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Protein interaction networks in the vasculature
prioritize genes and pathways underlying coronary
artery disease
Qiuyu Martin Zhu 1,2,3,12, Yu-Han H. Hsu 4,5,6,12, Frederik H. Lassen 4,6,7,12, Bryan T. MacDonald 1,

Stephanie Stead 1, Edyta Malolepsza8, April Kim4,6, Taibo Li 4,6, Taiji Mizoguchi1,2, Monica Schenone 9,

Gaelen Guzman 9, Benjamin Tanenbaum 9, Nadine Fornelos4,5,6, Steven A. Carr 9, Rajat M. Gupta 10,

Patrick T. Ellinor 1,2✉ & Kasper Lage 4,5,6,11✉

Population-based association studies have identified many genetic risk loci for coronary

artery disease (CAD), but it is often unclear how genes within these loci are linked to CAD.

Here, we perform interaction proteomics for 11 CAD-risk genes to map their protein-protein

interactions (PPIs) in human vascular cells and elucidate their roles in CAD. The resulting PPI

networks contain interactions that are outside of known biology in the vasculature and are

enriched for genes involved in immunity-related and arterial-wall-specific mechanisms.

Several PPI networks derived from smooth muscle cells are significantly enriched for genetic

variants associated with CAD and related vascular phenotypes. Furthermore, the networks

identify 61 genes that are found in genetic loci associated with risk of CAD, prioritizing them

as the causal candidates within these loci. These findings indicate that the PPI networks we

have generated are a rich resource for guiding future research into the molecular patho-

genesis of CAD.
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CAD is the leading global cause of morbidity and mortality
with high heritability1. While large-scale population-based
association studies have identified many genetic risk loci

for CAD, key challenges exist in understanding how and which
genes within these loci contribute to CAD pathogenesis2. Despite
the widely established role of lipid metabolism in CAD, most
CAD-risk loci are unrelated to traditional lipid risk factors but
instead point to arterial wall-specific processes3,4. Therefore,
exploring the “non-lipid” pathways implicated by CAD genetic
signals may unlock opportunities for new therapeutics.

Mass spectrometry-based interaction proteomics enables sys-
tematic mapping of PPIs in a quantitative, scalable, and cell-type-
specific manner and offers great potential for establishing
mechanistic connections from disease risk genes to function.
Indeed, numerous studies have used PPI data to functionally
interpret results from large-scale genetic studies and elucidate the
etiology of complex diseases such as arrhythmia and type 2
diabetes5–7. However, little is known about the cell-type-specific
PPIs of CAD-risk genes within the vascular tissue, and how these
PPIs may represent biological pathways and networks that con-
tribute to CAD pathogenesis.

In the current work, we sought to characterize the protein
interactomes of the non-lipid CAD-risk genes in the most
disease-relevant tissue, the human vasculature. We performed
immunoprecipitation experiments coupled with mass spectro-
metry (IP-MS) for 11 CAD-risk genes in two primary human
vascular cell types, endothelial cells or smooth muscle cells, and
constructed cell-type-specific PPI networks using 20 high-quality
IP-MS datasets. By integrating the PPI networks with other data
types, we show that they contain extensive interactions that have
not been reported in the literature, capture both cell-type-specific
and shared biology across the two cell types, and are enriched for
genetic risks of CAD-related phenotypes. Therefore, the PPI
networks can be used to prioritize causal candidate genes within
CAD-risk loci, provide insights into the non-lipid CAD patho-
genesis, and nominate promising targets for further mechanistic
and therapeutic studies.

Results
Study design and quality control. We designed a three-stage
study to (1) select high-confidence CAD-risk genes (termed
“index genes”) from CAD-risk loci; (2) map the PPIs of the
corresponding “index proteins” in vascular cells by IP-MS
experiments; and (3) integrate the resulting PPI networks with
other data types to uncover CAD-relevant biology (Fig. 1a).

To select the index genes in Stage 1, we first aggregated a
comprehensive list of 69 CAD-associated loci that reached
genome-wide significance in the CARDIoGRAM GWAS8, C4D
GWAS9, CARDIoGRAMplusC4D Metabochip10, CARDIo-
GRAMplusC4D 1000 Genomes-based GWAS11, or Myocardial
Infarction Genetics and CARDIoGRAM Exome study12 (Fig. 1b
and Supplementary Data 2). We removed 17 loci with known
roles in regulating traditional lipid risk factors to focus on the
non-lipid aspects of CAD. Among the remaining 52 non-lipid
loci, we identified 12 protein-coding genes that are the likely
CAD-causal candidates to be taken forward to subsequent
proteomic experiments. These include ten genes from single-
gene loci (Supplementary Data 2), 1 gene with a known causal
role in CAD (ADAMTS7)13, and one gene with exome evidence
and functional support (ARHGEF26)14. Additionally, we included
a target gene that is under distal regulation of the PHACTR1
locus, EDN1, which has been nominated as a CAD-causal gene
with strong biological plausibility15. Among the 13 index genes,
endogenous expression in the vasculature was confirmed for all
except KCNK5 (Supplementary Data 3), yielding 12 usable index

proteins for Stage 2 of the study (Fig. 1b). An orthogonal survey
of the literature on the 12 index genes showed extensive genetic
and experimental evidence supporting that all these index genes
are indeed implicated in the pathogenesis of CAD (Supplemen-
tary Data 4).

In Stage 2, we used each of the index proteins as bait to
perform co-immunoprecipitation (co-IP) experiments in primary
human aortic endothelial cells (HAEC; EC, hereafter) and human
coronary artery smooth muscle cells (HCASMC; SMC, hereafter),
followed by tandem mass spectrometry (MS) to identify and
quantify proteins in the index protein IPs (or “bait IPs”) relative
to control IPs (Fig. 1a). We used Genoppi16 to perform quality
control (QC) and analyze data from >60 IP-MS experiments,
identifying significant protein interactors of the index protein in
each experiment (i.e., proteins with log2 fold change [FC] >0 and
false discovery rate [FDR] ≤0.1 in bait vs. control IPs). We
identified a subset of 20 high-quality IP-MS datasets for 11 index
proteins (ADAMTS7, ARHGEF26, BCAS3, EDN1, EDNRA,
FLT1, FN1, HDAC9, JCAD, PHACTR1, PLPP3), in which the
replicate log2 FC correlation was >0.6 and the index protein itself
was significant at log2 FC >0 and FDR ≤0.1, and restricted all
subsequent analyses to these datasets (Supplementary Figs. 1–3
and Supplementary Data 5 and 6). Although some of the 20
datasets were generated under variable experimental conditions
(i.e., different IP approaches, MS facilities, or cell types), an
examination of their QC metrics confirmed that they were overall
technically robust and comparable despite these differences
(Supplementary Figs. 4–6).

IP-MS data of JCAD yield mechanistic insights to vascular
biology. The individual IP-MS datasets we generated could link
the respective index proteins to undiscovered biology through
newly identified interactions. As an example, we highlight the IP
of endogenous JCAD performed in EC, in which the log2 FC
correlation between IP replicates is 0.823, and JCAD itself is one
of the most enriched proteins (log2 FC = 1.81 and FDR = 1.40e-
3; Supplementary Fig. 3h and Supplementary Data 5 and 6). Out
of the 35 significant interactors identified in this dataset, only one
(FLNC) had been reported in PPI databases, including InWeb17,
BioPlex18, iRefIndex19, HuRI20, STRING21, and PCNet22, illus-
trating the potential for biological discovery using our approach.

