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Self Fourier shell correlation: properties and
application to cryo-ET
Eric J. Verbeke 1✉, Marc Aurèle Gilles1, Tamir Bendory2 & Amit Singer 1,3

The Fourier shell correlation (FSC) is a measure of the similarity between two signals

computed over corresponding shells in the frequency domain and has broad applications in

microscopy. In structural biology, the FSC is ubiquitous in methods for validation, resolution

determination, and signal enhancement. Computing the FSC usually requires two indepen-

dent measurements of the same underlying signal, which can be limiting for some applica-

tions. Here, we analyze and extend on an approach to estimate the FSC from a single

measurement. In particular, we derive the necessary conditions required to estimate the FSC

from downsampled versions of a single noisy measurement. These conditions reveal addi-

tional corrections which we implement to increase the applicability of the method. We then

illustrate two applications of our approach, first as an estimate of the global resolution from a

single 3-D structure and second as a data-driven method for denoising tomographic

reconstructions in electron cryo-tomography. These results provide general guidelines for

computing the FSC from a single measurement and suggest new applications of the FSC

in microscopy.
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The Fourier shell correlation (FSC) is defined as the nor-
malized cross-correlation of corresponding shells between
two signals in the frequency domain1,2. In single particle

electron cryo-microscopy (cryo-EM), the FSC has become the
universal resolution metric and is used to assess the quality of a
3-D reconstruction3,4. Additional major contributions of the FSC
in cryo-EM include setting hyperparameters of iterative algo-
rithms, as in 3-D refinement of structures5, and estimation of the
spectral signal-to-noise ratio (SSNR)6,7.

A core requirement of the FSC is the availability of two or more
independent noisy measurements. In single particle cryo-EM, this
is often achieved by splitting the data into random half sets3.
However, for other forms of microscopy or data processing
procedures, it is not always possible to apply the same strategy.
To bypass the need for multiple measurements, a novel approach
was recently proposed to estimate an FSC-like quantity from a
single measurement, which we refer to as the self FSC (SFSC)8.
This approach was initially used for image restoration in fluor-
escence microscopy8 and has also been applied to estimating
resolution in scanning electron microscopy9. The SFSC is
implemented by first decimating an image in real space to pro-
duce downsampled images whose correlation with each other is
then computed in Fourier space. While the interpretability of the
original FSC has been discussed in refs. 10,11, the validity of the
SFSC as a proxy for the FSC is more difficult to interpret, since
the two downsampled signals are not independent.

In this work, we analyze the SFSC and give sufficient condi-
tions on the statistics of both the signal and the noise under
which the estimator is consistent with the standard FSC. Notably,
we show that the assumptions required for the SFSC are more
restrictive than the standard FSC and that use of the SFSC outside
the defined conditions can give estimates that deviate significantly
from the FSC. The conditions are easy to check and give practical
guidelines to the applicability of the SFSC.

To demonstrate the validity of the SFSC, we provide two
applications in the context of cryo-EM: first as a measure of the
global resolution from a single map, and second as a data-driven
method for denoising in electron cryo-tomography (cryo-ET). In
the first application, we show that the resolution predicted by the
SFSC from one half-map agrees with the standard FSC computed
from two half maps, provided the conditions on the data
described in this work are met. We then use the SFSC to denoise a
reconstructed tomogram from cryo-ET data by applying a
Wiener filter. Our approach provides significantly increased
contrast and visibility compared to conventional low-pass filter-
ing. The code used to generate the results in this work is available
at: github.com/EricVerbeke/self_fourier_shell_correlation.

Results
Experimental evidence for the relationship between the correla-
tion of noisy image measurements and the signal-to-noise ratio in
electron microscopy date back to (at least) 197512. With the
advent of the FSC, this relation was developed further to describe
the decay in data quality with respect to spatial frequency based
on a relation to the SSNR6. The SSNR is a central quantity in
computational microscopy and has specific use in cryo-EM for
denoising by Wiener filtering13, and post-processing (e.g., 3-D
structure sharpening)3.

