissue dissociation. Additionally, our
ligand–receptor analysis relies on a limited database of known
ligand–receptor interactions and can only infer potential com-
munication between different cell types. Therefore, the
ligand–receptor analysis should be considered primarily for
hypothesis generation, and a more sensible future approach
would involve conducting functional studies to delve into the
molecular crosstalk. Further, our study lacks matching clinical
data regarding treatment allocation and responses to treatment.
This limitation is due to the retrospective nature of our analysis.

In summary, we used integrative scRNA-seq and cell-cell
communication mapping to show that tumors with many stromal
cells, such as CA-MSCs, fibroblasts, and myofibroblasts, establish
a paracrine signaling network with infiltrating immune cells. This
signaling pathway results in an immunosuppressive TME.
Therefore, molecular features unique to high-stromal OvCa may
provide a framework for the development of novel strategies to
improve treatment outcomes for this deadly gynecological cancer.

Methods
Single-cell RNA sequencing
Generation of cells and scRNA-seq libraries. We selected one high-
stromal and one low-stromal treatment-naïve high-grade ovarian
serous cancer (HGSOC) tumor for in-house single-cell RNA
sequencing (scRNA-seq). We used fluorescence-activated cell
sorting to sort immune cells (CD45+) and non-immune cells

(CD45−) from each tumor sample. A separate single-cell library
was generated for each sample from sorted live CD45+ cells using
the Chromium Single Cell 30 Reagent (5′ V1 and Next GEM 5′
V1.1 chemistry). Briefly, sorted cells were resuspended in
phosphate-buffered saline (PBS) with 0.04% bovine serum albu-
min (BSA; Sigma), counted using the Cellometer Auto2000
(Nexcelom), loaded into the single-cell chip, and processed
through the 10× controller to generate droplets each containing a
single cell and bead. Our target was 10,000 cells per sample. Cells
were lysed in the droplet, and the RNA was reverse transcribed,
producing cDNA representing single-cell transcriptomes with
bead-specific sequences to identify the cell type. The cDNA was
isolated, amplified by 13 cycles of PCR, size-selected using
SPRIselect beads, and then subjected to enzymatic fragmentation,
end repair, and poly(A) tailing. Adapters were ligated, and sample
indices were added by PCR. Samples were then size-selected by
SPRIselect, and the concentration was determined by KAPA
DNA Quantification. Our library constructs contained P5 and P7
Illumina sequencing adapters, a 16-base-pair cell barcode, a 10-
base-pair unique molecular identifier (UMI), a gene insert, and an
i7 sample index.

Sequencing and raw data processing. Two libraries per patient
were pooled and sequenced on an Illumina NovaSeq 6000 plat-
form. The CellRanger (v3.1.0) count command was used to align
sequencing reads in fastq files to the 10× GRCh38 transcriptome
(v3.0.0). Outputs of the four reads were then aggregated using
CellRanger aggr into a single feature-barcode matrix.

Public datasets. Three public scRNA-seq ovarian carcinoma
datasets comprising 18 OV human primary tumor samples were
collected. We integrated GSE173682 by Regner et al. 19,
GSE184880 by Xu et al. 20, and EGAS00001004935 by Hornburg
et al. 14 datasets with our in-house scRNA-seq data (n= 2)
(GSE232314) (see below) to create a large reference dataset. The
spatial transcriptomics dataset GSE189843 by Stur et al. 3 was
used for validation. The TCGA- OvCa raw count matrix con-
taining 18,374 genes across 299 samples was downloaded from
the Broad Institute of MIT & Harvard (https://gdac.
broadinstitute.org/). The clinical TCGA-OvCa data containing
576 samples were downloaded using the survivalTCGA function
from the R package RTCGA (version 1.20.0). Sample and data
information are summarized in Table S1.

Analysis of scRNA-seq data
Data preprocessing. The in-house filtered feature-barcode matrix
(filtered_feature_bc_matrix.h5 from CellRanger aggr) was loa-
ded into a Seurat object using the Seurat R package (version
4.0.1)62. The matrix.mtx, features.tsv, and barcodes.tsv files for
each sample from the Gene Expression Omnibus (GEO)
datasets19,20 were loaded using the Read10X function from
Seurat. The count matrix for each sample of the European
Genome-phenome Archive (EGA) dataset14 was loaded using
the read.csv function in R. A total of 18 samples were selected
from the public datasets.

