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Multi-kingdom microbial signatures in excess body
weight colorectal cancer based on global
metagenomic analysis
Xinyue Zhu 1,6, Pingping Xu2,6, Ruixin Zhu 1,7✉, Wenxing Gao 1, Wenjing Yin1, Ping Lan 3,4,

Lixin Zhu 3,4,7✉ & Na Jiao 5,7✉

Excess body weight (EBW) increases the risk of colorectal cancer (CRC) and is linked to

lower colonoscopy compliance. Here, we extensively analyzed 981 metagenome samples

from multiple cohorts to pinpoint the specific microbial signatures and their potential cap-

ability distinguishing EBW patients with CRC. The gut microbiome displayed considerable

variations between EBW and lean CRC. We identify 44 and 37 distinct multi-kingdom

microbial species differentiating CRC and controls in EBW and lean populations, respectively.

Unique bacterial-fungal associations are also observed between EBW-CRC and lean-CRC.

Our analysis revealed specific microbial functions in EBW-CRC, including D-Arginine and

D-ornithine metabolism, and lipopolysaccharide biosynthesis. The best-performing classifier

for EBW-CRC, comprising 12 bacterial and three fungal species, achieved an AUROC of 0.90,

which was robustly validated across three independent cohorts (AUROC= 0.96, 0.94, and

0.80). Pathogenic microbial species, Anaerobutyricum hallii, Clostridioides difficile and Fuso-

bacterium nucleatum, are EBW-CRC specific signatures. This work unearths the specific multi-

kingdom microbial signatures for EBW-CRC and lean CRC, which may contribute to precision

diagnosis and treatment of CRC.
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Colorectal cancer (CRC) is the third most common malig-
nancy worldwide, accounting for 9.4% cancer-related
death1,2. Besides genetic factors, modern lifestyles, such

as the intake of a high-fat diet and lack of physical activity
contribute to the increasing incidence of CRC3–5. Epidemiological
data suggest a positive relationship between excess body weight
and CRC incidence, whose relative risk attributable to excess
body mass index (BMI) is 1.24 for men overall6, ranging between
1.04 and 1.27 across countries7. Moreover, obesity in early
adulthood is also strongly associated with an increased risk of
CRC7,8.

Lines of evidence support close associations between dysregu-
lated microbiota and the development of CRC, emphasizing the
roles of altered microbial composition, function and microbe-
derived metabolites9–12. In addition, gut microbiota is a critical
player in contributing to the onset and development of
obesity13–15. A common microbial etiology for CRC and obesity
could be mediated by chronic low-grade inflammation, a hall-
mark for both obesity and CRC16–18. Increased abundance of
Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis
could activate the nuclear factor kappa B pathway, thereby gen-
erating a pro-inflammatory environment conducive to colorectal
neoplasia progression19,20. Another shared link between obesity
and CRC is that high-fat diet increases the microbes-derived
lysophosphatidic acid, impairs gut barrier and drives colorectal
tumorigenesis12. However, characteristics of microbiome in
overweight or obesity-related CRC remain elusive.

Whereas numerous CRC screening programs have been
launched worldwide, compliance with colonoscopy, the current
gold standard for screening, is relatively lower in individuals with
excess weight than the normal-weight target population21.
Besides, the quality of bowel preparation in obese individuals is
found to be inferior to that in normal BMI controls22. Gut
microbiota has emerged as a promising, non-invasive, and easily
accessible biomarker for CRC23. Analyses that integrate char-
acteristics of multiple cohorts contribute to identifying universal
and robust microbial markers. Our studies, along with others,
have established several candidate panels of microbial biomarkers
to effectively distinguish patients with CRC, colorectal adenoma,
or other microbes-related diseases from controls based on 16 S
rRNA or whole metagenome sequencing data24–31. Notably,
besides bacteria, microbial multi-kingdom signatures including
fungi, archaea and viruses, have been associated with CRC28,32–35.
Furthermore, the combination of multi-kingdom microbial bio-
markers achieved higher capabilities in detecting patients with
CRC28,35. Nevertheless, it remains to be elucidated whether
microbial signatures with capability to discriminate overweight or
lean CRC patients.

Therefore, we performed a comprehensive multi-center study,
examining unique microbial signatures between excess body
weight CRC (EBW-CRC) and lean-related CRC (lean-CRC) with
981 samples from eight diverse cohorts spanning various geo-
graphical and cultural origins. The distinctive multi-kingdom
microbial signatures, interkingdom associations and functional
alterations were examined in both EBW-CRC and lean-CRC
patients. Based on these specific microbial signatures, we further
identified and validated two distinct microbial biomarker panels,
each exhibiting robust capability for distinguishing EBW-CRC
and lean-CRC, with three independent cohorts.

Result
Multi-cohort CRC metagenomic data and annotation of multi-
kingdom taxonomic and functional profiles. We collected
whole metagenomics data from 981 human fecal samples from
seven publicly available CRC cohorts and one in-house CRC

cohort, which included 209 samples from EBW-CRC, 179 sam-
ples from excess body weight controls (EBW-CTR), 276 samples
from lean-CRC patients and 317 samples from lean controls
(lean-CTR) (Table 1 and Supplementary Data 1). To minimize
heterogeneity, we reanalyzed the whole metagenomics data using
a uniform bioinformatics pipeline to obtain multi-kingdom
abundance profiles, covering bacterium, fungus, archaea, and
virus, as well as functional profiles individually for each cohort.
To better characterize universal and robust gut microbial sig-
natures for EBW-CRC and lean-CRC, samples from Austria,
China, France, Germany, and Italy with broad geographical and
cultural backgrounds were selected as discovery datasets for
constructing diagnostic models, while the remaining cohorts were
used for model validation, including two China cohorts,
Chongqing and Shanghai (in-house data), and USA cohort.

