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Infant diarrheal disease in rhesus macaques
impedes microbiome maturation and is linked to
uncultured Campylobacter species
Nicholas S. Rhoades1,2, Isaac R. Cinco2, Sara M. Hendrickson3, Kamm Prongay4, Andrew J. Haertel 4,

Gilberto E. Flores 5, Mark K. Slifka 3 & Ilhem Messaoudi 2✉

Diarrheal diseases remain one of the leading causes of death for children under 5 globally,

disproportionately impacting those living in low- and middle-income countries (LMIC).

Campylobacter spp., a zoonotic pathogen, is one of the leading causes of food-borne infection

in humans. Yet to be cultured Campylobacter spp. contribute to the total burden in diarrheal

disease in children living in LMIC thus hampering interventions. We performed microbiome

profiling and metagenomic genome assembly on samples collected from over 100 infant

rhesus macaques longitudinally and during cases of clinical diarrhea within the first year of

life. Acute diarrhea was associated with long-lasting taxonomic and functional shifts of the

infant gut microbiome indicative of microbiome immaturity. We constructed 36 Campylo-

bacter metagenomic assembled genomes (MAGs), many of which fell within 4 yet to be

cultured species. Finally, we compared the uncultured Campylobacter MAGs assembled from

infant macaques with publicly available human metagenomes to show that these uncultured

species are also found in human fecal samples from LMIC. These data highlight the impor-

tance of unculturable Campylobacter spp. as an important target for reducing disease burden

in LMIC children.
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D iarrheal diseases are the second leading cause of death in
children under five years of age with over 500,000 fatal-
ities every year that disproportionally impact low- and

middle-income countries (LMIC)1,2. A wide range of enteric
pathogens (Rotavirus, Norovirus, Campylobacter, Shigella, Giar-
dia, etc.) are responsible for diarrheal diseases in children.
However, these known pathogens only account for 40–50% of
cases in LMIC leaving a substantial number of cases that cannot
be attributed to a specific pathogen3,4. It also remains unclear why
children who grow up in the same environment have differing
susceptibility to enteric pathogens. One potential mechanism is
the diversity of the gut microbiome which is highly dynamic in
early life. It is well-established that the gut microbiome modulates
host susceptibility to enteric pathogens through production of
anti-microbial products, competition for niche space, and edu-
cation of the immune system5–8. However, the role of specific
components of the commensal gut microbiome in regulating
susceptibility to and severity of diarrheal disease remains poorly
understood due to lack of a clear definition of a “healthy”
microbiome, a lack of longitudinal studies that include pre-
symptom samples, and difficulty in collecting samples in
resource-limited settings where diarrheal diseases are prevalent. A
better understanding of the role of the gut microbial community
would pave the way to the development of better therapeutic
interventions and vaccination.

We have recently described an infant rhesus macaque model of
environmentally acquired diarrheal disease and enteric dysfunc-
tion that is primarily driven by Campylobacterosis9–11. Our
macaque model accurately recapitulates many of the key features
of diarrheal diseases in resource limited settings including stunted
developmental trajectory of the gut microbiome9, markers of local
and systemic immune dysfunction10, growth faltering, and his-
topathological changes in the small and large intestine11. In this
study, we utilize microbiome profiling and metagenomic genome
assembly on longitudinal samples collected from over 100 infant
macaques across 5 pre-determined time-points during their first
year of life. Moreover, over the course of the study, 34 animals
developed diarrhea, and in those instances, additional samples
were collected at the time of entry and exit from the clinic and
subjected to the same analyses. As observed in humans12–14,
diarrhea was associated with delayed maturation of the infant gut
microbiome, specifically by the reduction of diversity in the gut
microbial community which persisted after resolution of symp-
toms. Interestingly, infants that later developed diarrhea harbored
a distinct microbiome from that of infants that remained
asymptomatic as early as at 1 month of age. One of the distin-
guishing features was higher relative abundance of Campylobacter
at the genus level that was evident before disease onset.