Prior studies showed that JCAD regulates Hippo signaling in
endothelial cells23; reports from non-vascular cells further
implied that the interaction between the PY motif of JCAD and
the WW domain of Hippo proteins may underlie its role in
Hippo signaling24,25. Surprisingly, in our JCAD IP-MS results,
while several WW domain-containing proteins were detected,
none were identified as significant interactors of JCAD (Supple-
mentary Fig. 7), suggesting that the reported interactions between
JCAD and the WW domains of Hippo proteins may not drive the
specific role of JCAD in endothelial Hippo signaling. In contrast,
among the 35 significant interactors of JCAD in EC, 9 (25.7%) are
either centrosomal proteins or proteins with known roles in
cytokinesis (Supplementary Fig. 7). Pathway analyses of the
JCAD interactors also revealed significant enrichment of GO
terms related to centrosomal components and cell cycle
(Supplementary Data 7). These results strongly support the role
of JCAD in endothelial cell proliferation, a key phenotype related
to vascular injury response, including atherosclerosis. Impor-
tantly, this critical insight has been experimentally corroborated
by several previous studies, which reported reduced proliferation
and angiogenesis upon targeted disruption of JCAD in endothe-
lial cells23,26. Together, these results support the hypothesis that
the interaction between JCAD and the centrosomal proteins may
connect endothelial dysfunction to CAD pathogenesis.
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Construction of de novo cell-type-specific PPI networks in
human vasculature. In Stage 3 of our study, we assembled the 20
high-quality IP-MS datasets into cell-type-specific PPI networks
and intersected them with other data types to extract biological
insights (Fig. 1a). First, we generated the combined PPI networks
for EC and SMC using all IP-MS data derived from the respective
cell type (Fig. 2a, d and Supplementary Data 8). The EC network
contains 9 index proteins and 1190 significant interactors, while
the SMC network contains 10 index proteins and 1122 inter-
actors. Over 90% of the interactions in our data have not been
reported in the literature according to InWeb (Fig. 2b, e) and 5
other PPI databases (Supplementary Fig. 8 and Supplementary
Data 8) and thus represent potentially novel biology. Further-
more, there is substantial convergence among the interactomes of
individual index proteins in both cell types, with >30% of the
interactors being linked to multiple index proteins (Fig. 2c, f) and

many index proteins sharing a significant number of common
interactors (Fig. 2a, d and Supplementary Data 9). In fact, we
observed several interactions between the index proteins them-
selves: FN1 was identified as an interactor of EDN1 in SMC and
of PLPP3 in both cell types. Such convergent patterns suggest that
some of the index proteins may participate in common vascular
pathways or recurring processes that are CAD-relevant yet need
to be defined functionally.

Importantly, the interactions in our de novo PPI networks are
experimentally reproducible. For instance, we have validated the
interactions of several recurrent interactors (i.e., interactors
linked to multiple index proteins) identified in both EC and
SMC, including PDIA6, RPL7A, and HSPA9 (Supplementary
Data 8), in individual IPs followed by western blotting (IP-WB;
Supplementary Fig. 9). In parallel, we also performed reciprocal
IPs in SMC using several newly discovered protein interactors of

Fig. 1 Mapping protein-protein interactions (PPIs) of coronary artery disease (CAD)-risk genes in human vascular cells. a Overview of the 3-stage
study workflow consisting of: (1) selection of index genes in CAD-risk loci pooled from genome-wide association studies (GWAS); (2) mapping PPIs of the
corresponding index proteins using immunoprecipitation coupled with mass spectrometry (IP-MS); and (3) analysis of the resulting PPI networks to
uncover CAD-relevant biology. b Details on the selected index genes, which include ten genes from non-lipid, single-gene loci (all expressed in vascular
cells except KCNK5), 1 gene with a confirmed causal functional role in CAD (ADAMTS7), 1 gene nominated by exome chip data (ARHGEF26), and 1 gene
identified as a distal regulatory target of the PHACTR1 locus (EDN1). Artery image by courtesy of Encyclopædia Britannica, Inc., copyright 2007; used with
permission.
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ADAMTS7 and JCAD as baits, and successfully detected the
presence of ADAMTS7 or JCAD in these reciprocal IPs by
western blot (Supplementary Fig. 10). Overall, our validation
results are comparable with previous reports that demonstrate up
to ~90% validation rate for PPIs identified by IP-MS16,27,28, and
indicate that our vascular PPI networks contain high-confidence
interactions.

Shared and cell-type-specific PPIs in endothelial cells vs.
smooth muscle cells. We compared the PPIs observed in endo-
thelial cells vs. smooth muscle cells to identify common or cell-type-
specific CAD-relevant biology. Globally, about half of all protein
interactors from the EC and SMC networks are shared by the two
cell types (49.5% in EC and 52.5% in SMC; Fig. 3a). While this
overlap is statistically significant (P= 1.49e-24), it also indicates that

Fig. 2 Combined PPI network in endothelial or smooth muscle cells. a The combined PPI network of 9 index proteins derived from IP-MS experiments in
endothelial cells. Index proteins and their interactors are shown as red and purple nodes, respectively, and the edges between them indicate significant
interactions in the IPs. The size and color of the interactor nodes indicate interactor frequency (i.e., the number of index proteins linked to each interactor),
with larger and darker nodes representing more recurrent interactors. Color of the edges indicates whether each interaction is a known interaction in
InWeb (blue) or a potentially novel interaction not found in InWeb (gray). b Distribution of InWeb vs. non-InWeb interactions in the network in (a).
c Distribution of interactor frequency in the network in (a). d–f Characteristics of the combined PPI network of 10 index proteins derived from IP-MS
experiments in smooth muscle cells. The same legends for (a–c) apply here.
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~50% of the interactors are specific to one cell type but not the other.
To explore this in more detail, we stratified the overlap analysis by
each of the 8 index proteins that have IP-MS data in both cell types
(ARHGEF26, BCAS3, EDN1, FN1, HDAC9, JCAD, PHACTR1,
PLPP3), and found significant overlap between the EC and SMC
interactors of FN1 (P= 1.59e-8), PHACTR1 (P= 0.0317), and
PLPP3 (P= 3.52e-12), but not for the other five index proteins
(Supplementary Fig. 11 and Supplementary Data 9). Our observa-
tions are in line with publications demonstrating distinct roles in EC
vs. SMC for ARHGEF2629,30, BCAS331, EDN132, JCAD33, and
HDAC934–36, but partially shared functions in EC and SMC for FN1
(to modulate extracellular matrix37) and PLPP3 (to attenuate
inflammation and permeability following vascular injury38,39).
Together, these results highlight both the functional commonality
represented by the overlapping interactors, as well as the divergent
roles of cell-type-specific interactors in the two cell types.

Vascular PPI networks are enriched for tissue types and
pathways related to CAD. One way to explore the causal
mechanisms implicated by the PPI networks is to examine
whether the networks are enriched for genes specifically expres-
sed in disease-relevant tissues or cell types. Therefore, we assessed
the overlap enrichment between interactor genes in the networks
and tissue-specific genes derived from RNA sequencing data of
GTEx tissues40. Both the EC and SMC networks are significantly
enriched (P < 0.05/53, adjusting for 53 tissues) for genes specific
to cardiovascular tissues, and as expected, tissues containing rich
SMC (e.g., digestive organs and uterus; Supplementary Fig. 12a
and Supplementary Data 10). Notably, genes specific to adipose
tissue are also significantly enriched, which highlights the

indispensable role of adipose tissue in vascular homeostasis that
are tightly coupled to EC and SMC41,42. To further compare the
EC and SMC networks, we analyzed sub-networks consisting of
interactors found in only one cell type (“EC only” or “SMC only”)
or interactors shared by both cell types (“Intersect”; Supple-
mentary Fig. 12a and Supplementary Data 10). Among the car-
diovascular tissues, all three sub-networks show significant
enrichment for genes specific to aortic, coronary, and tibial artery
tissues, while the “EC only” network is additionally enriched for
genes specific to left ventricle tissue (Fig. 3b). Since mRNA and
protein abundance show variable correlation across tissues43, we
also repeated the analysis using tissue-specific genes defined from
proteomic data of GTEx tissues44. The results derived from these
data have weaker significance overall but show similar enrich-
ment patterns in the cardiovascular tissues (Supplementary
Figs. 13a, 14 and Supplementary Data 10). These findings reaf-
firm that our de novo PPI networks point to vascular-specific
genes and further support the use of both cell types to understand
the genetic basis of CAD.