Quality control. The gene-by-cell matrix described above was
loaded as a Seurat object via the CreateSeuratObject function to
include features detected in at least three cells and in cells with at
least 400 features. The analyzed cells had a minimum of 500
expressed genes, 1000 UMI counts, and less than 30% mito-
chondrial gene expression. SCTransform was used for
normalization63, and DoubletFinder (version 2.0.3)64 was used to
calculate and filter cells with the doublet formation rate set to 5%.
Sample matrices were merged by the patient and then

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05733-x

10 COMMUNICATIONS BIOLOGY |            (2024) 7:20 | https://doi.org/10.1038/s42003-023-05733-x | www.nature.com/commsbio

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
www.nature.com/commsbio


renormalized and scaled using log-normalization with a scale
factor of 10,000.

Batch correction and integration. We scaled and centered 2000
variable features, detected with the variance-stabilizing transfor-
mation (VST) method, and regressed out the mitochondrial read
percentage. Principal component analysis (PCA) was performed
on the filtered feature-by-barcode matrix. The uniform manifold
approximation and projection (UMAP) embeddings65 were based
on the first 30 principal components. Subsequently, data inte-
gration was performed using the R package Harmony (version
0.1.0)66 using the function RunHarmony to remove the batch
effects among samples. The integrated data contained 33,718
genes across 111,062 cells.

Major cell-type identification. Graph-based clustering was per-
formed for integrated data using the Louvain algorithm imple-
mented in Seurat (resolution= 2). Cells were assigned to one of
the following 13 cell types based on the expression of the marker
genes in each cluster: (i) Immune cells (PTPRC) including B cells
(CD79A, CD19, MS4A1), CD4+ T cells (CD3D and CD4), CD8+

T cells (CD3D and CD8A), CD4+ CD8+ double-positive T cells
(CD3D, CD4, and CD8A), dendritic cells (CD40, CD1C, and
ITGAX), macrophages (CD14, CD68, and FCGR1A), and NK
T cells (CD3D−/+, KLRB1, NCAM1). (ii) Tumor cells (EPCAM
and MUC1) or ECCs. (iii) Stromal cells (COL1A1), including
cancer-associated mesenchymal stem cells or CA-MSCs
(ALDH1A3), myofibroblasts (ACTA2), and fibroblasts
(COL1A1). (iv) Endothelial cells (CDH5). (v) Contaminating cells
(other than any of the listed above), which were not included in
the subsequent analysis. The final dataset contained 33,718 genes
across 106,521 cells.

High- and low-stromal tumor identification. After cell-type
assignment, we computed the stromal cell fraction by sample:

stromal cell fraction ¼ #ðCA�MSCsÞ þ #ðfibroblastsÞ þ #ðmyofibroblastsÞ
#ðall cellsÞ :

Samples with a ≥ 0.15 stromal cell fraction formed the high-
stromal group (6 samples), and samples with a <0.15 stromal cell
fraction formed the low-stromal group (14 samples).

Differential expression analysis of scRNA-seq data. In each cell-
type population, differentially expressed genes (DEGs) between
high- and low-stromal groups were identified using the Find-
Markers function from Seurat. The expression of each gene in the
high- and low-stromal groups formed two expression vectors. A
two-sided Wilcoxon signed-rank test was applied to compare the
means of the two expression vectors for each gene. The resulting
p-values were adjusted based on Bonferroni correction using all
genes in the dataset. Adjusted p-values cutoffs for DEGs are listed
in Table S2. Differential expression of cytokines and SPs were of
special interest. A full list of cytokines and SPs considered in the
study is listed in Table S3.

Single-cell regulatory network inference and clustering (pyS-
CENIC). SCENIC27 is a computational framework that predicts
TF activities from scRNA-seq data. For each cell type, we inferred
cell-specific TF activities using the Python implementation of
SCENIC, pySCENIC (version 0.10.4)26, with default parameters.
We used the cis-regulatory DNA-motif database (hg38__refseq-
r80__10kb_up_and_down_tss.mc9nr.feather, downloaded from
https://resources.aertslab.org/cistarget/). The pySCENIC cellular
regulon enrichment matrix (a.k.a. the AUC matrix) is the inferred

TF activities by cell. Cutoffs for displaying gene-TF pairs are listed
in Table S4.