Campylobacter is one of the four leading causes of diarrheal
diseases, and the primary cause of foodborne infections in
humans globally, with the majority of infections being caused by
the species Campylobacter jejuni (C. jejuni) and Campylobacter
coli (C. coli)15. Campylobacterosis can lead to significant mor-
bidity and mortality in children under five1,2,16 especially those
living in LMIC17–20. More importantly, children in LMIC are
more likely to experience subclinical Campylobacter colonization,
which has been associated with growth stunting, aberrant
inflammation, and dysbiosis21,22. Despite its global impact on
public health, our understanding of the complex etiology and true
diversity within the Campylobacter genus remains incomplete.
Over the past decade more than a dozen named species have been
added to the genus and associated with multiple clinical mani-
festations including ulcerative colitis, periodontitis, diarrhea, and
cancer23–25. Moreover, recent studies using culture-independent
techniques such as qPCR and metagenomic genome assembly
have identified additional non-coli/jejuni Campylobacter species

that had been missed by traditional culture assays, notably Can-
didatus Campylobacter infans (C. infans) which was initially
assembled from a child experiencing diarrhea in India and has
since been identified in samples from 6 additional LMIC
countries26–28. In this study, we constructed 36 Campylobacter
metagenomic assembled genomes (MAGs), 15 of which belong to
uncultured species that could be classified into 4 uncultured
metagenomic groups (UMGs). These uncultured Campylobacter
species had unique metabolic and pathogenicity profiles, and the
majority were previously reported in human samples. These data
will aid in the efforts aimed at the isolation and cultivation of
undescribed Campylobacter and provides genomic insights into
their impact on human health.

Results
Diarrhea disrupts the taxonomic development of the infant
macaque gut microbiome. 16S rRNA gene amplicon sequencing
was used to profile the fecal microbiome of 130 infant rhesus
macaques, 34 of which developed clinical diarrhea during the first
year of life (26.4%). Rectal swabs were collected at 1, 3, 6, 9 and
12 months of age (Fig. 1A). Additional swabs were collected any
time an infant was admitted to the clinic for diarrhea and when
the infant was released after treatment (Fig. 1A). The majority of
infants in this study experienced their first case of clinical diar-
rhea between 3 and 9 months of age while only two of 34 infants
experienced clinical diarrhea prior to 3-months (Fig. 1B,
Table S1). We first examined the maturation of gut microbial
communities of healthy infants that did not experience an episode
of diarrhea. While Prevotella was highly abundant at all the
timepoints, loss of milk degrading bacteria such as Bifidobacter-
ium and concomitant increase in fiber degraders like Treponema
was observed over the 12 months of life (Fig. 1C, D, Table S2).
Additionally, the microbiome of infants that remained healthy
progressively became closer to that of adult dams and the inter-
group variability was decreased over the 12-month period
(Fig. 1D–F).

However, disruptions in this developmental trajectory were
observed in infants that developed diarrhea (none of the samples
included in this analysis were obtained during acute disease).
Specifically, a stunting in the trajectory was evident at 3-months
of age, prior to most infants experiencing their first episode of
diarrhea (Fig. 1D). These changes included increased dissimilarity
from the dam gut microbiome (Fig. 1E) and increased within
group dissimilarity (Fig. 1F) compared to healthy infants. This
delay in maturation became more pronounced with increasing
age (Fig. 1D, E). Moreover, the microbiome of sick infants was
less phylogenetically diverse at the 6- to 12-month timepoints
compared to that of infants that remained asymptomatic
(Fig. 1G). Diversity of the microbial community was further
reduced at the time of acute diarrhea as expected with an enteric
infection (Fig. 1G). Although the diversity of the microbial
community was significantly increased after treatment and exit
from the clinic, it remained below that observed in healthy infants
(Fig. 1G).