We next assessed whether our PPI networks are enriched for
biological pathways represented by the MSigDB45,46 Hallmark
and Reactome gene sets and Gene Ontology47,48 (GO) terms. In
these pathway analyses, instead of comparing the interactor genes
in our networks to the rest of the genome, we compared them to
other genes that were detected in our IP-MS experiments (i.e., the
“non-interactors” in Supplementary Data 8). We reasoned that
since both the interactors and non-interactors show elevated
protein expression in human heart cell types49 (Supplementary
Fig. 15) and are enriched for tissue-specific genes in cardiovas-
cular tissues (Supplementary Figs. 12 and 13 and Supplementary
Data 10), comparing the interactors against the non-interactors

Fig. 3 Comparison of PPIs in the endothelial cell (EC) vs. smooth muscle cell (SMC) networks. a Overlap between interactors in the EC and SMC PPI
networks. b Cardiovascular tissue enrichment calculated using GTEx tissue-specific genes based on RNA-seq data. Interactors found exclusively in the EC
(EC only) or SMC (SMC only) network and interactors found in both networks (Intersect) were analyzed separately and compared against the rest of the
genome. c Gene set enrichment calculated using MSigDB Hallmark gene sets. EC only, SMC only, and Intersect interactors were compared against the non-
interactors detected by IP-MS; only the top ten gene sets are shown for each analysis. All P values were calculated using one-tailed hypergeometric tests.
For (b, c), nominally (P<0.05) or Bonferroni-significant (P <0.05/number of tissues or gene sets) results are shown in orange or red, respectively; gene
counts used for analysis are shown in Supplementary Data 10 and 11.
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would allow us to assess the conditional enrichment of the
networks in a way that accounts for the cellular context of our
data. In the MSigDB Hallmark analysis, the “EC only” and
“Intersect” networks show significant (P <0.05/50, adjusting for
50 gene sets) or nominal (P <0.05) enrichment for similar gene
sets, including “MYC targets” and immunity-related pathways
(“interferon gamma response”, “interferon alpha response”, and
“allograft rejection”; Fig. 3c and Supplementary Data 11). In
contrast, the “SMC only” network is most enriched for processes
broadly related to the arterial wall, including “epithelial
mesenchymal transition”, “hypoxia”, and “angiogenesis”. In the
Reactome and GO analyses, we also observed some divergent
patterns between these networks (Supplementary Fig. 16 and
Supplementary Data 11 and 12). Overall, the tissue and pathway
enrichment results show that the EC and SMC PPI networks
capture both shared and cell-type-specific biology related to CAD.

Linking vascular PPI networks to genetic risks of CAD and
related phenotypes. To assess whether the PPI networks are
associated with genetic risk factors of CAD, we used MAGMA50

to evaluate the genetic risk enrichment within the networks
relative to other protein-coding genes (“global” analysis) or to the
non-interactors identified by IP-MS (“conditional” analysis).
Using CAD GWAS summary statistics from a meta-analysis of
the UK Biobank and CARDIoGRAMplusC4D51, we found the
ADAMTS7 (P < 1.37e-3) and JCAD (P < 3.11e-4) networks in
SMC to be significantly enriched (P < 0.05/29, adjusting for 29
networks) for CAD risk in the global analysis (Fig. 4a, Supple-
mentary Fig. 17a, and Supplementary Data 13). In the more
conservative conditional analysis, the ADAMTS7 network
remained nominally significant, suggesting that the observed
enrichment signal is robust and that genes in this network may
confer risk above what one would expect for genes generally
expressed in SMC (Supplementary Fig. 17b). Indeed, ADAMTS7
mediates vascular SMC migration and neointimal formation in
animal carotid artery injury models, and the CAD-risk coding
variant rs3825807 within the ADAMTS7 locus affects patient-
derived vascular SMC migration52–54. For JCAD, its interactors in
SMC have no overlap with those identified in EC; thus the
enrichment of CAD-risk GWAS signal among JCAD interactors
appears to be specific to SMC (Supplementary Fig. 17a). Corro-
borating with this MAGMA result are the observations that JCAD
is expressed in vascular SMC55, and that depletion of JCAD
inhibited vascular maturation by depleting SMC in neovessels26.
Although a role of JCAD in endothelial cells has been connected
to atherosclerosis33,55, its role in vascular SMC has been less well
understood. Our data support the role of JCAD in vascular SMC
that may be critical to CAD.

We also performed analogous MAGMA analyses using GWAS
summary statistics of other vascular phenotypes, including aortic
size56 (ascending thoracic aortic diameter (AA), descending
thoracic aortic diameter (DA)) and stroke subtypes57 (any stroke
(AS), any ischemic stroke (AIS), large-artery atherosclerotic
stroke (LAS), cardioembolic stroke (CES), small-vessel stroke
(SVS)). We found the combined PPI network in SMC to be
significantly enriched (P= 8.77e-5) for genetic variants asso-
ciated with DA in the global analysis (Fig. 4a, Supplementary
Fig. 17a, and Supplementary Data 13). The pathogenic basis of
aortic aneurysm differs between ascending and descending
aortas. Atherosclerosis is the predominant driving etiology
leading to aneurysms of the descending aorta, but rarely causes
ascending aortic aneurysms58,59. Therefore, the significant
enrichment for genetic variants associated with DA in the
SMC network highlights the cell type and proteins that may
contribute to both CAD and descending thoracic aneurysms. In

fact, among the index proteins whose networks show nominal
enrichment for DA, ADAMTS760 and EDN161,62 have been
linked to aortic aneurysms in previous studies. Taken together,
we observed enrichment of CAD-risk GWAS variants among the
ADAMTS7 and JCAD PPI networks derived from SMC, and an
association between the combined SMC PPI network and
descending aortic size. As better-powered GWAS datasets
become available, the suggestively significant enrichment for
other networks and phenotypes reported here could be validated
in the future.

Using vascular PPI networks to prioritize candidate CAD-
risk genes. After establishing that some of our PPI networks are
enriched for genetic risks of CAD-related phenotypes, we used
the networks to prioritize additional CAD-risk genes from GWAS
data. Given that the evidence for the causal gene(s) within a
GWAS locus are often absent, ambiguous, or conflicting, physical
interactions with known or high-confidence risk genes may serve
as an important functional indicator of the potentially causal
gene(s) for a given locus. When we intersected our PPI networks
with genes found in genome-wide significant GWAS loci for
CAD51, we found that the index proteins in the combined EC
network interact with 43 proteins encoded by genes in the CAD-
risk loci (termed “locus proteins”), while the index proteins in the
SMC network are linked to 41 locus proteins (Fig. 4b, Supple-
mentary Fig. 18a, and Supplementary Data 14). Together, our PPI
data prioritize 61 unique genes within CAD-risk loci across the
two cell types. We confirmed the reproducibility of a subset of the
PPIs between index and locus proteins by independent IP-WB or
reciprocal IP-WB (Supplementary Figs. 10 and 19). For instance,
we were able to validate several interactions involving IGF2BP1,
MAP4, and TNS1, which are all located within CAD-risk loci
containing multiple candidate genes and are also found to be
recurring interactors in our networks.

When selecting the index proteins in this study, we included
two index proteins from the multi-gene chromosome 6p24 locus,
which contains EDN1 and PHACTR1 in a 1-Mb region around
the sentinel variant rs934937915. There is uncertainty regarding
which of these genes is causal for the multiple vascular diseases
associated with this locus. Therefore, we compared the overlaps
between genes in GWAS loci and EDN1 or PHACTR1
interactomes in vascular cells to see if they could help prioritize
one of the genes over the other. We observed that EDN1 interacts
with many more locus proteins compared to PHACTR1 in both
EC and SMC (Supplementary Fig. 18b and Supplementary
Data 14). Across both cell types, EDN1 is linked to 11 locus
proteins and 1 other index protein (FN1), while PHACTR1 is
only associated with 2 locus proteins that are also EDN1
interactors. There is substantial evidence supporting the critical
roles of several locus proteins that interact with EDN1 in the
vasculature, including MAP463, SRSF364, LOX65–67, and TOP168.
Furthermore, consistent with the known role of EDN1 in
mediating proliferation and vasoconstriction in smooth muscle
cells, its interactors in SMC include many extracellular matrix
proteins (i.e., COL6A3, FN1, and LOX). Finally, we also mapped
the PPIs of the major receptor for EDN1, EDNRA, in SMC: we
found EDNRA to interact with 8 locus proteins, including
PALLD, which is also an interactor of EDN1 in SMC (Fig. 4b and
Supplementary Data 14). In agreement with these observations,
both the EDN1 and EDNRA PPI networks in SMC show
nominally significant enrichment for aortic size in our genetic
analysis, while the PHACTR1 network shows no enrichment
(Fig. 4a). Together, these findings support the hypothesis that
EDN1, rather than PHACTR1, is a more likely driver of the
GWAS signal for CAD risk observed in the 6p24 locus.
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The recent development of large-scale CRISPR perturbation
screens have allowed experimental validation of plausible causal
genes in a high-throughput, unbiased manner. To further assess the
functional relevance of the index and locus proteins prioritized by
our PPI data in the context CAD, we examined data from a recent
study that performed pooled CRISPR screens targeting CAD
GWAS loci in immortalized human aortic endothelial cells
(teloHAEC)69. The study used CRISPR knockout, inhibition, and
activation to target 1998 potential causal variants in 83 CAD loci
and identified 26 loci significantly associated with endothelial
phenotypes related to CAD. Five of these significant loci mapped to
genes (FGD5, LOX, MAT2A, NT5C2, SMG6) that were also
prioritized by our PPI data (Fig. 4b, Supplementary Fig. 18a, and