Comprehensive characterization of taxonomic and functional
signatures in EBW-CRC and lean-CRC
Taxonomic alteration patterns. Though alpha diversities were
similar between EBW-CRC and EBW-CTR, significantly
decreased alpha diversities were observed in lean-CRC, compared
with lean-CTR (P < 0.05, Fig. 1a). Notably, we found that alpha
diversities of EBW-CRC group were higher than that of lean-CRC
group (P < 0.05, Fig. 1a). Beta diversity also varied significantly
between EBW-CRC and lean-CRC (PERMANOVA, P= 0.014,
R2 = 0.0071, Fig. 1b). Furthermore, the microbial compositional
distribution was significantly distinct between CRC patients and
controls in both EBW (PERMANOVA, P= 0.001, R2 = 0.024)
and lean populations (PERMANOVA, P= 0.001, R2 = 0.018).

Consistent with our previous studies, heterogeneous microbial
alternations were observed among geographically distinct cohorts
(Fig. 1 and Supplementary Fig. 1). To identify essential
differential species across cohorts, integrated analyses with
MMUPHin, which considered the bias caused by potential
confounders, were performed and identified a total of 44 multi-
kingdom species with differential abundance between EBW-CRC
and EBW-CTR. Among these, 22 out of 40 differential bacterial
species were enriched in CRC, such as Akkermansia muciniphila,
Alistipes indistinctus, Anaerotruncus colihominis, B. fragilis, while
the other 18 species, including Adlercreutzia equolifaciens,
Bifidobacterium adolescentis and Butyrivibrio fibrisolvens, were
decreased in CRC (Fig. 1c and Supplementary Data 2) A majority
of differential bacterial signatures were members from phylum
Firmicutes. Meanwhile, three fungal species, namely Aspergillus
rambellii, Metarhizium acridum and Stemphylium lycopersici,
showed increased abundance in CRC, while only Colletotrichum
orbiculare, displayed a decrease (Supplementary Fig. 1a and
Supplementary Data 2). All these differentially abundant fungi
were members of the phylum Ascomycota.

Similarly, integrated-analyses determined 37 differential micro-
bial species across all four kingdoms between lean-CRC and lean-
CTR. Among these differential bacterial species, decreased
abundances in CRC were observed for 13 species, including
Pseudobutyrivibrio xylanivorans, Blautia liquoris and Bifidobac-
terium breve, while 15 bacterial species, including B. fragilis,
Gemella morbillorum and Parvimonas micra, exhibited increased
abundances in CRC (Fig. 1d and Supplementary Data 3). For
differential fungal species, the abundances of six out of eight
species, such as A. rambellii and Erysiphe pulchra, were increased
in CRC (Supplementary Fig. 1b and Supplementary Data 3). Only
two differential fungal species including C. orbiculare and
Rhizophagus clarus decreased in lean-CRC. Additionally, only
one differential viral species, crAssphage cr4_1, was identified as
differing between lean-CRC and lean-CTR (Supplementary
Data 3).
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Comparing the differential taxonomic signatures in the lean
group with those in the EBW group, 15 differential species were
common for both groups (Fig. 1e and Supplementary Data 4),
accounting for 22.73% of total differential species. This sets
includes the previously reported CRC diagnostic
biomarkers24,36,37, such as P. micra, Porphyromonas asacchar-
olytica, Prevotella intermedia and F. nucleatum as well as
pathogenetic species38–40 B. fragilis and G. morbillorum.
Besides, A. rambellii was CRC-associated fungal species
enriched in both EBW and lean individuals35. Importantly, we
observed a large proportion of differential signatures being
specific for EBW (29, 43.94%, Supplementary Data 5) or lean
individuals (22, 33.33%, Supplementary Data 6). In EBW-CRC
populations, Coprococcus comes and Clostridioides difficile were
decreased, while Parabacteroides distasonis and Flavonifractor
plautii were increased, and such pattern was not observed in
lean-CRC populations. Contrarily, in lean-CRC but not in
EBW-CRC patients, Dialister pneumosintes and Streptococcus
oralis were increased, while Faecalibacterium prausnitzii and
Streptococcus salivarius were decreased. It’s noteworthy that F.
prausnitzii in collaboraion with Carnobacterium maltaromati-
cum, helps to convert 7-dehydrocholesterol into vitamin D,
ultimately activating the host vitamin D receptor (VDR) to
suppress CRC41.

Microbial ecological alterations. To characterize the microbial
ecological patterns in different populations, we next examined the
co-abundance associations among multi-kingdom differential
species in both EBW and lean individuals. Complex patterns of
associations among differential species were observed in both
EBW-CRC group (44 species and 429 associations, Supplemen-
tary Fig. 2a and Supplementary Data 7) and EBW-CTR group
(44 species and 512 associations, Supplementary Fig. 2b and
Supplementary Data 8). Meanwhile, there were 204 co-abundance
associations among 37 species in the lean-CRC group (Supple-
mentary Fig. 2c and Supplementary Data 9), with a sparser pat-
tern than that of the EBW-CRC group. The lean-CTR group also
exhibited considerably fewer associations featuring 232 associa-
tions among 36 species (Supplementary Fig. 2d and Supple-
mentary Data 10). Analysis of interkingdom associations revealed
a remarkable increase of positive association numbers in EBW-
CRC compared with lean-CRC (Chi-square test, P= 4.45 × 10-
12). Moreover, among these associations, the EBW-CRC exhibited
a unique symbiotic relationship not observed in lean-CRC,
characterized by exclusive positive interactions between fungal
species A. rambellii and bacterial species, including B. fragilis,
Fusobacterium gonidiaformans, F. nucleatum, and G. morbil-
lorum. However, in lean individuals, A. rambellii only showed a
negative correlation with various Faecalibacterium species

Table 1 Demographic information across all cohorts.