Pathway analysis (PROGENy). Pathway activities were inferred
using the R package PROGNEy (version 1.12.0)67 with default
parameters. After inference, for each pathway signaled in each cell
type, a two-sided Wilcoxon signed-rank test was applied between
the high- and low-stromal groups. The resulting p-values are
adjusted based on Bonferroni correction using all pathways in the
dataset.

Assessment of ligand–receptor interactions (CellPhoneDB).
We used CellPhoneDB (version 3.1.0)68 to identify the potential
ligand–receptor interactions for each cell type based separately on
the raw count matrices of the high- and low-stromal groups. For
each group, the means of the average expression levels of inter-
acting ligands in the sender population and interacting receptors
in the receiver population were computed, and a one-sided
Wilcoxon signed-rank test was used to assess the statistical sig-
nificance of each interaction score. Cutoffs for ligand–receptor
pairs are listed in Table S5.

Spatial transcriptomics (ST) data analysis. The ST dataset
comprised 12 samples from one dataset3, and 11 high-quality
samples were selected for the subsequent analysis. Each raw count
matrix was loaded as a Seurat object to include features detected
in at least three cells and cells with at least 400 features. For each
Seurat object, we applied SCTransform normalization followed by
PCA. A total of 30 PCs were used in UMAP dimensional
reduction. Based on the average expression of stromal cell mar-
kers (COL1A1 and ACTA2), the samples were divided into the
high-stromal group (n= 5) and the low-stromal group (n= 6).
For each sample, we used the Seurat function FindSpatiallyVar-
iableFeatures to identify features whose variability in expression
was explained to some degree by spatial location, and we used the
Moran’s I test69 to compute the spatial autocorrelation of
each gene.

Survival analysis. We used R package MIND (Version 0.3.2)22 to
estimate the stromal cell fraction for each TCGA-OvCa sample.
Specifically, the count matrix of the integrated scRNA-seq data
was used as the prior cell-type specific profile. To improve the
efficiency and accuracy of the estimates, we reassigned cells in the
prior profiles to one of the four cell types: immune cells, stromal
cells, endothelial cells, or ECCs. However, only common genes of
the bulk and scRNA-seq datasets were considered in the decon-
volution (16,428 genes). We used the CPM (counts per million)
and log1p normalized TCGA-OvCa bulk raw count matrix as the
expression to be deconvoluted. The outputs of the MIND
bMIND2 function included an estimated sample-specific cell-type
fraction matrix.

Intersecting samples (n= 293) of TCGA-OvCa RNA-seq and
clinical data were used in the survival analysis. Samples with an
estimated >0.25 stromal cell fraction or with COL1A1 raw count
>20,000 formed the high-stromal group (28 samples), and
samples with an estimated <0.15 stromal cell fraction formed
the low-stromal group (220 samples). A Cox proportional
hazards regression model was fit against the groups, and
Kaplan–Meier survival curves were drawn with the R package
survminer (Version 0.4.9) (https://CRAN.R-project.org/package=
survminer).

Peripheral blood monocyte isolation, CD8+ T cell isolation,
and macrophage differentiation. PBMCs were freshly isolated by
density gradient centrifugation using Ficoll Paque Plus (Sigma-
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Aldrich) for 50 min at 400 × g70. Human Buffy Coat samples
purchased from Vitalant fulfilled the exempt criteria of 45 CFR
46.101(b) (4) in accordance with the University of Pittsburgh
guidelines. Monocytes were then isolated with CD14+ microbe-
ads (MACS Miltenyi) and incubated for 5 days in RPMI/10% fetal
calf serum medium and 1% penicillin/streptomycin solution
(Sigma) supplemented with 25 ng/ml human macrophages
colony-stimulating factor (M-CSF) (R&D Systems) for 4 days to
stimulate macrophage differentiation. Macrophages were washed
with PBS and cultured, as described below.

Cell cultures. The human ovarian cancer cell line OvCAR3 was
purchased from ATCC and cultured in Roswell Park Memorial
Institute (RPMI) 1640 medium supplemented with 10% heat-
inactivated fetal bovine serum, penicillin (100 U/ml), and strep-
tomycin (100 mg/ml). Normal MSCs or cancer-associated MSCs
(CA-MSCs) were kindly donated by Dr. Coffman’s lab. Briefly,
normal MSCs were derived from surgical fallopian tubes of
women undergoing surgery for benign indications, whereas CA-
MSC were isolated from human HGSOC ascites as indicated
previously71. Cells were cultured in Human Mesenchymal Stem
Cell Growth Medium (ATCC). Cells were regularly tested for
Mycoplasma contamination.