Supplementary Data 15). Specifically, perturbing the variants in
these loci affected the levels of adhesion proteins (E-Selectin,
ICAM1, VCAM1) and/or signaling molecules (nitric oxide, reactive
oxygen species, calcium) in endothelial cells, which have all been
directly implicated in the pathology of CAD. In line with the
positive CRISPR screen hits and the nomination by our PPI
network, there is the abundance of genetic and experimental
evidence directly implicating FGD570, LOX71,72, MAT2A73,
NT5C274–76, and SMG68,77–79 in CAD pathogenesis. These results
provide concrete examples of how combining our PPI-nominated
candidate proteins with phenotypic perturbation screens can help
accelerate rapid functional validation of candidate CAD-causal
genes in disease-relevant cell types.

Fig. 4 Genetic risk enrichment in the PPI networks. a Common variant enrichment of the PPI networks calculated using MAGMA and GWAS summary
statistics of CAD, aorta size, and stroke. Index protein interactors identified in EC or SMC were compared against the rest of the protein-coding genome.
Nominal (P<0.05) or Bonferroni (P<0.05/29) significance is indicated by single or double asterisks, respectively; gene counts used for analysis are shown
in Supplementary Data 13. AA ascending aorta, DA descending aorta, AS any stroke, AIS any ischemic stroke, LAS large-artery atherosclerotic stroke, CES
cardioembolic stroke, SVS small-vessel stroke. b Social Manhattan plot of genes encoding the index proteins (red) and their SMC interactors (black) in
genome-wide significant CAD GWAS loci. Links between genes indicate observed protein-protein interactions; interactions validated by western blots are
highlighted in blue.
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Discussion
The success of large-scale, population-based association studies in
mapping susceptibility loci for CAD has been eclipsed by the
herculean efforts to pinpoint the causal genes within these loci
and to understand their biological and clinical relevance. To help
fill in the gaps in the “variant-to-function” relationships, we
performed interaction proteomics to map the PPIs of 11 non-
lipid CAD-risk genes in two disease-relevant vascular cell types,
endothelial and smooth muscle cells. The resulting PPI networks
capture both cell-type-specific and shared biology between the
two cell types and overlap with genetic signals of CAD and related
vascular phenotypes. These results demonstrate the capacity of
using PPIs to dissect the genetic basis of CAD and indicate that
our PPI data can serve as a rich resource for accelerating the
translation of GWAS signals into biological insights.

A particular strength of our work lies in our vascular-specific
approach, as mapping pathogenic processes in defined primary
cells could offer new insights into the molecular basis of disease80.
For CAD, understanding the tissue-specific pathology holds
translation value for highly specific intervention strategies to
target organs, as demonstrated by recent development of gene
editing in the liver to lower cholesterol81 or gene silencing in the
vasculature to suppress endothelial genes82. Furthermore, given
that most CAD-risk loci are unrelated to lipid risk factors,
understanding the non-lipid pathways of CAD is imperative for
developing novel, efficacious therapeutics. Therefore, mechanistic
insights inspired by this work will be an informative first step to
begin functionally annotating the non-lipid CAD susceptibility
loci that are poorly understood.

Our findings need to be interpreted with its limitations. First,
our PPI networks were derived from only 11 index proteins that
can be confidently linked to CAD in two vascular cell types, and
therefore represent only a small fraction of CAD biology. As the
fuller spectrum of genotypes and CAD phenotypes are becoming
available through population-based biobanks such as the UK
Biobank, the framework described here can be applied to generate
broader PPI networks with substantially higher scale and reso-
lution in the future. In addition, the studied index proteins may
have CAD-relevant roles outside of the vasculature (e.g.,
ADAMTS7 is a secreted enzyme) that are not accounted for by
the PPI networks derived from vascular cell lysates.

Second, the IP-MS approach for identifying PPIs has various
caveats that may influence the reproducibility of the data. For
instance, the quality of IP antibodies, overexpression of FLAG-
tagged proteins, and incomplete coverage of proteins during MS
analysis83,84 could all contribute to variability in the IP-MS
experiments. We partially accounted for this issue by using two
bait vs. control IP replicates in each IP-MS experiment to define
statistically significant protein interactions. We independently
replicated a subset of the interactions by western blotting (Sup-
plementary Figs. 9, 10, and 19) and observed significant overlaps
between several IPs for the same index protein (Supplementary
Fig. 11), both of which support a degree of robustness in our data.
However, other IPs for the same index protein have limited
agreement, either due to experimental variability or due to true
biological differences between cell types. Moreover, it is impor-
tant to note that even when an interaction is reproducible bio-
chemically, additional experiments beyond IP-MS will be needed
to investigate if it plays a functional role in biological processes.
Therefore, the putative CAD-relevant PPIs, genes, and pathways
nominated by our data require further replication and functional
validation before causal links to vascular biology can be
established.

Third, we recognize that methods such as CRISPR perturbation
screens will be crucial for the systematic functional validation of
our results. Reassuringly, recent CRISPR knockout, inhibition,

and/or activation experiments in immortalized teloHAEC69

already linked several of our prioritized CAD-risk genes to
endothelial cell phenotypes, providing orthogonal support that
these PPI network genes may be involved in CAD-relevant
biology (Supplementary Data 15). However, this kind of in vitro
perturbation approaches also has fundamental caveats that need
to be considered when designing a systematic validation experi-
ment, including the inherently variable efficiency of gene inhi-
bition/activation, the poorly characterized off-target effect, and
most importantly, the lack of correlation between protein
expression level and the mRNA level of particular genes. Specific
to our work, there are also considerable transcriptomic differ-
ences between the primary HAEC used in our experiments and
the immortalized teloHAEC used in the CRISPR screens, and
CRISPR gene editing in primary human vascular SMC has not
been amenable. Thus, while CRISPR technology represents a
promising avenue for functional validation of our PPI networks
in human cell models, it is beyond the scope of the current study
and warrants a separate effort to properly leverage its strengths in
the future.

In conclusion, our work showcases how cell-type-specific
interaction proteomics is a powerful approach for characterizing
CAD-risk genes in an unbiased, scalable fashion. Genes and
pathways prioritized by our vascular-specific PPI networks can
provide initial clues on how particular genetic risk factors may
lead to CAD and other vascular pathology, thereby nominating
potential therapeutic targets for functional validation studies.
Lastly, going beyond CAD, functional PPI networks can serve as a
general framework for systematic prioritization of candidate
genes in GWAS loci of complex diseases.

Methods
Cell culture. To resemble the tissue basis for CAD, primary
human coronary artery endothelial cells (HCAEC) and smooth
muscle cells (HCASMC) were the preferred cell types. However,
our preliminary study showed that HCAEC lacks sufficient pro-
liferative capacity to support scalable yield of proteomic samples,
particularly with regard to epitope-tagged index protein pro-
duction by expression vector transfection. As an alternative, we
identified a more proliferative EC type with a transcriptional
profile that resembles HCAEC, human aortic endothelial cell
(HAEC)85. HAEC and HCASMC were then used to carry out all
proteomic experiments.

HAEC and HCASMC from multiple healthy donors were
pooled and maintained in VascuLife EnGS and SMC media,
respectively (cell and medium purchased from Lifeline Cell
Technology), and used at passage <8 for all experiments. HEK293
cell was from ATCC and maintained in high-glucose Dulbecco’s
Modified Eagle Medium (DMEM) with GlutaMAX supplement
and 10% fetal bovine serum (FBS; Thermo Fisher Scientific). All
cell culture was maintained free of antibiotics in a humidified
incubator at 37 °C with 5% CO2.