In this work, we consider the following simple model for
estimating the FSC and therefore also the SSNR: we observe a
single noisy measurement y of an underlying signal x:

y ¼ x þ ϵ: ð1Þ

We discuss the effect of including the contrast transfer function
(CTF) in the model in Supplementary Note 1, and show the effect

on the FSC in Supplementary Fig. S1. For the model in Eq. (1), we
assume that the ground truth signal is drawn from a mean-zero
Gaussian distribution x � N ð0;ΛÞ with additive Gaussian
colored noise ϵ � N ð0;ΣÞ, where Λ and Σ are the covariance
matrices of the signal and noise respectively. We further assume
that all entries of x̂ :¼ F fxg and ϵ̂ :¼ F fϵg, the discrete Fourier
transforms (DFT) of x and ϵ, are statistically independent of each
other, and thus have diagonal covariance matrices in the Fourier
domain. That is, we have that x̂ � N ð0;Dðλ2ÞÞ and
ϵ̂ � N ð0;Dðσ2ÞÞ, where DðvÞ 2 Cd ´ d denotes a diagonal matrix
with entries v 2 Cd , and λ and σ are vectors that are constant
along frequency shells. The real space covariance matrices are
therefore Λ= F*D(λ2)F and Σ= F*D(σ2)F, where F is the nor-
malized DFT matrix and * denotes the conjugate transpose.
While the independence assumption on the signal in the Fourier
domain may seem restrictive, it is typical in cryo-EM 3-D
reconstruction—corresponding to a weighted L2 regularized
problem in the maximum a posteriori formulation5; furthermore,
it is justified in the “infinitely large" protein limit under the
Wilson statistics model14,15. The SSNR at spatial frequencies of
radius r is then defined as:

SSNR ðrÞ ¼ λ2ðrÞ
σ2ðrÞ : ð2Þ

Typically, neither λ2 or σ2 are known a priori and thus must be
estimated from data. In practice, the SSNR can be estimated if
two independent and noisy measurements, y1 and y2, of the same
signal x are available by computing their FSC. The FSC is defined
as:

FSC ðrÞ ¼
∑
k2Sr

Re ŷ1½k�ŷ2½k�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k2Sr

jŷ1½k�j2 ∑
k2Sr

jŷ2½k�j2
r ¼ ŷ1; ŷ2

� �
r

k ŷ1kr k ŷ2kr
; ð3Þ

where ŷ1 and ŷ2 are the DFT of y1 and y2, the overline denotes the
complex conjugate, and �; �h ir denotes the standard inner product
on Cd restricted to the shell Sr with ∥⋅∥r being the associated
norm. We use brackets to denote indexing of a discrete function
and k for the multi-index on a Fourier grid. The link between the
FSC and SSNR is made by considering a related deterministic
quantity, denoted EFSC:

EFSC ðrÞ :¼
E ŷ1; ŷ2

� �
r

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½k ŷ1k2r �E½k ŷ2k2r �

q ¼ λ2ðrÞ
λ2ðrÞ þ σ2ðrÞ ; ð4Þ

where E is the expectation. We note that while
E½ FSC ðrÞ�≠EFSC ðrÞ, the estimated quantity has proven to be a
useful proxy for the SSNR. From the EFSC, we see that the SSNR
can be estimated as:

SSNRðrÞ ¼ EFSCðrÞ
1� EFSC ðrÞ : ð5Þ

It is a common practice to replace the EFSC by the empirical FSC
Eq. (3) computed from two signals to estimate the SSNR.