Taxonomically, we found no significant difference at the 16s
amplicon level at the 1-month time point between animals that
remained healthy and those that developed diarrhea (Fig. 1H).
However, several significant differences were identified at the
3-month time point (when only 2 of 34 animals experienced their
first episode) and beyond (Fig. 1H, Table S3). These changes
included a sustained increase in known short chain fatty acid
producers and fiber degraders in healthy infants, notably
Ruminococcaceae, Fibrobacter and Treponema in infants that
remained healthy (Fig. 1H, Table S3). On the other hand, the gut
microbiomes of infants that developed diarrhea were enriched in
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Fig. 1 Diarrhea stunts the development of the infant microbiome. A Study timeline and sample collection. The dotted line between 3 and 9 months
denotes the period in which most of the infants entered and exited the clinic for treatment and sample collection during their first case of diarrhea. B Kaplan
Meier curve of diarrhea incidence within the study population indicating the first incidence of clinical diarrhea for every animal that experienced symptoms
over the course of the study (first 12 month of life). C Stacked bar plot of the top 30 most abundant taxa across all samples, each bar represents the
average relative abundance of each taxon within the indicated group. D Principal coordinate analysis (PCoA) of fecal microbiome unweighted UniFrac
distance (16S amplicon) colored by host status and timepoint. Small points represent individual samples while larger points represent the centroid for a
given timepoint/host status. Solid lines connecting centroids illustrate the developmental trajectory of both healthy and sick infants. Density plots of key
taxa and observed ASVs are in grey below the plot. E–G Dot plot of (E) UniFrac distance between dams and each infant timepoint/health status, F within
group UniFrac distance for each infant group, and (G) Faith’s phylogenetic diversity, in healthy and sick infants. H Heatmap of select differentially abundant
taxa at longitudinal time-points as determined by LEfSe (Log10 LDA score > 2). I Longitudinal dot plot of Campylobacter relative abundance, in healthy and
sick infants. J Relative abundance of Campylobacter at first clinic entry and exit. Significance for panels (E) and (F) was determined using one-way ANOVA
****p < 0.0001, with Holm-Sidak’s multiple comparison test, ****p < 0.0001, error bars = SEM. Significance for panels (G) and (I) was determined using
unpaired T-test at each time-point, *p < 0.05, **p < 0.01, ***p < 0.001, error bars = SEM. Significance for panels (J) was determined using paired T-test,
*p < 0.05. DX Diarrhea.
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Prevotella, Streptococcus, and Campylobacter species (Fig. 1H,
Table S3). Indeed, a significantly higher relative abundance of
Campylobacter was observed at timepoints 3- to 12-months in
infants that developed diarrhea (Fig. 1I). The relative abundance
of Campylobacter was significantly higher when sick infants
entered the clinic with acute diarrhea compared to their exit
(Fig. 1J). Although, the relative abundance of Campylobacter
decreased at discharge, it remained higher than that observed in
healthy infants (Fig. 1J). Of note, Campylobacter relative
abundance assessed by 16S rRNA amplicon sequencing correlated
significantly with Campylobacter colony forming units as
measured by qPCR (Fig. S1A). Together these data suggest that
diarrhea stunts the development of the infant gut microbiome
resulting in a more heterogeneous but less diverse community
with increased Campylobacter burden.

We also profiled the gut mycobiome and its maturation over
the first year of life and how it is impacted by diarrheal disease
using internal transcribed sequence (ITS) sequencing using a
subset of samples (Fig. S1B). As established for the prokaryotic
microbiome, the gut mycobiome became more diverse over time
(Fig. S1B–D). While we observed no differences between the two
groups at the 1-month timepoint, animals with a history of
diarrhea exhibited a less diverse mycobiome than age-matched
healthy infants during acute disease and at 12-months of age
(Fig. S1D). Taxonomically, the macaque mycobiome is poorly
defined, leading to a large portion of sequences being classified as
“unidentified fungi” (Fig. S1B). Nevertheless, differentially
abundant taxa (Rhizophydium and Metschnikowia continentalis)
were identified during acute disease and at 12-months of age
(Fig. S1E).