Selection of index proteins. We aggregated 69 genetic loci that
have been associated with CAD from CARDIoGRAM GWAS8,
C4D GWAS9, CARDIoGRAMplusC4D Metabochip10, CARDIo-
GRAMplusC4D 1000 Genomes-based GWAS11, and Myocardial
Infarction Genetics and CARDIoGRAM Exome study12 (Sup-
plementary Data 2). We noted 17 loci were located near genes
with known roles in regulating traditional lipid risk factors for
CAD: LDL, triglyceride-rich lipoproteins, or lipoprotein(a), and
may therefore be contributing to CAD-risk via the well-studied
lipid metabolism1. These loci were removed, leaving 52 “non-
lipid” CAD-risk loci that are likely to represent vascular-specific
pathways of CAD pathogenesis. Next, we defined linkage
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disequilibrium (LD) boundaries for the leading CAD-risk SNP in
each of the remaining loci, which span SNPs with r2 >0.6 ± 50 kb
on either end. We then searched for protein-coding genes within
each LD locus to identify a subset of 13 loci containing only a
single protein-coding gene (i.e., single-gene loci, or SGL). The 13
SGL contain 10 unique genes (BCAS3, EDNRA, FLT1, FN1,
HDAC9, JCAD, KCNK5, KSR2, PHACTR1, PLPP3) that are
possible CAD-causal genes in these loci, and thus their encoded
proteins were used as the “index proteins” in our study. We also
included three additional index proteins encoded by genes that
have been previously implicated in CAD, including 1 gene with a
known causal role in CAD (ADAMTS7)13, 1 gene with exome
evidence and functional support (ARHGEF26)14, and a distal
regulatory target of the PHACTR1 locus, EDN1, which has been
nominated as a CAD-causal gene with strong biological
plausibility15.

We surveyed RNA-seq data generated by the ENCODE
project86 to confirm the endogenous expression of the selected
index proteins in HAEC (GEO accession: GSE78613) and
HCASMC (GEO accession: GSE78534; Supplementary Data 3).
We found that KCNK5 was the only index protein with no
detectable RNA expression, and thus excluded it from further
experiments. Furthermore, we compared the expression levels of
different transcripts to identify the dominant transcript variant
for each index gene, and by inference, the dominant protein
isoform for each index protein. These dominant transcript
variants serve as the template sequences for constructing
overexpression vectors, as described below.

Construction of mammalian expression vectors for index
proteins. The cDNA containing the open-reading frame (ORF) of
the endothelial ARHGEF26 transcript (NM_015595) was obtained
from the Mammalian Gene Collection and cloned with a
3×FLAG tag and a GGGS linker sequence into a pcDNA3.4
mammalian expression vector (Thermo Fisher Scientific). The
ORF sequences carrying a 3×FLAG tag for ADAMTS7, BCAS3,
EDN1, FLT1, HDAC9, PHACTR1, and PLPP3 were constructed
by GeneArt Gene Synthesis (Thermo Fisher Scientific) using
customized DNA constructs and cloned onto the pcDNA3.4
vector. All vector sequences have been validated by Sanger
sequencing, and protein expression at the expected molecular
weight was confirmed by Western blot using HEK293 cell lysate
overexpressing the respective vectors. The remaining index pro-
teins have commercially available IP-competent antibodies, and
therefore do not require mammalian expression vectors.

Overexpression of index proteins by consecutive transfection.
For optimal expression of FLAG-tagged index proteins in pri-
mary cells, we performed two rounds of consecutive transfection
in HAEC and HCASMC, respectively.

Transfection in HAEC was performed with 5 μg plasmid DNA
per 1 × 106 cells in 100 μL P5 Primary Cell Solution using an
Amaxa 4D-Nucleofector (Lonza). A pcDNA3.4 vector without
insert was used as empty control for the same number of cells as
“mock” transfection. In total, 8–10 × 106 cells at 70–80%
confluence were nucleofected with the index protein vector or
empty vector (mock transfection), respectively. Nucleofected
HAEC was immediately plated in prewarmed Opti-MEM I
reduced serum media (Thermo Fisher Scientific) for 2–3 h,
followed by replacement with complete EnGS medium after cell
attachment. Three days after the first round of nucleofection, cells
were digested by Trypsin-EDTA (0.5%), washed in PBS, and
underwent a second round of nucleofection (5 μg plasmid DNA
per 1 × 106 cells) and plating. HAEC was harvested 3–4 days after
the second round of nucleofection.

Transfection in HCASMC was performed with Lipofectamine
LTX with PLUS Reagent (Invitrogen) following the manufac-
turer’s instruction. Briefly, cells were plated on five 15-cm dishes
1–2 days before transfection at 70% confluency. Prior to
transfection, cells were carefully rinsed with prewarmed Opti-
MEM I media to reduce cell-derived polyanions that inhibit
transfection, and gently replaced with 14 mL Opti-MEM I
media. For each 15-cm dish, 20 µg plasmid DNA (for index
protein or empty vector) was combined with 60 µL Lipofecta-
mine LTX and 60 µL PLUS Reagent in 3.6 mL Opti-MEM I
media, incubated for 5 min at room temperature, and added
dropwise to each dish. HCASMC was incubated with the
transfection mixture at 37 °C for 4 h, which was gently replaced
by fresh, prewarmed Opti-MEM I media and incubated for
another 2–3 h to terminate the transfection reaction and
minimize DNA toxicity. Cells were then replaced with complete
SMC medium. A second round of transfection was performed in
2–3 days with identical protocols. Complete SMC medium was
replaced every 2–3 days. HCASMC was harvested 3–4 days after
the second round of nucleofection.

Co-immunoprecipitation using index proteins as baits. Co-
immunoprecipitation (Co-IP) was carried out by either (1)
using commercial antibodies to the endogenous index proteins,
if such antibodies were proven IP-competent and target-specific
by a pilot IP followed by probing the immunoprecipitant with a
different antibody, or (2) pulling down of overexpressed, FLAG-
tagged index proteins with an antibody against the FLAG tag, if
IP-competent antibodies to endogenous proteins were una-
vailable. The control IP was performed as either a pull-down
using normal isotype IgG (control for endogenous index pro-
teins) or a pull-down of cell lysate receiving empty-vector
transfections (“mock” transfection; control for FLAG-tagged
index proteins).

Cells were lysed in ice-cold Pierce IP Lysis Buffer (Thermo
Fisher Scientific) supplemented with fresh protease inhibitors
(Pierce Mini Tablet, EDTA free), passed through a 25G syringe,
and spun for 15 min at 21,000 × g at 4 °C. The supernatant was
collected and normalized for protein concentration using a
bicinchoninic acid (BCA) assay (Thermo Fisher Scientific). For
pull-down of FLAG-tagged index proteins (i.e., baits), normalized
cell lysate from bait- or mock transfection was incubated with
washed anti-FLAG M2 magnetic beads (Sigma-Aldrich, M8823)
or anti-FLAG M2 Affinity Agarose Gel (Sigma-Aldrich, A2220) at
1mg lysate per 25 μL beads ratio overnight at 4 °C with mixing.
For pull-down of endogenous baits, cell lysate was pre-cleared by
incubation with normal mouse IgG conjugated to agarose (Santa
Cruz Biotechnology, sc-2343) or normal rabbit IgG (R&D
Systems, AB-105-C) conjugated to Protein A/G Magnetic Beads
(Pierce, 88802) at 1mg lysate per 10 μg IgG ratio for 1 h at 4 °C.
The pre-cleared supernatant was then split into two equal halves
that were combined with primary antibody or isotype IgG and
beads (1mg lysate per 10 μg antibody/IgG) and incubated at 4 °C
overnight with mixing. The sources of antibodies and normal IgG
for Co-IP are listed in Supplementary Data 6.