Fourier shell correlation from a single measurement. The
computation of the standard FSC requires two independent mea-
surements of a signal. In this work, the goal is to estimate the FSC
and SSNR from a single measurement. A solution proposed in8 is
to compute the FSC from downsampled versions of the same
measurement. This approach is originally implemented by first
taking a noisy, real-space measurement and decimating into a
checkerboard-like pattern to form half-sized approximations of the
original measurement, as shown in Supplementary Fig. S2. The
FSC between pairs of downsampled signals can then be computed.
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Here, we modify the downsampling procedure such that the
real-space measurements are split into even and odd terms
along one spatial dimension at a time, thus providing two
downsampled versions for each dimension. The FSC is then
computed between each downsampled measurement pair for
each dimension and the reported FSC is taken to be the average,
as shown in Fig. 1. There are two main advantages of this
approach compared to the checkerboard-like splitting pattern.
First, our scheme preserves the Nyquist frequency for each axis
except the one split into even and odd terms. Second, we show
in Supplementary Note 2 that splitting in a checkerboard-like
pattern scales the variance of the noise in the SFSC by 2dim

where dim is the number of axes split into even and odd terms.
For the 1-D case, a measured signal is decimated by simply
splitting into even and odd terms.

While this process is always easily computable, it is not clear
that the estimate is meaningful. Indeed, the basis of the
connection between the FSC and SSNR is the statistical
independence of two measurements. However, in the SFSC case,
the two measurements are simply downsampled versions of the
same noisy measurement which are correlated in any practical
scenario. Despite the apparent correlation, we show that under
conditions on the statistics of both the signal and the noise,
the SFSC may still be used to estimate the SSNR from the

downsampled measurement, which can be used to infer the SSNR
of the original measurement.

Conditions for accurate estimation of the FSC from the SFSC.
We present our main analysis for the SFSC here using the one-
dimensional case for simplicity, although we show in Supple-
mentary Note 3 that it naturally extends to higher dimensions.
Following the model in Eq. (1), let y be a discrete 1-D mea-
surement of length N, where we assume N is even. The mea-
surment y is then downsampled by splitting it into even index
terms ye[n]= y[2n] and odd index terms yo[n]= y[2n+ 1] for
n∈ {0,…, (N/2)− 1}. The DFT of the even and odd term mea-
surements can be related to the DFT of the original measurement
y as follows (see Supplementary Note 3 for derivation):

ŷe½k� ¼ ðx̂½k� þ ϵ̂½k� þ x̂½kþ N=2� þ ϵ̂½kþ N=2�Þ=2; ð6Þ

ŷo½k� ¼ ðx̂½k� þ ϵ̂½k� � x̂½kþ N=2� � ϵ̂½kþ N=2�Þ= 2ωk
N

� �
; ð7Þ

where ŷe and ŷo are the DFTs of ye and yo, and ωN ¼ expð�2πi=NÞ.
We note that if the higher frequency terms are small (i.e., there is a
rapid decay in the power spectrum), then ŷe½k� and ŷo½k� are
approximately equal after a phase shift of ŷo½k� by ωk

N . Thus, as
noted in8, when computing the SFSC between downsampled pairs,
a phase shift correction must be included. That is:

SFSC ðrÞ ¼
ŷe; ŷoe

�2πi a;k=Nh iD E
r

k ŷekr k ŷoe
�2πi a;k=Nh ikr

; ð8Þ

where a denotes the translation. We discuss the origin and effect of
this translation further in Supplementary Note 4.

Our goal is to show that the SFSC is approximately equal to the
FSC such that it can also provide an estimate of the SSNR as in
Eq. (5). Following the same arguments as stated for the EFSC in
Eq. (4), we have that:

ESFSC1-D½k� :¼
E ŷe; ŷoe

�2πi a;k=Nh iD E
r

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½k ŷek2r �E½k ŷoe

�2πi a;k=Nh ik2r �
q : ð9Þ

Under the standard assumption that the signal and the noise are
statistically independent, we then get:

ESFSC1-D½k� ¼ λ2½k� � λ2½kþ N=2� þ σ2½k� � σ2½kþ N=2�
λ2½k� þ λ2½kþ N=2� þ σ2½k� þ σ2½kþ N=2� :

ð10Þ
Thus, in general, the estimates for the EFSC and ESFSC are not
the same. However, if we consider the following two assumptions:

Assumption 1: The Gaussian noise distribution is white, namely
σ2[k]= σ2[0] ∀ k,

Assumption 2: The power spectrum of the signal decays such that
λ2[k]≫ λ2[k+N/2],

then, we have that:

ESFSC1-D½k� � λ2½k�
λ2½k� þ 2σ2½k� : ð11Þ

That is, the ESFSC approximates the EFSC with an additional
doubling on the variance of the noise. Given the above
assumptions are met, the ESFSC can be related to the EFSC by:

EFSC ðrÞ ¼ 2 ESFSCðrÞ
1þ ESFSC ðrÞ : ð12Þ

We illustrate the importance of the assumptions on the signal and
noise in Fig. 2, and the effect of phase shift and variance
correction in Fig. 3a, b using a synthetic 2-D image as an

Fig. 1 Illustration of the Fourier shell correlation computed from a
downsampled signal (i.e., the SFSC). The measured signal is split into
even and odd voxels for each dimension and the SFSC is computed
between the respective pairs. The reported FSC is taken to be the average
of the three pairs.
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example. The clean image originates from a projection of the 3-D
structure of a human gamma-aminobutyric acid receptor
(available as entry EMD-11657 in the electron microscopy data
bank)16. Using a typical B-factor decay in cryo-EM3, we generate
each image as x ¼ F�1fx̂ expð�B k kk2=4VNÞg, where V is the
voxel (or pixel) size and B modulates the decay. Here the image
size is N ×N= 360 × 360 with a pixel size of 0.81Å. Noisy
measurements are then produced by adding Gaussian noise. To
generate noise which decays with spatial frequency (i.e., such that
Assumption 1 is broken), a B-factor decay may also be applied to
the additive noise and is delineated as Bsignal and Bnoise when
necessary.

Given both assumptions on the data are met, and that the
correction for the scaling of the variance in Eq. (12) is applied, we
show in Fig. 2a that the SFSC accurately estimates the FSC. If the
noise is not white Gaussian, but instead decays with spatial
frequency, the SFSC is unreliable and overestimates the FSC
(Fig. 2b). However if the noise is white Gaussian, but the power
spectrum of the signal does not have rapid decay, then the SFSC

underestimates the FSC (Fig. 2c). Finally, if neither assumption is
met, the SFSC fails to approximate the FSC and tends to give an
overestimate (Fig. 2d). These results underpin the behavior of the
SFSC, whether or not it should be applied, and motivate the
improvements to the algorithm described in the following
sections which circumvent the assumptions.

Accounting for colored noise in the SFSC. Microscopy images
are often contaminated by colored Gaussian noise. Specifically, in
cryo-EM, noise is often modeled by a covariance matrix that is
diagonal in the Fourier domain, but with entries that vary17. In
this case, Assumption 1 is violated. From Eq. (10), the ESFSC
approximates the EFSC only in the case of white Gaussian noise
and should not be expected to match otherwise. However, in the
scenario where the noise is not white but its distribution can be
estimated, we can first whiten the measurement prior to com-
puting the SFSC. Suppose that the Fourier transform of the noise
distribution is ϵ̂ � N ð0;Dðσ2ÞÞ. We define the Fourier transform
of the whitened noisy measurement ŷw as:

ŷw ¼ W�1=2ŷ; ð13Þ
where W=D(σ2). By construction, the noise in ŷw is white:

ŷw ¼ W�1=2x̂ þW�1=2ϵ̂ ¼ x̂w þ ϵ̂w; ð14Þ
where x̂w ¼ W�1=2x̂ and ϵ̂w ¼ W�1=2ϵ̂, and
Cov ½ϵ̂w� ¼ Cov ½W�1=2ϵ̂� ¼ W�1=2WW�1=2 ¼ I. While this
transform changes the signal, the SSNR of the new signal is the same
as the original one. Noise whitening of data has statistical justifications
which are described in ref. 18.