In the coculture experiments, OvCAR3 cells and MSC were
plated alone or together at a 1:1 ratio (0.5 × 106 cells). Co-cultures
were maintained in RPMI and stem cell medium (1:1 ratio). After
7 days, the CM was collected and saved at −80 °C.

Cytokine arrays. Macrophages were cultured with CM from
OvCAR3 tumor cells (TC), MSC, or TC/MSC co-culture. After
48 h, macrophages were washed with PBS and cultured for 24 h.
Supernatants were collected for a cytokine array assay (Raybio-
tech, AAH-CYT-5) performed according to the manufacturer’s
instructions. Membranes were developed, and the dots were
quantified using Image J.

CD8+ T cells activation and cytotoxic assay. CD8+ T cells were
isolated from fresh PBMC using CD8+ microbeads (MACS
Miltenyi) following the manufacturer’s instructions. Cells were
activated with 30 U/mL rIL-2 and Dynabeads Human T-activator
CD3/CD28 (ThermoFisher) and cultured with the CM of CA-
MSCs in the presence or not of CXCR4 Ab (R&D Systems).
CD8+ T cells stimulated only with IL-2 and CD3/CD28
microbeads were used as positive control. In indicated experi-
ments, cells were stimulated with 200 ng/mL recombinant
CXCL12. Following stimulation, CD8+ T cell supernatants were
collected and analyzed for cytokine production by ELISA as
described below.

Enzyme-linked immunosorbent assay. IFN-γ and granzyme B
concentrations in the supernatants of CD8+ T cells were mea-
sured using a mouse ELISA kit (R&D Systems) following the
manufacturer’s protocol. IFN-γ and granzyme B concentrations
were within the range of the standard curve. All points were done
in triplicate, and the experiments were repeated three times.
Samples were read in a microplate reader (Infinite 200 PRO,
Tecan).

Immunohistochemistry. Slides were deparaffinized by baking
overnight at 59 °C, and antigens were retrieved by heating in 0.1%
citrate buffer for 10 min at 850 V in a microwave oven. For
double-staining immunohistochemistry (IHC), we used Imm-
PRESS duet staining HRP/AP polymer kits with anti-rabbit IgG-
brown and anti-mouse IgG red (MP-7714, Vector Laboratories)
according to the manufacturer’s protocol. Nonspecific binding

sites were blocked with horse serum. The reactions with anti-
CXCL12 (clone, Thermo Fisher) and anti-CD8 were for 16 h at
4 °C. Histology sections were observed using a Leica DM4
microscope. Images were acquired using a Leica DFC7000T
camera and Leica Application Suite X.

Statistics and reproducibility. Statistical analysis and visualiza-
tion were performed in R. The statistical methods used for each
analysis are described within the texts and figure legends. Statistical
significance is coded by the following symbols. p-value < 0.1, *p-
value < 0.05, **p-value < 0.01, and ***p-value < 0.001.

Graphs were generated using R packages: ggplot2 (version
3.3.6), ggpubr (version 0.4.0), ggrepel, circlize (version 0.9.1)72,
ComplexHeatmap (version 2.6.2)73, and inlmisc (version 0.5.5).
All violin plots report the 25% (lower hinge), 50%, and 75%
quantiles (upper hinge) and the kernel density estimates as
computed by the geom_density function of ggplot2 as the width.
All boxplots report 25% (lower hinge), 50%, and 75% quantiles
(upper hinge). The lower (upper) whiskers indicate the smallest
(largest) observation greater (less) than or equal to the lower
(upper) hinge −1.5× interquartile range (IQR) (+1.5× IQR) as
default in the geom_boxplot function ggplot2.

Data availability
In-house single-cell RNA sequencing data are deposited in the Gene Expression
Omnibus (Accession No. GSE232314). Expression data from previous studies were
obtained from the Gene Expression Omnibus (GEO) dataset and the European Genome-
phenome Archive (EGA) dataset, under accession numbers GSE17368219 (Regner et al.),
GSE18488020 (by Xu et al.), GSE1898433 (by Stur et al.), and EGAS0000100493514 (by
Hornburg et al.). The selected studies and samples are listed in Table S1. The source data
behind the graphs in the paper are available in Supplementary Data 1.
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