After overnight incubation, each bait or control IP mixture was
carefully split into three identical replicates using wide bore
pipette tips. The supernatant was discarded, and the beads were
washed once with ice-cold IP buffer, and three times with
100 mM triethylammonium bicarbonate (TEAB) buffer. Two of
the three replicates were stored in 100 μL 100 mM TEAB buffer,
pH 8.5, and snap-frozen until processed for mass spectrometry.
The remaining one replicate was saved for quality control by
eluting in 2× Laemmli Sample Buffer and boiling followed by
Western blot analyses.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05705-1 ARTICLE

COMMUNICATIONS BIOLOGY |            (2024) 7:87 | https://doi.org/10.1038/s42003-023-05705-1 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


Western blot. Reduced protein samples were resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
on 4–20% or 8–16% Mini-PROTEAN TGX precast gels (Bio-Rad
Laboratories), transferred to a nitrocellulose membrane, and
blocked with 5% nonfat milk in Tris-buffered saline supple-
mented with 0.05% Tween-20 (TBST) at room temperature for
1 hour. The membrane was then incubated with primary anti-
bodies in 1% nonfat milk in TBST overnight at 4 °C. To avoid
interference from denatured heavy or light chains of IP antibodies
eluted from pull-down samples, two approaches were employed:
(1) blots for FLAG-tagged baits were detected by incubation
directly with HRP-conjugated anti-FLAG primary antibody
(Sigma-Aldrich, A8592) without using secondary antibodies; or
(2) blots for endogenous baits were incubated with Clean-Blot IP
reagent (Thermo Fisher Scientific 21230) in 1% nonfat milk in
TBST for 1 h at room temperature, which specifically binds to
whole IgG but not IgG fragments, except for blots where the
signals from Clean-Blot IP reagent were undetectable or too weak,
in which case conventional HRP-conjugated anti-rabbit (R&D
Systems, HAF-008) or anti-mouse (R&D Systems, HAF-007)
secondary antibodies were used. After extensive washing, the
membranes were developed in an enhanced chemiluminescence
substrate (EMD Millipore) and imaged on Amersham Imager 600
(GE Healthcare).

The non-FLAG primary antibodies used in Western blot were
as follows: ADAMTS7 (Abcam, Ab28557), ATXN2 (Novus
Biologicals, NBP1-90063), EDNRA (Abcam, ab242440), FLT1
(Thermo Fisher Scientific, PA5-16493), FN1 (Sigma-Aldrich,
AB1945), FNDC3B (Novus Biologicals, NBP1-90495), HSPA9
(Cell Signaling Technology, 3593T), IGF2BP1 (Cell Signaling
Technology, 8482), JCAD (Sigma-Aldrich, HPA017956), MAP4
(Proteintech, 11229-1-AP), PDIA6 (Sigma-Aldrich, HPA034652),
RPL7A (Cell Signaling Technology, 2415), and TNS1 (Novus
Biologicals, NBP1-84130). Reciprocal IPs of selected interactors
(Supplementary Fig. 10) prior to western blot analysis were
performed using the same antibodies as indicated above.

Mass spectrometry and protein quantification (Whitehead)
Sample preparation. Starting with IP samples on beads supplied
in 100 μL of 100 mM TEAB buffer, reduction and alkylation of
disulfide bonds were carried out by addition of 2 μL of 50 mM
Tris(2-carboxyethyl) phosphine (TCEP) in 100 mM TEAB (Sciex
4326685) for 60 min at 60 °C, followed by addition of 1 μL of 2%
S-methyl methanethiosulphonate in isopropanol (Sciex 4352159)
for 10 min at room temperature. Proteins in this solution were
then digested by the addition of 250 ng of TPCK-treated trypsin
in 50 mM TEAB (Sciex 4352157) and overnight incubation at
37 °C with gentle shaking. iTRAQ4-plex (Sciex) or TMT 6-plex
(Thermo Fisher Scientific) reagents were resuspended in 50 µL
isopropanol and added to each sample followed by vortex and
spin; the specific iTRAQ or TMT labels used for each pair of bait
or control IP replicates are indicated in Supplementary Data 6.
The samples were combined and incubated at room temperature
for 2 h, and then washed, extracted, and concentrated by solid
phase extraction using Waters Sep-Pak Plus C18 cartridges.
Organic solvent was removed, and the volumes were reduced to
80 μL via speed vacuum.

Chromatographic separations. The labeled tryptic peptides were
subjected to basic (high pH) reversed-phase high-performance
liquid chromatography (HPLC) with fraction collection using
Shimadzu LC-20AD pumps and a FRC-10A fraction collector.
Samples were loaded on a 10 cm × 2.1 mm column packed with
2.6 μm Aeris PEPTIDE XB-C18 media (Phenomenex). The initial
gradient condition was isocratic 1% buffer A (20 mM ammonium

formate in water, pH = 10) at 150 µL min−1, with increasing
buffer B (acetonitrile) concentrations to 16.7% B at 20.5 min, 30%
B at 31 min, and 45% B at 36 min. The column was washed with
high percent B and re-equilibrated between analytical runs for a
total cycle time of ~55 min. Sixteen 450 µL fractions (fx) were
collected, combined into eight samples (fx1+2, fx3+9, fx4+10,
fx5+11, fx6+12, fx7+13, fx8+14, fx15+16), then reduced to
20 µL via speed vacuum. The combined samples were subjected to
reversed-phase HPLC using Thermo EASY-nLC 1200 pumps and
autosampler, followed by mass spectrometry using a Thermo Q
Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer
and a nanoflow configuration. Samples were loaded on a 6 cm ×
100 μm column packed with 10 μm ODS-A C18 material (YMC),
washed with 4 μL total volume to trap and wash peptides, then
eluted onto the analytical column packed with 1.7 μm Aeris C18
material (Phenomenex) in a fritted 14 cm × 75 μm fused silica
tubing pulled to a 5-μm tip. The initial gradient condition was 1%
buffer A (1% formic acid in water) at 300 nL min−1, with
increasing buffer B (1% formic acid in acetonitrile) concentra-
tions to 6% B at 1 min, 21% B at 42.5 min, 36% B at 63.15 min,
and 50% B at 73 min. The column was washed with high percent
B and re-equilibrated between analytical runs for a total cycle
time of ~97 min.

Mass spectrometry. The mass spectrometer was operated in a
data-dependent acquisition mode where the 20 most abundant
peptides detected in the Orbitrap using full scan mode with a
resolution of 60,000 were subjected to daughter ion fragmentation
using a resolution of 15,000. A running list of parent ions was
tabulated to an exclusion list to increase the number of peptides
analyzed throughout the chromatographic run.

Protein quantification. Mass spectra were analyzed using PEAKS
Studio X+ (Bioinformatics Solutions). For peptide and protein
identification, mass spectra were searched against the Homo
sapiens UniProtKB/TrEMBL database (release 2019_01) contain-
ing isoforms and a set of common laboratory contaminants.
Positive identification was used and quantitation was based on the
top three total ion current (TIC) method, with a maximum FDR of
1% at the spectrum level. Tolerance on the precursor was 10 ppm,
on the fragments 0.01 Da, with carboxymethylation (C) as fixed
modification and oxidation (M), deamidation (NQ), phosphor-
ylation (STY), and acetylation (N-Ter) as variable modifications.
Relative ratios of the iTRAQ or TMT reporter ions were used for
protein-level quantitation across bait and control IP replicates.