Cohort EBW (excess body weight)a lean (normal body weight)b Data source

CRC CTR CRC CTR

N= 209 N= 179 N= 276 N= 317

Discovery Cohorts AUS Number 30 42 16 21 Feng et al.46.
Agec 67.17 ± 10.61 68.12 ± 5.66 66.88 ± 11.82 64.95 ± 7.29
BMIc 28.61 ± 1.99 30.06 ± 1.55 22.56 ± 2.05 22.6 ± 0.56
Genderd 9/21 15/27 9/7 11/10

CHI Number 25 10 48 44 Yu et al.36.
Agec 65.44 ± 9.89 60.4 ± 5.87 66.4 ± 11.14 62.07 ± 5.64
BMIc 27.36 ± 1.70 28.07 ± 3.20 22.23 ± 2.15 22.42 ± 1.61
Genderd 13/12 4/6 13/35 17/27

FRA Number 54 32 35 32 Zeller et al.59.
Agec 67.22 ± 9.8 62.41 ± 7.76 66.42 ± 12.25 58.87 ± 14.24
BMIc 29.02 ± 4.47 27.14 ± 2.42 21.76 ± 2.46 22.32 ± 1.63
Genderd 10/17 14/15 13/11 18/12

GER Number 12 27 10 33 Wirbel et al.25.
Agec 62.38 ± 11.88 56.03 ± 11.89 65.43 ± 14.02 55.91 ± 12.54
BMIc 28.44 ± 2.64 27.59 ± 2.34 22 ± 2.38 22.61 ± 1.75
Genderd 14/25 11/19 10/11 17/18

ITA Number 14 12 14 10 Thomas et al.26.
Agec 69.21 ± 7.72 69 ± 7.1 73.43 ± 8.71 66.4 ± 6.75
BMIc 28.79 ± 3.66 27.58 ± 3.00 22.64 ± 1.39 22.6 ± 1.65
Genderd 2/12 5/7 4/10 4/6

Validation Cohorts CHI_CQ Number 28 18 70 77 Yang et al.60.
Agec 57.29 ± 11.41 45.06 ± 11.2 54.17 ± 10.79 42.43 ± 10.37
BMIc 27.02 ± 1.44 25.86 ± 0.88 21.99 ± 1.86 22.41 ± 1.37
Genderd 8/20 9/9 22/48 37/40

CHI_SH Number 24 18 56 68 Liu et al.28.
Agec 58.5 ± 8.37 60.17 ± 7.49 58.48 ± 10.71 58.18 ± 8.77
BMIc 27.45 ± 1.84 27.29 ± 1.96 22.05 ± 2.07 21.89 ± 1.96
Genderd 10/14 7/11 22/34 27/41

USA Number 22 20 27 32 Vogtmann et al.61.
Agec 61.5±8.14 61.6±10.03 60.52±16.69 61±11.76
BMIc 28.57±3.17 29.6±3.59 21.89±2.09 22.68±1.80
Genderd 7/15 7/13 6/21 8/24

aSubjects are overweight (BMI �25 kg/m2) or obese (BMI �30 kg/m2);
bSubjects with normal BMI (BMI < 25 kg/m2);
cMean ± sd;
dFemale/Male.
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(F. prausnitzii, F. sp. I3389, F. sp. I3333, F. sp. I4179, F. sp. I4384)
in CRC. Another outstanding observation was that, the positive
association between A. rambellii and F. nucleatum was only
observed in EBW-CRC rather than in lean-CRC.

We subsequently focused on the strong associations ( | correla-
tion coefficient | > 0.3). Surprisingly, in the EBW groups, the
amount of strong microbial associations in CRC (44 species and
218 associations, Fig. 2a) was much sparser than that in controls
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Fig. 1 Diversities of fecal microbiota, differential bacterial species and venn diagram of all differential species. a Boxplot of alpha diversities measured
by Shannon index of lean-CRC, EBW-CRC, lean-CTR and EBW-CTR groups. (n= 123, 135, 140 and 123 for lean-CRC, EBW-CRC, lean-CTR and EBW-CTR,
respectively). Statistical differences were evaluated by Wilcoxon rank sum test. b Beta diversities of the discovery cohorts were assessed by principal
coordinate analysis (PCoA) based on Bray-Curtis dissimilarity. P values and R-square values of beta diversity based on Bray–Curtis distance were
calculated with PERMANOVA by 999 permutations (two-sided test). c, d Phylogenetic tree of the differential bacterial species in EBW-CRC (c, 60 species)
and lean-CRC (d, 50 species). The outer circles are marked as significantly differential species (FDR-corrected P < 0.05) in each cohort and in the meta-
analysis (meta-ring) with red for increased abundance and blue for decreased abundance. e Venn diagram of all differential species in EBW- and lean-CRC
identified from the meta-analysis of the discovery cohorts.
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(43 species and 349 associations, Fig. 2b). Furthermore, in the
CRC co-abundance network, most associations were positive,
with much fewer being negative associations (34.86%, 76
associations) compared to that in the controls (CTR) network
(44.99%, 157 associations), suggesting more competitive pressure
in CRC community. Some of the strong co-abundance associa-
tions, such as those between S. lycopersici and Faecalibacterium
sp. HTFF, between M. acridum and B. fragilis, and between M.
acridum and C. difficile, appeared in CRC but not in CTR.
Similarly, some strong associations in the CTR network were
missing in CRC network, such as the associations between
Bacteroides nordii and P. intermedia, between Anaerobutyricum
hallii and B. nordii, and between C. orbiculare and F. plautii. In
lean groups, 95 strong associations were identified among
35 species in CRC (Fig. 2c), which is also sparser than that in
control groups (30 species and 128 associations, Fig. 2d).

These co-abundance networks clearly showed that EBW-CRC
community was more complex than lean-CRC community.
Furthermore, the EBW-CRC network displayed a reduced
proportion of positive correlations compared to the lean-CRC
network (Chi-square test, P < 2.2 × 10-16), and the EBW-CRC
network also exhibited fewer interkingdom associations than the
lean-CRC network. Nevertheless, multiple positive interkingdom

associations were exclusively observed in the EBW-CRC network,
including associations between M. acridum and B. fragilis,
Bacteroides sp. ZJ-18. In contrast, the lean-CRC network also
had unique interkingdom associations, including fungal species E.
pulchra, Pyrenophora tritici-repentis and R. clarus. Key species
varied in different microbial communities, with key species A.
hallii, Clostridium sp. SY8519, B. fibrisolvens, C. difficile and
Novisyntrophococcus fermenticellae in the EBW-CRC community,
and key species P. xylanivorans, F. sp. I3389, Roseburia
intestinalis, F. sp. I4179 and E. pulchra in the lean-CRC
community.