To demonstrate the effect of colored noise on the SFSC, we
generated an image with a noise spectrum that decays following
expð�B k kk2=4VNÞ, with B= 50Å2. We show in Fig. 3c that
after applying a whitening transform, we can recover the FSC
from the SFSC. While this procedure can always be done if the
noise level can be estimated, we note that it also leads to a simpler
scheme for estimating the SSNR. Specifically, if the noise variance
can be estimated, the ratio of the noise variance subtracted from
the power spectrum to the noise variance is, in expectation, also

equal to the SSNR. In fact, this is always possible and yields
approximately equivalent results to the standard FSC. The noise
level is typically computed as part of the cryo-EM reconstruction
process and could be used for a more direct measure of the SSNR
without the need of the FSC. We discuss this further in
Supplementary Note 5 and demonstrate the simpler approach
for estimating the SSNR in Supplementary Fig. S3.

SFSC for measurements with slow decaying spectrum.
Assumption 2 requires that there is rapid decay in the power
spectrum of the underlying signal. If this is not the case, we can
introduce an additional correction to the SFSC. We propose the
following approach: upsample the measurement by zero-padding
in Fourier space to increase the length of the measurement to
~N ¼ 2N , then subtract off the noise level from the numerator.
The effect of the zero-padding is to set the high frequency terms
to zero, and thus their variance is also zero (i.e.,
λ2½kþ ~N=2� ¼ σ2½kþ ~N=2� :¼ 0). Returning to Eq. (9) we see:

where γk is a value we have chosen. The above equation equals the
desired EFSC in Eq. (4) when we set γk ¼ 1

4 σ
2½k�. Importantly, this

procedure only works after a whitening transform of the original
measurement since the variance of the noise is known. We show in
Fig. 3d that upsampling a whitened measurement with a slow
decaying power spectrum recovers the expected correlation curve.
The effect of upsampling, and more generally frequency filtering19

prior to computing the SFSC, is discussed in Supplementary Note 6.

Estimating resolution from a single cryo-EM map. For a con-
ventional 3-D reconstruction pipeline in single particle cryo-
EM, the data are split into random half sets to generate two
independent half maps which are used to compute the FSC. To
verify the assumptions and corrections introduced in this work,
we show that the global resolution can be estimated from a
single cryo-EM half map using the SFSC. We use the 3-D
structures of a 20S proteasome (EMD-2482220), a 70S ribosome
(EMD-1323421) and two small membrane proteins (EMD-
2764822, EMD-2027823) as examples.

After 3-D reconstruction, we do not expect the noise to be
white, but instead to increase proportionally to the frequency due
to the Fourier slice theorem, whereas the signal will show a strong
exponential decay due to the B-factor. Thus, after whitening, our
method applies. However, deposited maps usually have masking
in either the volume or images which impact the noise statistics.
Here we use the the noise in the corners of the reconstructions to
estimate the noise distribution, but this assumes no masking was
used. Otherwise, the noise in the corners and center will display
different statistics. Specifically, we use the region outside a sphere
which encompasses the molecular structure to estimate the noise
by computing the spherically averaged power spectrum, defined
as PS ðyÞðrÞ :¼ R

Sr
jŷðk k kÞj2dk (see Supplementary Fig. S4). We

then apply the whitening transform and upsample procedure
before computing the SFSC. The resolution reported using the
standard FSC and the resolution calculated from the SFSC at a
threshold of 1/73 are approximately equal (Fig. 4a–c) except for
the case where there is a non-unifom noise distribution (Fig. 4d).
We attribute the deviation of the SFSC from one at the low

E ŷe; ŷoe
�2πi a;k=Nh iD E

r

h i
� γkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½k ŷek2r �E½k ŷoe
�2πi a;k=Nh ik2r �

q ¼ λ2½k� � λ2½kþ ~N=2� þ σ2½k� � σ2½kþ ~N=2� � 4γk
λ2½k� þ λ2½kþ ~N=2� þ σ2½k� þ σ2½kþ ~N=2� ¼ λ2½k� þ σ2½k� � 4γk

λ2½k� þ σ2½k� ; ð15Þ
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frequencies to the difficulty in accurately estimating the noise
using ad hoc methods. These results suggest that the SFSC
provides a viable alternative for estimating resolution in cryo-EM
and could be used in the absence of half maps.