Mass spectrometry and protein quantification (Broad)
Sample preparation. Proteins were digested on beads using 90 µl
of digestion buffer (2 M urea/50 mM Tris buffer with 1 mM DTT
and 5 µg/mL Trypsin) for 1 h, shaking at 1000 rpm. The sus-
pension was then transferred to a new tube, and the beads were
washed twice with 60 µL of wash buffer (2 M urea/50 mM Tris
buffer). The wash buffer was added to the suspension with
digestion. The digestion and wash process was repeated a second
time pooling the suspensions with the suspensions from the first
round. The pooled solution was reduced using 4 mM DTT for
30 min at 25 °C shaking at 1000 rpm. The proteins were then
alkylated using 10 mM iodoacetamide and incubating for 45 min
at 25 °C shaking at 1000 rpm and protected from light. Proteins
were then digested with 0.5 µg of trypsin overnight at 25 °C
shaking at 700 rpm. The next day proteins were quenched using
40 µL of 10% formic acid and desalted using an Oasis Cartridge.
Samples were vacuum-dried and labeled with iTRAQ4 (Sciex)
kits; the specific iTRAQ labels used for each pair of bait or control
IP replicates are indicated in Supplementary Data 6.
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Liquid chromatography-tandem mass spectrometry (LC-MS/MS;
for “mB.SMC.ADAMTS7” and “mB.SMC.EDN1” datasets).
Reconstituted peptides were separated on an online nanoflow
EASY-nLC 1000 UHPLC system (Thermo Scientific) and ana-
lyzed on a benchtop Orbitrap Q Exactive Plus mass spectrometer
(Thermo Scientific). The peptide samples were injected onto a
capillary column (Picofrit with 10 μm tip opening/75 μm dia-
meter, New Objective, PF360-75-10-N-5) packed in-house with
20 cm C18 silica material (1.9 μm ReproSil-Pur C18-AQ medium,
Dr. Maisch GmbH, r119.aq). The UHPLC setup was connected
with a custom-fit microadapting tee (360 μm, IDEX Health &
Science, UH-753), and capillary columns were heated to 50 °C in
column heater sleeves (Phoenix-ST) to reduce backpressure
during UHPLC separation. Injected peptides were separated at a
flow rate of 200 nL/min with a linear 150 min gradient from 94%
solvent A (3% acetonitrile, 0.1% formic acid) to 35% solvent B
(90% acetonitrile, 0.1% formic acid), followed by a linear 8 min
gradient from 35% solvent B to 60% solvent B and a 3 min ramp
to 90% B. The Q Exactive instrument was operated in the data-
dependent mode acquiring HCD MS/MS scans (R=17,500) after
each MS1 scan (R=70,000) on the 12 most abundant ions using
an MS1 ion target of 3 × 106 ions and an MS2 target of 5 × 104

ions. The maximum ion time utilized for the MS/MS scans was
120 ms; the HCD-normalized collision energy was set to 28; the
dynamic exclusion time was set to 20 s, and the peptide match
and isotope exclusion functions were enabled.

Basic reversed-phase (BRP) fractionation followed by LC-MS/MS
(for “mB.EC.ARHGEF26” dataset). To reduce sample complexity,
iTRAQ labeled peptide samples were separated by high pH
reversed-phase separation as previously described87, but scaled
down to use a 2.1 mm inner diameter RP Zorbax 300 A Extend-
C18 column. All fractions were acidified to a final concentration
of 1% formic acid and recombined by pooling every 6th fraction
in a step-wise concatenation. Reconstituted peptides from each of
the 6 BRP fractions were separated on an online nanoflow EASY-
nLC 1000 UHPLC system (Thermo Fisher Scientific) and ana-
lyzed on a benchtop Orbitrap Q Exactive plus mass spectrometer
(Thermo Fisher Scientific). The ~1 μg peptide samples were
injected onto a capillary column (Picofrit with 10-μm tip open-
ing/75 μm diameter, New Objective, PF360-75-10-N-5) packed
in-house with 20 cm C18 silica material (1.9 μm ReproSil-Pur
C18-AQ medium, Dr. Maisch GmbH, r119.aq). The UHPLC
setup was connected with a custom-fit microadapting tee (360
μm, IDEX Health & Science, UH-753), and capillary columns
were heated to 50 °C in column heater sleeves (Phoenix-ST) to
reduce backpressure during UHPLC separation. Injected peptides
were separated at a flow rate of 200 nL/min with a linear 84 min
gradient from 94% solvent A (3% acetonitrile, 0.1% formic acid)
to 35% solvent B (90% acetonitrile, 0.1% formic acid), followed by
a linear 8 min gradient from 35% solvent B to 60% solvent B and
a 3 min ramp to 90% B. The Q Exactive instrument was operated
in the data-dependent mode acquiring HCD MS/MS scans
(R=17,500) after each MS1 scan (R=70,000) on the 12 top most
abundant ions using an MS1 ion target of 3 × 106 ions and an
MS2 target of 5 × 104 ions. The maximum ion time utilized for
the MS/MS scans was 120 ms; the HCD-normalized collision
energy was set to 29; the dynamic exclusion time was set to 20 s,
and the peptide match and isotope exclusion functions were
enabled.

Protein quantification. Mass spectra were analyzed using Spec-
trum Mill (v7.0; https://proteomics.broadinstitute.org). For pep-
tide identification, MS/MS spectra were searched against the
human UniProt database to which a set of common laboratory
contaminant proteins was appended. Search parameters included:

ESI-QEXACTIVE-HCD scoring parameters, trypsin enzyme
specificity with a maximum of two missed cleavages, 40% mini-
mum matched peak intensity, ± 20 ppm precursor mass toler-
ance, ± 20 ppm product mass tolerance. Carbamidomethylation
of cysteines and iTRAQ4 full labeling of lysines and peptide
n-termini were set as fixed modifications. Allowed variable
modifications were oxidation of methionine (M), acetyl (ProtN-
term), and deamidated (N), with a precursor MH+ shift range of
−18 to 64 Da. Identities interpreted for individual spectra were
automatically designated as valid by optimizing score and delta
rank1-rank2 score thresholds separately for each precursor charge
state in each LC-MS/MS while allowing a maximum target-
decoy-based FDR of 1.0% at the spectrum level. Identified pep-
tides were organized into protein groups and subgroups (isoforms
and family members) with Spectrum Mill’s subgroup-specific
option enabled, so that peptides shared between subgroups were
ignored when using report ion intensities to perform protein-level
quantitation.

IP-MS data processing and analysis
Data processing. Starting with the protein-level quantification
report for each IP-MS experiment, we performed data processing
as follows: (1) log2 transformation and median normalization of
the protein intensity values in each bait (i.e., index protein) or
control IP sample; (2) removal of non-human and uncharacter-
ized proteins, contaminants (e.g., keratins, keratin-associated
proteins, trypsins, etc.), unresolved isoforms (i.e., multiple iso-
forms of the same protein that showed up with identical intensity
values in MS), and proteins supported by <2 unique peptides; (3)
mapping the remaining proteins to their corresponding HGNC
gene symbols and GRCh37/hg19 genomic positions using
Ensembl88; (4) imputing missing intensity values in each sample
by randomly sampling from a normal distribution with a width of
0.3 standard deviation (SD) and downshift of 1.8 SD compared to
the observed intensity distribution16,89; (5) calculated protein log2
fold change (FC) values for each pair of bait vs. control replicate
samples.

Genoppi analysis. We used the Genoppi R package16 (v1.0) to
perform QC and analyze each processed IP-MS dataset. Pearson’s
correlation of log2 FC values between replicates was calculated to
assess overall robustness of the IP-MS experiment. Average log2
FC, P value, and Benjamini-Hochberg false discovery rate (FDR)
for each protein were calculated using a one-sample moderated
t-test from limma90 to identify significant proteins with log2 FC >0
and FDR ≤0.1 (i.e., proteins with significantly higher abundance in
the bait IPs compared to the controls); these proteins were defined
as significant interactors of the index protein in downstream ana-
lyses. Using these statistics, we performed QC to identify a subset of
high-quality datasets in which the replicate log2 FC correlation was
>0.6 and the index protein itself was significant at log2 FC >0 and
FDR ≤0.1, and restricted all subsequent analyses to these datasets.
We also assessed the overlap between significant proteins in each
dataset and known interactors of the index protein in the InWeb
database17 (as curated in the Genoppi R package) to distinguish
between published vs. potentially novel interactions in our results.
Analysis results, experimental details, and summary statistics for
the subset of datasets that passed QC are provided in Supple-
mentary Data 5 and 6.

Comparing IP-MS datasets
Across experimental conditions. In order to compare IP-MS
datasets generated using different IP methods (endogenous or
overexpression/tagging), MS facilities (Broad or Whitehead), or
cell types (HAEC or HCASMC), we calculated various QC
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metrics for each dataset, including: replicate log2 FC correlation,
number of detected and significant (log2 FC >0 and FDR ≤0.1)
proteins, number of detected and significant ribosomal proteins
(i.e., proteins with RPL- or RPS- prefix in gene symbols), and
overlap enrichment between significant proteins and known
InWeb interactors. We then performed two-tailed Wilcoxon rank
sum tests to assess if the distribution of each metric is sig-
nificantly different between datasets generated under different
conditions.