Differential microbial functions between EBW-CRC and lean-
CRC. Differential analysis at the gene level identified 61 differ-
ential KEGG orthology (KO) genes between EBW-CRC and
EBW-CTR groups, with 15 KO genes being decreased and 46 KO
genes being elevated in patients with CRC (Fig. 3a and Supple-
mentary Data 11). On the other hand, 30 KO genes with reduced
abundances and 15 KO genes with increased abundances were
identified in lean-CRC in comparison to lean-CTR (Fig. 3a and
Supplementary Data 12). The differential KO genes were con-
siderably distinct between EBW-CRC and lean-CRC, with only
one common differential KO gene, NDUFA8(K03952) (Fig. 3b
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and Supplementary Data 13). While KO genes involved in
metabolism, cysA (K02045) and gctB (K01040), were EBW-CRC
specific differential genes (Supplementary Data 14), differential
genes gudB (K00260) and metH (K00548) were specific for the
lean group (Supplementary Data 15).

At the pathway level, 47 differential pathways were identified in
the EBW group with 24 increased pathways, such as toluene
degradation, tyrosine metabolism and phenazine biosynthesis,
and 23 decreased pathways, including valine, leucine and
isoleucine biosynthesis, starch and sucrose metabolism (Fig. 3c
and Supplementary Data 16). Conversely, in the lean group, 35
differential pathways were identified consisting of 17 increased
pathways, like synthesis and degradation of ketone bodies,
inositol phosphate metabolism, and 18 decreased pathways, such
as starch and sucrose metabolism, and cyanoamino acid
metabolism (Fig. 3c and Supplementary Data 17). Notably, both
butanoate metabolism and lipoic acid metabolism showed
increased relative abundances in CRC compared to controls for
EBW and lean groups. This observation aligns with findings from
our previous study28, suggesting these alterations may be essential
to CRC. Conversely, our prior study indicated enhanced
metabolic potentials of D-Arginine and D-ornithine metabolism
in patients with CRC28, while here we found that this pathway
was specifically elevated in EBW-CRC. Besides, pathways related
to xenobiotics biodegradation and metabolism, such as toluene,
polycyclic aromatic hydrocarbon and styrene degradation, were
uniquely elevated in the EBW group, while valine, leucine and
isoleucine biosynthesis specifically decreased in the EBW group.
Meanwhile, inositol phosphate metabolism, and synthesis and
degradation of ketone bodies were differential pathways specific
for lean-CRC. Collectively, our results underscore distinct
microbial functional features between excess body weight and
lean CRC patients.

Identification and validation of multi-kingdom microbial sig-
natures for CRC. Given the distinct microbial signatures
observed at both taxonomic and functional levels in EBW-CRC
and lean-CRC, there is potential for microbial signatures to serve
as precise indicators for detecting EBW-CRC and lean-CRC. To
this end, we determined multidimensional signatures and asses-
sed the classification efficacy via xMarkerFinder.

Identification of EBW-CRC associated microbial signatures.
Firstly, we identified single kingdom taxonomic signatures for
excess body weight individuals, and found that bacterial sig-
natures outperformed signatures of other kingdoms. The classifier
based on 13 bacterial species achieved an average area under
receiver operating characteristic curve (AUROC) of 0.88 (95%
confidence interval (CI), 0.86-0.94) for detecting patients with
CRC (Supplementary Fig. 3a), and the average AUROC of fungal
classification classifier was 0.76 (95% CI, 0.67-0.82; Supplemen-
tary Fig. 3b). However, the predictive capability of archaeal and
viral species was limited, with no species from these kingdoms
satisfying the criteria for effective features.

Subsequently, we combined multi-kingdom features in expect
for superior distinguishing capability. Owing to the relatively low
distinguishing capability, the viral and archaeal species were
removed during the differential feature selection. Therefore, the
optimal multi-kingdom classifier achieving an average AUROC of
0.90 (95% CI, 0.88–0.96) was constructed with bacterial and
fungal species (Fig. 4a), slightly superior to the bacterial classifier.
Nevertheless, the signature importance analysis underlined three
fungal species, A. rambellii, M. acridum and C. orbiculare, that
ranked 9th, 11thand 14th for diagnosing EBW-CRC. Note that
most of bacterial signatures, such as F. nucleatum,

Porphyromonas ascaccharolytica, G. morbillorum and C. difficile
have been reported as important biomarkers for CRC24,28,42.

In addition, we assessed the detecting capability of functional
models based on differential KO genes. The best performing
functional model was constructed with 33 KO signatures,
achieving an average AUROC of 0.86 (95% CI, 0.85-0.95;
Supplementary Fig. 3c), which is inferior to the performance of
the optimal multi-kingdom species model.

Evaluation of the robustness and disease specificity of EBW-CRC
signatures. To evaluate the generalization and robustness of the
best multi-kingdom signatures for EBW-CRC, we performed
cohort-to-cohort and leave-one-cohort-out (LOCO) validation27.
The AUROC ranged from 0.62 to 0.96 with an average of 0.81 in
cohort-to-cohort validation, and further improved in LOCO
validation, ranging from 0.82 to 0.89 with an average of 0.87
(Fig. 4b). Further, the robustness of signatures was validated by
three independent cohorts, with AUROC of 0.96 (95% CI, 0.84-
0.99), 0.94 (95% CI, 0.67–0.99) and 0.80 (95% CI, 0.42–0.95) for
CHI_CQ, CHI_SH and USA cohort, respectively (Fig. 4c).