A majority of the infants in this study were vaccinated against
C. coli as previously described29. While C. coli vaccination
reduced overall diarrheal disease burden, it did not impact the
composition of the fecal microbiome29. However, since Campy-
lobacter spp. were associated with diarrheal disease in our study
population, we conducted additional analyses to confirm that the
trends observed were not associated with vaccination. Micro-
biome stunting, reduced community richness, and increased
Campylobacter abundance were still observed when samples were
subsetted based on vaccination status (Fig. S2A–J).

Role of maternal microbiome in infant susceptibility to diar-
rheal diseases. The role of the maternal microbiome in mod-
ulating infant susceptibility to diarrheal diseases remains poorly
defined. Therefore, we compared the microbiomes of dams that
gave birth to infants that later developed diarrhea to those that
gave birth to infants that remained asymptomatic at ~1 month
after delivery. At the 16S rRNA amplicon level, minor differences
were noted in the overall composition of the gut microbiome
between these two groups (Fig. S3A, B). However, higher reso-
lution taxonomic data generated using shotgun metagenomics
indicated that the microbiome of dams who gave birth to infants
that later experienced diarrhea harbored increased abundance of
both Escherichia coli (E. coli), Bifidobacterium pseudocatenulatum
(B. pseudocatenulatum), and C. jejuni (Fig. S3C, D). Additionally,
the gut microbiome of dams whose infants later developed
diarrhea was enriched in nitrate reduction and hexitol fermen-
tation pathways while that of dams whose infants remained
healthy was enriched in homolactic fermentation (Fig. S3E, F).

Diarrheal disease disrupts the functional maturation of the
infant macaque gut microbiome. We next used shotgun meta-
genomics to define the development of the infant gut microbiome
at the functional and taxonomic levels and determine how diar-
rhea disrupts these processes. As seen with 16S amplicon data,

age was a strong predictor of gut microbiome functional potential
and taxonomic composition (Fig. S4A, B). Specifically, at early
time-points the microbiome was enriched in pathways for the
degradation of sugars commonly found in breastmilk including
fucose degradation, Bifidobacterium shunt (1-month) and 1,5-
anhydro-fructose degradation (3-months) (Fig. S4C). At later
time points anabolic pathways such as L-isoleucine biosynthesis
(6-months), L-tryptophan biosynthesis and folate transformation
(9-months) as well as pathways associated with the production of
short-chain fatty acids such as pyruvate fermentation to iso-
butanol (9-months) were increased (Fig. S4C).

Next, we explored potential predictors of diarrheal disease and
assessed the impact of diarrhea on the functional potential of the
gut microbiome (Fig. 2A). Although overall functional capacity
did not differ between infants that remained asymptomatic and
those that developed diarrhea at 1 month of age (prior to any
diarrhea incident; pre-DX) (Fig. 2A), several metabolic pathways
were differentially abundant between these two groups at this
early time point. Specifically, glycolysis, and homolactic fermen-
tation pathways were more abundant in infants that remained
asymptomatic while anhydro-fructose and amino-butonate
degradation pathways were enriched in infants that later
developed diarrhea (Fig. 2B, Table S4). To assess the impact of
acute diarrhea and ensuing treatment, we grouped animals into
early (3–6 months; Early-DX) and late onset (6.1–11 months;
Late-DX) of disease. At both time frames, the microbiomes of
healthy infants were enriched in L-arginine biosynthesis and
folate transformation (Fig. 2B, Table S4). Acute diarrhea at 3-6
months of age led to increased abundance of fatty acid elongation,
palmitoleate biosynthesis, and phosphatidylcholine editing path-
ways (Fig. 2B, Table S4). After clinic exit, the microbiomes of
these infants were enriched in nitrate reduction and histidine
degradation pathways (Fig. 2B, Table S4). The microbiomes of
animals that developed diarrhea between 6 and 11 months of age
were enriched in fatty acid elongation during acute disease and
sulfate reduction and sucrose degradation upon exiting the clinic
(Fig. 2B, Table S4).