Denoising a reconstructed tomogram. Having established the
necessary assumptions and corrections under which the SFSC
provides an estimate of the SSNR, we next demonstrate an
application to denoising tomographic reconstructions from cryo-
ET data. In a typical cryo-ET tilt series data collection scheme,
projection images are measured at ± 60∘ in several degree incre-
ments. The recorded frames at each tilt are then motion cor-
rected, aligned and a reconstruction technique is used to generate
the 3-D tomogram. Due to the low electron beam dose required
for imaging biological samples, the SSNR in cryo-ET data is
low24, and so there is a need for denoising methods25. Addi-
tionally, unlike in single particle cryo-EM, there are no related
measurements to boost the SSNR by averaging. Thus, cryo-ET
provides an ideal use case for the SFSC. Alternative approaches
for estimating the resolution in cryo-ET such as computing the
FSC from reconstructions of the even and odd images in a tilt
series are described in26.

Considering the model for a noisy measurement in Eq. (1), the
minimum mean square error estimator for x given y under the
Gaussian assumptions is known as the Wiener filter, and is widely

used in cryo-EM13,27,28. The Wiener filter is defined as:

x̂WFðrÞ ¼
1

1þ 1
SSNRðrÞ

ŷðrÞ: ð16Þ

In cryo-ET, a common practice is to provide an ad hoc SSNR for
Wiener filtering, or simply to use a low-pass filter. However, given
the relationship between the EFSC and SSNR in Eq. (5), and that
the SFSC can estimate the FSC, we show that the SFSC provides a
simple, data-driven method for applying a Wiener filter. Combin-
ing Eq. (16) with Eq. (5), we get that x̂WFðrÞ ¼ SFSC ðrÞ � ŷðrÞ.
Effectively, each shell in Fourier space for measurement y is
weighted according to the correlation profile from the SFSC. The
idea of self-Wiener filtering has already been suggested in the
context of signal processing and is described in ref. 29.

Here we show in Fig. 5 that applying a Wiener filter from the
computed SFSC improves the visibility of a reconstructed
tomogram. The data in this example is C. elegans tissue from
EMD-486930. In order to accurately estimate the SSNR, we know
from Assumption 1 that the noise must be white Gaussian. To
estimate the noise variance for a subsection of the tomogram, we
select a slice above the region of interest. We then compute the
SFSC and apply the Wiener filter in Eq. (16). The resulting
denoised section of the tomogram shows enhanced contrast over
the original and a low-pass filtered version. Specifically, the
ribosomes and membrane edges stand out from the background.
We additionally consider CTF effects in Supplementary Fig. S5 and

Fig. 2 Conditions on the statistics of the signal and noise under which the SFSC accurately estimates the FSC. Each panel shows the image, power
spectrum and associated SFSC for a signal that satisfies or fails to satisfy both Assumption 1 and Assumption 2. The SNR was set to 15 for each image with
additive Gaussian noise that decays with spatial frequency when specified. The FSC was computed for each case using two synthetic images generated
with the same parameters but independent noise. a Bsignal= 100Å2, Bnoise= 0Å2. Both assumptions are met and the SFSC accurately estimates the FSC.
b Bsignal= 100Å2, Bnoise= 50Å2. The noise is not white Gaussian and the SFSC overestimates the FSC. c Bsignal= 0Å2, Bnoise= 0Å2. The noise is white
Gaussian but the signal does not have rapid decay. The SFSC underestimates the FSC. d Bsignal= 20Å2, Bnoise= 10Å2. Neither assumption is met and the
SFSC fails to estimate the FSC. This figure demonstrates that the naive SFSC provides an accurate estimate of the FSC only if Assumption 1 and
Assumption 2 are met.
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compare our approach to the noise learning method cryo-CARE31

using a different data set (EMD-1505632) in Supplementary Fig. S6
and Supplementary Note 7. These results demonstrate that the
SFSC can provide a simple, data-driven and parameter-free filter
for improving the visualization of tomograms.