These years have seen the distinctive capability of microbial
signatures for varieties of diseases27,28,43,44, thus, it is indis-
pensable to further appraise the disease specificity of the EBW-
CRC signatures with cohorts affected by other microbiome
related diseases and even lean-CRC. To this end, we tested the
signatures’ disease specificity with cohorts of inflammatory bowel
disease (IBD), liver cirrhosis (LC), and lean-CRC (Details were
described in the method). The AUROC decreased by 1.37%,
0.72%, and 5.27% when adding the diseased samples from the
IBD cohort to the control group of each external EBW-CRC
validation cohort compared to adding healthy controls samples of
IBD cohort (Supplementary Fig. 4). Such variations of AUROC
values were slight without significance, considering the baseline of
altered AUROC when adding EBW-CRC samples or control
samples to the external validation cohorts, which dramatically
decreased by 11.65%, 8.39%, and 19.69%, respectively (Supple-
mentary Fig. 4). Similar results were observed when tested with
the LC cohort (decreased by 1.68%, 2.57%, and 4.99%,
respectively, Supplementary Fig. 4) and lean-CRC individuals
with AUROC decreasing by 0.81% and 0.37% and increasing by
2.20% (Supplementary Fig. 4). Taken together, these results
demonstrated the disease specificity of the identified microbial
signatures for EBW-CRC.

Identification and validation of lean-CRC associated microbial
signatures. Similarly, we identified microbial signatures for lean-
CRC. Among the single-kingdom classification models, the bac-
terial model (AUROC= 0.87; 95% CI, 0.85–0.94; Supplementary
Fig. 5a) outperformed the fungal model (AUROC= 0.74; 95% CI,
0.67–0.84, Supplementary Fig. 5b) in classifying lean-CRC. For
the viral kingdom, only one species from the kingdom passed the
feature selection process, and displayed poor predictive power for
lean-CRC with the same AUROC of 0.56 (95% CI, 0.45–0.62;
Supplementary Fig. 5c).

We then tested the efficacy of the classifier constructed with the
combination of multi-kingdom signatures (Supplementary
Data 18). The classifier based on bacteria-fungi signatures achieved
the highest AUROC of 0.90 (95% CI, 0.89–0.96; Fig. 4a). Included
in this classifier were 12 bacterial- and 4 fungal- species. This
classifier was validated for generalization in cohort-to-cohort
validation achieving an average AUROC of 0.77 and in LOCO
validation achieving an average AUROC of 0.85 (Fig. 4d).
Furthermore, the robustness of the classifier was evaluated with
three additional cohorts achieving average AUROCs of 0.74 (95%
CI, 0.70–0.90), 0.89 (95% CI, 0.86–0.98) and 0.81(95% CI,
0.70–0.99) for cohorts CHI_CQ, CHI_SH and USA, respectively
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(Fig. 4e. Consistent with EBW-CRC, the performance of functional
KO gene classifier (AUROC= 0.83; 95% CI, 0.82–0.92; Supple-
mentary Fig. 5d) was not comparable to that of the optimal multi-
kingdom classifier in distinguishing lean-CRC.

Next, similar to the signatures for EBW-CRC, the disease
specificity of signatures for lean-CRC was validated. The average
change of AUROC is 2.06% in IBD cohort, -1.63% in LC cohort

and -2.25% in EBW-CRC cohort, which is slight variation since the
baseline values of altered AUROC was around -10.20% on average
(Supplementary Fig. 6). These data demonstrated the disease
specificity of the identified microbial signatures for lean-CRC.

Characteristics of the signatures for EBW-CRC and lean-CRC. We
investigated the signatures distribution in both EBW-CRC and
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lean-CRC models, and found substantial variations between the
two classifiers, with only four common signatures including P.
asaccharolytica, G. morbillorum, A. rambellii and P. intermedia
(Fig. 4f). All these signatures displayed increased abundance in
both EBW-CRC and lean-CRC. Among these, P. asaccharolytica
ranked 2/15 and 6/16 among the signatures for EBW-CRC and
lean-CRC, respectively. G. morbillorum has been reported as a
signature for CRC patients in previous studies25,26,28,45 and
shown similar capability for both EBW-CRC (ranking as 5th) and
lean-CRC (ranking as 5th), respectively (Fig. 4f). In addition, the
other top bacterial signatures in excess body weight population,
specifically, included the widely-reported F. nucleatum and C.
difficile, as well as short-chain fatty acid-producing bacteria A.
hallii and butyrate-producing bacteria B. fibrisolvens. Meanwhile,
the most important signatures specific for lean-CRC included F.
sp. I3389, E. pulchra and Porphyromonas somerae. These results
highlight the importance of identifying EBW- and lean-specific
microbial signatures.

Predictable capability of signatures for early-onset CRC. Further-
more, considering the steadily rising incidence of early-onset
CRC (diagnoses before the age of 50), we explored the potential of
our signatures for detecting early-onset CRC using available
samples in the discovery cohort. The five-fold cross-validation
model achieved an average AUROC of 0.93 for both EBW-CRC
(Supplementary Fig. 7a) and lean-CRC (Supplementary Fig. 7b).

Taxonomic and functional association characteristics. To
understand the functional relevance of the microbial alterations
for EBW and lean patients with CRC, we analyzed the asso-
ciations between the differential microbiota and the differential
pathways within each group. Numerous associations were
identified, displaying distinct association patterns between the
EBW and the lean populations (Supplementary Data 19 and
Supplementary Data 20). For excess body weight patients, sev-
eral differential pathways, such as lipoic acid metabolism, fur-
fural degradation, D-Arginine and D-ornithine metabolism and
butanoate metabolism, were positively associated with majority
of signatures (Fig. 5a). Furthermore, P. intermedia were nega-
tively associated with a few differential pathways including
xylene degradation in lean group but were positively associated
with several differential pathways including butanoate meta-
bolism, furfural degradation, lipoic acid metabolism and pro-
digiosin biosynthesis in EBW group (Fig. 5). And many
signatures for lean patients were associated with differential
pathways including biosynthesis of 12-, 14- and 16-membered
macrolides, mucin type O-Glycan biosynthesis, glycosami-
noglycan degradation, xylene degradation, butanoate metabo-
lism and lipoic acid metabolism. And some important
signatures, P. somerae, Lachnospira eligens, F. sp. I3389, were
associated with many important differential pathways in lean
patients (Fig. 5b).