At 9 or 12 months of age (at least 1 month after the last diarrhea
episode; Post-DX) the microbiomes of animals that experienced
diarrhea were enriched in multiple pathways including thiazole
biosynthesis, methyl-citrate cycle, palmitoleate biosynthesis, and
fucose degradation (Fig. 2B). Since the pathway for folate
transformation was enriched in healthy infants across multiple
time-points, we attempted to identify the species contributing to
this pathway. This analysis revealed that Bracyspira pilosicoli was a
major contributor to folate transformation in healthy infants early
in life and replaced bymultiple Prevotella species namely AM42_24
and CAG_520 later in life (Fig. 2C).

Disruption in the taxonomic maturation of the gut micro-
biome due to diarrheal disease. Taxonomically, we observed a
loss of all Bifidobacterium species and concomitant increase of
Treponema at ~6-months of age which coincided with when most
infant macaques are weaned (Fig. S4B, D). Additionally, we found
that Prevotella species were dynamic at the species level, with
Prevotella copri (P. copri) only becoming dominant at ~6month of
age, while uncultured Prevotella sp_885 was only observed in
young infants and Prevotella CAG_5226 was only abundant in
the dams (Fig. S4D). At 1 month of age (pre), although overall
taxonomic composition did not differ between animals that
remained asymptomatic and those that developed diarrhea
(Fig. 3A), multiple species were differentially abundant between
the two groups (Fig. 3B). Of note, relative abundance of Rumi-
nococcus CAG_624 was increased in infants that remained
asymptomatic while relative abundance of Anaerostipes hadrus
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was increased in infants that later developed diarrhea (Fig. 3B,
Table S5).

We then assessed the impact of acute diarrhea and ensuing
treatment in infants that developed diarrhea 3–6 months (early)
and 6.1–11 months (late) of age. In both timeframes, the
microbiomes of infants that remained asymptomatic were

enriched in Lactobacillus, Treponema, Bracyspira species as well
as Helicobacter macacae (Fig. 3B, Table S5). In contrast, acute
diarrhea was associated with increased abundance of multiple
Campylobacter and Prevotella species (Fig. 3B, Table S5). After
exit from clinic, the relative abundance of P. copri, Streptococcus
lutetuensis, and Veillonella parvula was increased (Fig. 3B,
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Table S5). At 12-months of age (at least 1-month after the last
exit from clinic), many differences that were observed during
acute disease persisted, most notably the increased abundance of
Campylobacter persisted (Fig. 3B, Table S5).

Metagenomic genome assembly reveals a diverse set of Cam-
pylobacter species associated with diarrhea. Given the increased
relative abundance of Campylobacter in infants who experienced
diarrhea and the recent reports of the critical role that unrecog-
nized Campylobacter species play in childhood diarrheal disease
and growth/cognitive stunting27,28,30, we utilized metagenomic
genome assembly to explore the diversity of enteric Campylobacter
species within infant macaques. We assembled 36 high quality
(>80% complete with <2% contamination) Campylobacter meta-
genomic assembled genomes (MAGs). Despite the inclusion of
58 samples from healthy infants, all Campylobacter MAGs

originated from samples collected from infants that developed
diarrhea. A phylogenetic tree based on the alignment of 50 con-
served single copy genes showed that most MAG belonged to
known species including 13 Campylobacter hyointestinalis (C.
hyointestinalis) genomes, 5 C. coli genomes, and 3 C. jejuni gen-
omes (Fig. 3C, Tables S6, S7). The remaining 15 Campylobacter
MAGs were divided into 4 distinct groups (UMGs) with 8 gen-
omes falling into “UMG-1”, 1 genome in “UMG-2”, 5 genomes in
“UMG-3”, and 1 in “UMG-4” (Fig. 3C, Table S6). UMG 2 was
closely related to the recently identified MAG C. infans that was
assembled from a child with acute severe diarrhea in the global
enterics multi-center study (GEMS)27. UMGs 1 and 3 were closely
related to each other and to C. hyointestinalis (Fig. 3C, Table S6).
UMG-4 was distinct and most closely related to Campylobacter
troglodytis (C. troglodytis) which was isolated from chimpanzees31.