Discussion
In this work, we derive a set of conditions and corrections
required for accurately computing the Fourier shell correlation
from downsampled versions of a single noisy measurement. We
demonstrate that we are able to estimate the global resolution
from a single map and denoise a reconstructed tomogram using
the SFSC. Our approach is broadly applicable and allows for
estimation of the SSNR if it is not possible to collect replicate
measurements or use prior information. Furthermore, our
approach does not require instrument specific calibration as
described in8. The corrections we introduce in this work extend
the applicability of the SFSC but also suggest a simpler path to
estimating the SSNR provided an estimate of the noise can be
obtained. We show that the same logic applies for any data
processing pipeline in cryo-EM that estimates the noise or
computes half maps (see Supplementary Note 5). If the noise
cannot be accurately estimated or is non-uniform, then the SFSC
should not be expected to work. While we estimate the noise with
ad hoc methods here, using more accurate approaches typically

employed in cryo-EM data processing pipelines could improve
the SFSC and associated Wiener filter.

Although the SFSC is not always applicable, there are many
situations that can benefit from having an estimate of the SSNR
from a single measurement. For example, in single particle cryo-
EM, there are a growing number of methods which generate 3-D
structures from manifold embeddings and do not produce inde-
pendent half maps with which to compute the standard FSC33–36.
Thus there is a need for alternative methods to estimate signal
and noise statistics. In principle, the SFSC could also be used to
circumvent splitting data into half sets during 3-D reconstruction.
This has the potential to lead to improved reconstructions due to
an increase in SSNR from using the full data set. One additional
application of the SFSC to single particle cryo-EM could be to
both denoise and estimate the resolution of 2-D class averages.

Other useful applications of the SFSC could include validation
of SSNR enhancement after modification by neural network
based approaches37. Similarly, the SFSC could provide an alter-
nate measurement of the SSNR for noise learning based
methods31,38,39. While the noise learning approaches give
impressive results for denoising tomograms (see Supplementary
Fig. S6), the benefit of the Wiener filter presented here is that it is
fast to compute, requires no parameter tuning, and does not
require extra storage (e.g., from reconstructing tomograms using
odd and even frames). Further analysis of the SFSC for use with

Fig. 3 Corrections required for the SFSC to accurately estimate the FSC. The image and corresponding power spectrum in each column were generated
with a specified SNR and a B-factor on both the signal and noise to exemplify each case. The FSC was computed for each case using two synthetic images
generated with the same parameters but independent noise. a Phase shift correction, SNR= 105, Bsignal= 150Å2, Bnoise= 0Å2. If the phase shift induced by
downsampling is not corrected, the 2-D SFSC reduces to J0, a scaled zeroth order Bessel function of the first kind (see Supplementary Note 4). b Correction
for the scaled variance, SNR= 15, Bsignal= 100Å2, Bnoise= 0Å2. Both assumptions on the signal and noise are met. The SFSC estimates the FSC according
to Eq. (12) after adjusting for the scaled variance. c Whitening transform, SNR= 15, Bsignal= 100Å2, Bnoise= 50Å2. After applying a whitening transform,
the SFSC estimates the FSC. d Upsampling, SNR= 10, Bsignal= 10Å2, Bnoise= 0Å2. If the signal does not have rapid decay but has been whitened, the SFSC
estimates the FSC only after upsampling. These correcting factors extend the applicability of the SFSC.
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cryo-ET could also account for the missing wedge as well as
directional and local resolution effects.