Discussion
Considering the increased risk of CRC associated with excessive
body weight8, we characterized the gut microbiota of the
overweight-obesity and lean patients with CRC, using metage-
nomic sequencing data generated from multiple cohorts of var-
ious geographical and cultural backgrounds. Distinct microbial
taxonomic and functional alterations in EBW and lean patients
with CRC were observed. Notably, specific optimal panels of
multi-kingdom microbial signatures were identified for EBW-
CRC and lean-CRC with AUROC values of 0.90 and 0.90,
respectively. The robustness and disease specificity of these sig-
natures were validated with three independent cohorts. Given the
challenges in the detection of CRC with excess body weight
population21,22, and the non-invasive nature of microbial sig-
natures, the highly sensitive and specific microbial signatures we
identified are promising to serve as adjunctive tools for CRC
diagnosis, especially for EBW-CRC.

CRC is associated with altered microbial composition9,36,46.
On top of this, increased body weight and obesity, known for
considerable impact on the gut microbiota, are associated with
higher risks of CRC8,47. Thus, it is of particular importance to
investigate the microbial features of excess body weight patients
with CRC, in comparison with that in lean patients with CRC.
Abundant differences in the microbial composition between
EBW-CRC and lean-CRC were observed, which was reflected by
the EBW-CRC specific increase in alpha diversity. We made
several outstanding observations among these differences. Firstly,
while enriched abundances of P. micra, P. asaccharolytica, B.
fragilis, G. morbillorum, A. rambellii, and F. nucleatum were
common for both EBW-CRC and lean-CRC, in consistence with
previous findings with general CRC populations25,26,28, our
results demonstrated EBW-CRC specific abundance changes in C.
comes, P. distasonis, C. difficile and F. plautii. Among these, C.
difficile could drive tumorigenesis of CRC by secreting toxin
TcdB42. It is interesting to note that previous study has reported
an association between the abundance of C. difficile and obesity48,
suggesting that C. difficilemay mediate a link between obesity and
elevated CRC incidence. Secondly, we observed that F. prausnit-
zii, previously reported to be depleted in CRC24,26,49, was speci-
fically decreased in lean-CRC. It has been reported that F.
prausnitzii played a crucial role in suppressing CRC via con-
verting 7-dehydrocholesterol into vitamin D and subsequently
activating the host VDR41. Our results suggest that this
mechanism may only apply to the lean population of CRC.
Thirdly, we noticed that, P. distasonis, considered a protective
species attenuating colon tumor formation via blocking toll-like
receptor 4 signaling pathway and Akt activation in HFD-induced
CRC mice, and exhibiting decreased abundance in the CRC
mice12, was specifically elevated in EBW-CRC but not in lean-
CRC, indicating a possible difference between the gut microbiota
of mice and human.

Importantly, large amount of differences were observed in the
inter-kingdom interactions between the EBW-CRC and the lean-

Fig. 4 Diagnostic models constructed with multi-kingdom microbial signatures for EBW-CRC and lean-CRC: performance, validation, and feature
importance. a Receiver operating characteristic (ROC) curves of five-fold-cross-validations on diagnostic models for EBW-CRC and lean-CRC with the
discovery cohorts. b, d The AUROC matrix of internal cross-validations including cohort-to-cohort validation and LOCO validation on microbial signatures
for distinguishing EBW-CRC from EBW-CTR b and distinguishing lean-CRC from lean-CTR d. The values in the cohort matrix refer to AUROC obtained by
training the model on the cohort of corresponding row and applying it to the cohort of corresponding column. The values in LOCO row refers to AUROC
obtained by training model on all but the cohort of the corresponding column and applying it to the cohort of corresponding column. c, e The AUROCs of
five-fold-cross-validation on identified signatures for EBW-CRC c and lean-CRC e patients with three external validation cohorts. f Feature importance of
the microbial markers for EBW and lean. The first column plots the kingdom information of the microbial markers, followed by two columns of color-coded
information on the alteration of the abundances of signatures in EBW-CRC and lean-CRC, respectively. The last two columns list the rank of importance for
EBW-CRC and lean-CRC signatures, respectively.
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CRC. Notably, the association of A. rambellii and F. nucleatum
may be one factor contributing to CRC pathogenesis35. We found
that this association was only observed in EBW-CRC but not in
lean-CRC, suggesting a potential mechanism that may contribute
to the differential pathogenesis between EBW-CRC and lean-
CRC.

Out of these differential multi-kingdom species, we identified
optimal panels of signatures for distinguishing EBW-CRC and
lean-CRC from controls, respectively. These two panels were
robustly validated in cohort-to-cohort and LOCO validations
with three independent cohorts, and displayed satisfactory disease
specificity with cohorts of other microbiota-related diseases. It is
noteworthy that, some previously reported CRC biomarkers, such
as F. nucleatum, C. difficile, as well as short-chain fatty acid-

producing bacteria A. hallii and butyrate-producing bacteria
B. fibrisolvens, were identified as EBW-CRC specific signatures in
our study, while L. eligens, B. breve and E. pulchra, were identified
as specific to lean-CRC28,35,36,42,50. Particularly, L. eligens, a
butanoate-producing probiotic, was capable of suppressing
inflammation and preventing colitis and CRC51. Similarly,
butyrate producer B. fibrisolvens, when paired with a high-fiber
diet, also has demonstrated anti-CRC effects52. In addition, we
identified additional lean-CRC specific signatures including D.
pneumosintes, and S. oralis. The oral pathogen D.pneumosintes
has been reported to be increased in advanced CRC53,54, while S.
oralis is an oral peroxigenic bacteria. Enriched abundance of these
two pathogens may contribute to cancer development. On the
other hand, it is noteworthy that B. breve, an anti-tumor
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species50, was a lean-CRC specific signature exhibiting decreased
abundance in lean-CRC. Besides these specific microbial sig-
natures, we also identified common microbial signature for both
EBW-CRC and lean-CRC, including P. asaccharolytica, P. inter-
media, G. morbillorum, and A. rambellii, whose diagnostic values
for CRC have been highlighted previously27,28,55. With stratified
patient populations, we demonstrated that these species are reli-
able universal markers for both EBW- and lean-CRC.