Overlap of interactors. For IP-MS datasets of the same index
protein, we used the ggVennDiagram R package (v1.2.2) to
visualize the number of interactors that overlap between the
datasets. In addition, we performed a one-tailed hypergeometric
test to assess the significance of overlap between each pair of IPs
using the following definitions: (1) the total “population” (N)
consists of all genes that were detected in both IPs; (2) the
“success in population” (k) is the subset of N that are significant
interactors in IP1; (3) the “sample” (n) is the subset of N that are
significant interactors in IP2; (4) the “success in sample” (x) is the
overlap between k and n.

Defining interactors and non-interactors in the PPI networks.
Using the IP-MS analysis results, we defined lists of interactors vs.
non-interactors for each index protein to generate combined PPI
networks and to perform downstream enrichment analyses.
Specifically, the non-interactors were used as background con-
trols in conditional enrichment analyses, in which we aimed to
identify significant biology captured by the index protein inter-
actors while accounting for the cell-type-specific nature of our
PPI data. For each individual IP-MS dataset, significant proteins
with log2 FC >0 and FDR ≤0.1 were defined as “interactors” while
other detected proteins were defined as “non-interactors”; the
index protein used as the bait in the IP was excluded from these
lists. When combining results from multiple IP-MS datasets (e.g.,
all IPs for the same index protein, all IPs performed in the same
cell type, etc.), proteins that were significant in ≥1 dataset were
defined as “interactors”; proteins that were detected in ≥1 dataset
but were not significant in any dataset were defined as “non-
interactors”; all index proteins for the source IPs were excluded.
Furthermore, for index proteins with IP-MS data in both EC and
SMC, we subsetted the data by cell type to define additional
networks that contain interactors identified exclusively in EC (EC
only), exclusively in SMC (SMC only), in both cell types (Inter-
sect), or in either cell type (Union). Supplementary Data 8 pro-
vides additional details on the generated PPI networks, including
the summary counts and the full lists of interactors vs. non-
interactors in each network.

Assessing overlap with PPI databases. To further assess whether
the identified PPIs have been reported in the literature, we
compared them against data from six PPI databases/datasets
(Supplementary Data 8). Three datasets are curated and described
in the Genoppi R package (v1.0): (1) InWeb17; (2) BioPlex18

(v3.0, HEK293T); and (3) iRefIndex19 (v17.0). The other three
datasets are: (4) the HuRI HI-union network, from Supplemen-
tary Table 11 of ref. 20; (5) the STRING21 (v11.5) human physical
subnetwork, downloaded from https://string-db.org/cgi/
download?sessionId=bpij0JN28bsF; and (6) the PCNet22 net-
work, retrieved from the Network Data Exchange (NDEx) with
UUID f93f402c-86d4-11e7-a10d-0ac135e8bacf.

Generating PPI network plots. To visualize the combined PPI
networks containing all index proteins and their interactors
identified in EC or SMC, we used the igraph (v1.2.5) and qgraph

(v1.6.5) R packages to generate undirected network graphs, in
which a vertex represents an index or interactor protein and an
edge represents a significant index protein-interactor interaction
observed in our IP-MS data.

Tissue and gene set enrichment analysis. We performed one-
tailed hypergeometric tests to assess the significance of overlap
between the interactors in our PPI networks and various gene
sets. The gene sets we tested have all been curated in the Genoppi
R package (v1.0) and include: (1) tissue-specific gene sets defined
using GTEx RNA-seq data40; (2) tissue-specific gene sets defined
using GTEx proteomic data44; (3) MSigDB Hallmark and Reac-
tome gene sets45,46; and (4) GO BP, CC, and MF terms47,48. To
assess GTEx tissue enrichment using RNA or proteomic data, we
first performed a global enrichment analysis between each tissue-
specific gene set and each PPI network using the following defi-
nitions: (1) the total “population” (N) consists of all genes that
have been annotated in ≥1 gene sets; (2) the “success in popu-
lation” (k) is the subset of N that are interactors in the PPI
network; (3) the “sample” (n) is the subset of N that are in the
current gene set; (4) the “success in sample” (x) is the overlap
between k and n. As comparison, we also performed the analo-
gous global analysis for the non-interactors linked to each net-
work, as well as a conditional analysis in which we compared the
interactors against the non-interactors (i.e., by further restricting
the “population” defined above to genes encoded by interactors or
non-interactors in the network). For the MSigDB and GO ana-
lyses, we performed analogous conditional tests that compared
the interactors against the non-interactors, to identify gene sets
that are significantly enriched even when accounting for the
background cellular context of our data.

Whole proteome analysis. Protein expression values were
derived from the whole proteome dataset in Supplementary Data
7 of ref. 49, which analyzed cardiac fibroblasts (CF), endothelial
cells (EC), and smooth muscle cells (SMC) collected during
cardiovascular surgery and adipose fibroblasts (AF) as a control
cell type. We compared the expression of index protein inter-
actors, non-interactors, and other proteins found in the whole
proteome dataset using two-tailed Wilcoxon rank sum tests.

Genetic risk enrichment analysis. We used MAGMA50 (v1.09)
and CAD GWAS summary statistics from a meta-analysis of the
UK Biobank and CARDIoGRAMplusC4D51 to assess whether the
interactor genes in our PPI networks are enriched for polygenic
risk of CAD. We also performed analogous MAGMA analyses
using GWAS summary statistics of aortic size56 (ascending aortic
(AA) or descending aortic (DA) diameter) and stroke57 (any
stroke (AS), any ischemic stroke (AIS), large-artery athero-
sclerotic stroke (LAS), cardioembolic stroke (CES), or small-
vessel stroke (SVS)). First, we annotated protein-coding genes in
the Ensembl88 GRCh37 database with variants in the 1000
Genomes91 (phase 3) EUR panel using a flanking window of ±
50 kb; variants in the major histocompatibility complex region
(chr6:28.5M–33.4M) were excluded due to its complex LD
structure. Next, for each GWAS dataset, gene-based P values were
calculated using the SNP-wise Mean model and the 1000 Gen-
omes EUR panel. Then, for each GWAS dataset and each PPI
network, the gene set analysis model was used to compare the
interactor genes in the network against the rest of the genome (for
the global enrichment tests) or the non-interactor genes (for the
conditional enrichment tests), computing a one-tailed P value
that indicates whether the interactors are more strongly asso-
ciated with the GWAS phenotype.
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Using PPI networks to prioritize additional CAD-risk genes
from GWAS data. Starting with 157 genome-wide significant
index variants reported in the UK Biobank and CARDIo-
GRAMplusC4D GWAS51, we used PLINK92 (v1.9) and the 1000
Genomes91 (phase 3) EUR panel to define LD locus boundaries
for each variant, which span SNPs with r2 >0.6 ± 50 kb on either
end. Next, we used gene annotations from Ensembl88 to extract
all protein-coding genes overlapping the LD loci and intersected
them with index genes and interactors derived from our IP-MS
data. We plotted the resulting list of prioritized genes in a “social
Manhattan plot” where the chromosomal position of each gene is
shown on the x axis and the GWAS P value of its tagging SNP is
shown on the y axis, while the edges connecting the genes
represent observed protein interactions between them.

Statistics and reproducibility. The genetic risk enrichment
analysis was performed using MAGMA (v1.09). Other statistical
analyses were performed in R. Analysis scripts with package and
version documentation are deposited at GitHub (https://github.
com/lagelab/CAD_PPI). Statistical tests and significance cutoffs
used are described in “Methods” and figure legends.

The IP-MS experimental replicates are described in “Methods”
under “Co-immunoprecipitation using index proteins as baits”.
Briefly, for each experiment, each bait or control IP mixture was
split into three replicates. Two of the three replicates were
submitted for mass spectrometry and the remaining replicate was
used for quality control by western blot analyses (Supplementary
Figs. 1 and 2).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The mass spectra from IP-MS experiments and the protein sequence databases used for
searches have been deposited at MassIVE (https://massive.ucsd.edu) with identifiers
MSV000091373 (data from Whitehead Proteomics Core Facility) and MSV000091699
(data from Broad Proteomics Platform). Source data for figures are documented in
Supplementary Data 1.

Code availability
Original code has been deposited at GitHub (https://github.com/lagelab/CAD_PPI) and
Zenodo (https://doi.org/10.5281/zenodo.8415025).
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