Methods
Main algorithm. The algorithm presented in this work consists of
3 main steps and 3 preprocessing steps, depending on the
properties of the measured signal. The main steps are parameter-
free and can be written succinctly as: (1) for each dimension, split
the measured signal into even and odd index terms along that
dimension, (2) for each pair of downsampled measurements,
compute the SFSC, and (3) average the SFSC from all pairs.

Data preprocessing. Prior to computing the main algorithm, the
user should first discern if Assumption 1 and Assumption 2 are
met. This can be checked by plotting the spherically averaged

power spectrum. If both assumptions are met, the power spectrum
at the latter half of spatial frequencies should appear approximately
constant. However, if the required assumptions are not met, the
preprocessing steps described in this work should be applied. These
steps can be applied regardless of the signal and noise properties as
long as an estimate of the noise variance can be obtained. The
preprocessing steps are: (1) estimate the the noise variance, (2)
whiten the measured signal, (3) upsample the whitened signal.

Estimating the noise variance. Several strategies exist to estimate
the noise variance from data. This estimate is required for com-
puting the SFSC if the noise is not white Gaussian. For the case of
estimating the noise variance from a half map of a 3-D recon-
struction in cryo-EM, we use an ad hoc approach by taking the
region outside a sphere encompassing the molecular structure.
For example, with EMD-24822, we use a spherical mask with

Fig. 4 Global resolution estimates from single maps. The SFSC is computed for each half map after applying the noise whitening and upsampling
procedure. The noise is estimated by computing the spherically averaged power spectrum from the region outside a sphere encompassing the structure.
The SFSC is approximately equal to the standard FSC for a EMD-24822 (grid points= 3603, voxel size= 1.05Å), b EMD-13234 (grid points= 3363, voxel
size= 1.7Å) and c EMD-27648 (grid points= 4163, voxel size= 0.83Å), but fails for d EMD-20278 (grid points= 2883, voxel size= 0.83Å) due to the
non-uniform noise which can be seen in the central slice images.
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radius= 115Å. The noise variance is then estimated by com-
puting the spherically averaged power spectrum of the noise
region. However, we note that deposited maps usually have
masking in either the volume or images which impact the noise
statistics, and so this approach does not always apply.

Denoising. To estimate the noise variance for a reconstructed 3-D
tomogram, we use a slice of the tomogram above the region of
interest. Although the noise slice does not reflect the true 3-D noise
profile, andmore accurate methods can be used, we show that it is a
suitable estimate for whitening based on the results of Wiener
filtering. When applying the Wiener filter, we find that an addi-
tional low-pass filter at the spatial frequency corresponding to the
1/7 threshold from the SFSC can subtly enhance the contrast.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data sets used in this work are available from the Electron Microscopy Data Bank40.
The entries used are EMD-11657, EMD-24822, EMD-13234, EMD-27648 and EMD-
20278 for molecular structures, EMD-4869 and EMD-15056 for reconstructed
tomograms, and EMPIAR-11058 for tilt series image.

Code availability
The source code used to produce the results and figures in this work is available at github.
com/EricVerbeke/self_fourier_shell_correlation, and is also deposited in Zenodo41. The
SFSC will be made available as a tool in the software package ASPIRE42.

Fig. 5 Denoising a reconstructed tomogram using the SFSC. a Slice of a reconstructed tomogram of C. elegans tissue from EMD-4869
(N × N= 928 × 928, pixel size= 13.7Å). b Region of interest from a subsection of the tomogram (N × N= 464 × 464). c Slice of the tomogram selected
vertically above the region of interest containing background noise. d Slice from the region of interest after applying a Wiener filter. e Conventional low-
pass filter of the subsection at 66Å; determined using the 1/7 threshold of the SFSC. Both the Wiener filtered and low-pass filtered images are displayed at
a threshold of ±2 standard deviations of the pixel values. f SFSC computed from the tomogram subsection. g Spherically averaged power spectrum of the
region of interest slice and the background noise slice. The Wiener filter computed from the SFSC provides significantly increased contrast compared to a
low-pass filtering approach.
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