The functional analysis strengthens the discrepancy in gut
microbiome between EBW- and lean-CRC. As with the compo-
sitional analysis, unique microbial functions were identified in
EBW-CRC and lean-CRC. On one side, increased metabolic
potentials of D-Arginine and D-ornithine metabolism was spe-
cifically elevated in EBW-CRC. While previous studies suggested
that these functional alterations are common features for CRC in
general28, our closer examination pinpointed this pathway to be
specific for EBW-CRC. On the other hand, pathways, inositol
phosphate metabolism, synthesis, and degradation of ketone
bodies were specifically enriched in lean patients with CRC. In
addition, while our data consistently showed an increased
abundance of butanoate metabolism in both EBW-CRC and lean-
CRC compared to their respective controls, the exact mechanism
and potential causation, given the discrepant effects of butyrate
on tumourigenesis9,56–58, requires further exploration.

In conclusion, this comprehensive study unearthed unique
characteristics of microbial compositions and functions in excess
body weight and lean patients with CRC. To address the limitation
of the lack of prospective cohorts, we conducted multidimensional
validations to confirm the robustness, universality, and disease
specificity of the identified microbial signatures. However, due to
the unavailability of data related to dietary and lifestyle, as well as
variable criteria for excess-weight in different regions, further
investigations should take these aspects into account. Despite
these limitations, this study has successfully identified specific
multi-kingdom microbial signatures for both excess body weight
and lean CRC individuals, underscoring their potential as accu-
rate, non-invasive adjunctive tools for CRC screening, particularly
in excess-weight populations. Additionally, there is an urgent need
for relevant authorities and organizations to implement strategies
to enhance public engagement in CRC screening.

Materials and methods
In-house data generation and public data collection. We
included one in-house fecal shotgun metagenomic data in the
study. CHI_SH cohort, collected in Shanghai, China, consisting
80 CRC patients and 86 healthy controls with similar ages. Fecal
sampling was conducted when patients were initially diagnosed
with no reception of any treatment. Written informed consent
were obtained from all subjects before biospecimen collection.
This metagenomic data was described and published in our
previous study28.

We also collected publicly available fecal shotgun metagenomic
data of human CRC patients and healthy controls. Raw
sequencing data of seven cohorts from five countries were
downloaded from the Sequence Read Archive using the following
identifiers: ERP008729 for Feng et al.46, PRJEB10878 for Yu
et al.36, ERP005534 for Zeller, G. et al.59, PRJEB27928 for Wirbel
et al.25, SRP136711 for Thomas et al.26, PRJNA429097 for Yang
et al.60, and PRJEB12449 for Vogtmann et al.61. We manually
curated metadata from relevant original publications. Individuals
were stratified according to their BMI. The excess body weight
group include subjects who are overweight (BMI≥ 25 kg/m2) or
obese (BMI≥ 30 kg/m2), and lean groups includes subjects with
normal body weight (BMI < 25 kg/m2) according to the criteria of
World Health Organization16.

Since this study aims to pinpoint robust and universal EBW-
specific microbial signatures across global cohorts, based on the
available data, we selected samples from Austria, China, France,
Germany, and Italy, diverse in geography and culture, as our
discovery/training datasets. All other samples served as validation
sets. Notably, from the three Chinese datasets, samples from
HongKong (PRJEB10878) were randomly chosen for discovery.
The USA dataset, with specimens freeze-archived for over 25
years before metagenomic sequencing25,61, was specifically used
for validation to mitigate potential biases in microbial markers
identification. Besides, two cohorts of samples with gut micro-
biota related diseases including liver cirrhosis (LC) and
Inflammatory bowel disease (IBD) under accession number
PRJEB633762 and PRJNA39808963, respectively, were included to
evaluate the specificity of signatures for EBW- and lean- CRC
patients, respectively.

Metagenome data preprocessing and annotation. Firstly, we
used KneadData v.0.6 to remove low-quality reads and con-
taminant reads which included host-associated and laboratory-
associated sequences by bowtie2 v.2.3.5. Thereafter, Kraken2 was
utilized to perform metagenomic taxonomy classification against
our customized reference database. The customized database
comprises 32,875 bacterial, 489 archaeal, 11,694 viral reference
genomes from the National Center for Biotechnology Informa-
tion Refseq database (accessed on August 2022), and 1,256 fungal
reference genomes from the National Center for Biotechnology
Information Refseq database, FungiDB (http://fungidb.org) and
Ensembl (http://fungi.ensembl.org) (accessed on August 2022). It
was built using the Jellyfish program by counting distinct 31-mer
in the reference libraries, with each k-mer in a read mapped to the
lowest common ancestor of all reference genomes with exact
k-mer matches. And taxonomic abundance was accurately
counted by Bracken v.2.5.0. For taxonomic profiles, the absolute
abundances obtained above were transformed into relative
abundances. Next, function profiles were generated28, mainly
including reads assembling into contigs via Megahit v.1.2.9, genes
prediction by Prodigal v.2.6.3, non-redundant microbial gene set
construction by CD-HIT. EggNOG mapper v.2.0.1 was used to
annotate genes and gene abundance was estimated with CoverM
v.4.0 by calculating the coverage of genes in the original contigs.
The relative abundances of KEGG KO groups or pathways were
calculated by summing the relative abundances of corresponding
genes based on annotation results.

Identification of differential microbial signatures across
cohorts. Considering that the heterogeneity among cohorts exerts
considerable impact on microbial profiles, we used
xMarkerFinder64, an integrated platform to conduct the following
analyses: differential signature identification, model construction,
model validation, and signatures interpretation. The detailed
procedures are described below.

Identification of microbial differential signatures. Due to sparsity
of microbial abundance matrix, microbial compositional profiles
were filtered with the following criteria: (1) Microbial species that
did not exceed a maximum average relative abundance of 0.001%
in at least two of the studies were excluded; (2) Microbial species
with mean relative abundance below 0.01% were excluded; (3)
Microbial species with prevalence below 20% were excluded.
Next, differential microbes between CRC and CTR were identi-
fied by R package MMUPHin v.1.4.2 with P < 0.05 and FDR-
corrected P < 0.1.
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Similar preprocessing was performed against microbial KO
genes profile and genes with P < 0.05 and FDR-corrected P < 0.1
identified by MMUPHin v.1.4.2.

Additionally, batch effect was eliminated during differential
analysis by designating the cohort as main batch effect according
to the PERMANOVA results, with demographic characteristics,
including gender, age, and BMI, selected as covariates if P < 0.05
in the PERMANOVA analysis.

Candidate signature selection for classifier. Based on differential
signatures described above, an integrated signature selection
analysis in xMarkerFinder64 were performed to determine
potential signature to distinguish overweight-obesity or lean
CRC. This process consists of three-step feature selection pro-
cedure in turn, namely effective feature selection, collinear fea-
ture exclusion and recursive feature elimination. AUROC
threshold of effective feature selection was the default setting of
xMarkerFinder. Features with a high correlation coefficient
(above 0.8) were considered collinear. The optimal features in
recursive feature elimination were considered as candidate
signatures.

Classifier construction and evaluation. Candidate signatures in
species and function levels were utilized to construct random
forest model. Hyperparameters, such as the number of estimator
trees, the maximum depth of the trees, the numbers of features
per tree, and the maximum samples was tuned to optimize the
classifier via bayesian-optimization v.1.2.0 package in Python.
The best classifier was constructed by the optimal signature
combination and the optimal hyperparameters.

We conducted receiver operating characteristic (ROC) analysis,
and calculated AUROCs to evaluate the performance of our
classification models using the Python package sklearn. The
average AUROC, a widely accepted measure of central tendency,
was reported for each model. The 95% confidence interval of
AUROC was estimated by bootstrapping.

We further evaluated the generalization of signatures through
cohort-to-cohort validation and LOCO validation27,28. For
cohort-to-cohort validation, the diagnostic model was trained
on one cohort using signatures and then validated in the other
cohort. For LOCO validation, one cohort was sequentially
excluded for validation, each time the remaining cohorts were
used to construct diagnostic model based on signatures. In
addition, the robustness of signatures was validated with three
independent cohorts.

Disease specificity assessment of signatures. To assess the disease
specificity of the signatures, two non-CRC disease cohorts, LC
and IBD, were collected. Furthermore, the disease specificity of
EBW-CRC signatures on lean-CRC individuals from ERP005534
was also evaluated using the same method, and vice versa. The
approach for disease specificity validation26,30 is akin to the
“Difference in difference” statistical technique that could compare
AUROC values within the same dataset, ensuring equivalent
batch effects when comparing non-CRC and original CRC
datasets. Briefly, 15 randomly selected diseased or healthy sub-
jects from non-CRC dataset, were respectively added into the
control group of the external CRC validation cohort, and
AUROC values were calculated with the original models. For
disease specific signatures, it is expected that adding diseased or
control samples from cohorts of other disease will not cause
significant change in performance of original model constructed
in the external CRC validation cohort, since these signatures have
no distinguishing capability for non-CRC samples. For compar-
ison, we further set a baseline of the AUROC alterations by
adding the CRC samples or relevant controls samples of

ERP005534 into the control group of the external CRC validation
cohort. The procedure was repeated for ten times. Notably,
considering there were only seven excess body weight healthy
subjects available in LC cohort, five cases and five controls were
randomly sampled for this procedure.

Co-abundance analysis. FastSpar v.1.0.0 was used to analyze co-
abundance associations among species. Absolute abundances of
differential microbial species were used to estimate correlation
coefficients and construct co-abundance network based on
SparCC algorithm, which is suitable for sparsely populated
compositional data to mine correlations among microbes. The co-
abundance relationship with FDR-corrected P < 0.05 were defined
as significant associations. Among these, strong co-abundance
correlations were defined using the cut-off of the absolute value of
correlation coefficient above 0.3. Significant association networks
and strong correlation networks were constructed in different
disease status including EBW-CRC, EBW-CTR, lean-CRC, and
lean-CTR, respectively. Networks were visualized with Gephi
v.0.10.1.

Characterization of microbe-pathway interaction. To investi-
gate the interactions between microbial species and function, we
performed Hierarchical All-against-All association testing, a
computational method to integrate multi-omics data based on
Spearman correlation. The associations with FDR-corrected
P < 0.05 were considered potential interactions between micro-
bial species and pathways for further interaction analysis.

Statistics and reproducibility. No statistical method was used to
predetermine sample size, since this is an integrated analysis
based on public metagenome data with enough samples. No data
were excluded from the analyses. The experiments were not
randomized because statistical analyses depended on informa-
tion about cancer status. Data collection and analysis were not
performed blind to the conditions of the experiments. Alpha
diversity of all kingdoms was calculated in each sample using
Shannon Index metrics with R package ‘vegan’. And the sig-
nificance of alpha diversity was assessed by Wilcoxon rank
sum test. Beta diversity was evaluated using Bray-Curtis dis-
tance. The differential significance of beta diversity among 4
groups were assessed by permutational multivariate analysis of
variate (PERMANOVA) with 999 permutations. PERMANOVA
was also utilized to perform confounder analysis, which quan-
tified the impact of the metadata variables on microbial profiles
using R v4.0.5 “vegan” v2.5.7 package. We treated variable with
predominant impact as major batch effect according to P value
and R2 of each metadata variable. Remained variables with
P < 0.05 were set as covariates. False discovery rate control for
multiple testing was made using the Benjamini-Hochberg
adjustment. All analyses were implemented with R v.4.0.5 and
Python v.3.8.13, and visualized with R v.4.0.5, Python v.3.8.13
and Gephi v.0.10.1.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All supporting data has been provided in Supplementary Data 1-20 and source data in
Supplementary Data 21. All raw data in our work are publicly available. In-house
metagenomics data of CHI_SH cohort were deposited in the National Omics Data
Encyclopedia (NODE) (https://www.biosino.org/node/) with accession code OEP001340.
Other publicly available metagenomics data can be found at the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) and European Nucleotide Archive (https://www.ebi.
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ac.uk/ena/) under accession numbers ERP008729, PRJEB10878, ERP005534,
PRJEB27928, SRP136711, PRJNA429097, PRJEB12449, PRJEB6337 and PRJNA398089.

Code availability
The primary codes and scripts are available at https://github.com/tjcadd2020/
xMarkerFinder.
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