Next, we determined if these uncultered species could be
detected using a traditional shotgun metagenomics taxonomic
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classifier MetaPhlan332. This method was able to assign a relative
abundance to the 3 known Campylobacter species (C. hyointes-
tinalis, C. coli, and C. jejuni) but was unable to quantify the 4
Campylobacter UMG (Fig. 3D). We then quantified reads that
map to the assembled Campylobacter MAGs including the 4
UMGs using BowTie2 (Fig. 3D). This analysis reveals that the 4
Campylobacter UMGs were prevalent in sick infant macaques
(Fig. 3D). These analyses revealed that infant macaques are
colonized by a diverse set of both known and unknown
Campylobacter species that are more abundant in infants that
will or have already experienced an episode of diarrhea.

Genomic diversity of “Unknown” Campylobacter species. To
explore the genomic diversity of the Campylobacter MAGs
identified in this study relative to published CampylobacterMAG,
we performed a pangenomic analysis using Anvi’o33. We inclu-
ded genomes from 18 reference Campylobacter species, 11
recently described MAGs and genomes from rhesus
macaques9,10,34, and 11 human MAGs35,36 including C. infans27.
All human MAGs fell within UMG-2, -3 and -4 based on average
nucleotide identity and several were closely related to MAGs
assembled from infants that developed diarrhea in this study,
highlighting the relevance of the rhesus macaque model for
investigating these uncultured Campylobacter species (Fig. 4A–C,
Table S6).

Moreover, these humans MAGs were identified from samples
obtained from LMIC where infant diarrhea is more prevalent35,36

(Fig. 4D). We identified a total of 18,076 gene clusters (GCs), with
7099 GCs being found in only a single genome (Singletons), 3078
GCs being found in 2–3 genomes (Accessory), and 69 GCs that
were shared across all 77 genomes (Fig. 4B). We also identified
408 GCs that were present in at least 90% of all genomes. This
expanded core included GCs essential for amino acid transport
(hisM, hisC, abcC) and metabolism (pykF, pgk, gltA) (Fig. 4B).

Motility and adhesion factors in yet to be cultured
Campylobacter MAG. Next, we investigated the presence of
known virulence factors in the Campylobacter UMG identified in
this study. Using Anvi’o we assigned Clusters of Orthologous
Groups (COG) annotations to GC’s and conducted a functional
enrichment analysis. Campylobacter are highly motile due to a
single polar flagellum at both poles of the cell body which allows
them to burrow through host mucosa and access the epithelial
surface where they attach and invade. Therefore, we first exam-
ined GC’s that played a role in motility, chemotaxis, and adhesion
to host cells. Most genes associated with flagellar assembly (all flg,
fli, mot genes) were highly conserved across all genomes except
for UMG-3 (Fig. S5A). Additionally, MAGs within UMG-3
lacked genes associated with chemotaxis that were highly con-
served across all other species (Fig. S5A). Next, we examined
additional key host cell adhesion and invasion genes (pldA, ciaB,
cadF). While pldA, which is important for colonization of the
avian cecum37, was only found in UMG-3 and -4, cadF and ciaB,
which bind host epithelial fibronectin and facilitate internaliza-
tion, were found in UMG-1 and -2. Finally, UMG-3 only har-
bored ciaB (Fig. S5A).

At the amino acid level, the cadF and ciaB sequences from
rhesus MAGs of C. jejuni, C. coli, and C. hyointestinalis were
nearly identical to their respective human reference genomes
(Fig. S5B, C). On the other hand, the cadF sequences of UMG-1
and -2 were phylogenetically distinct from any other known
Campylobacter species, with one rhesus macaque MAG cadF
sequence nearly identical to that of C. infans and another human
MAG (Fig. S5B). A Similar pattern was observed for ciaB in
UMG-2 (Fig. S5C). However, the ciaB amino acid sequences of

UMG-3 from humans and rhesus macaques were distinct
(Fig. S5C). These data show that the Campylobacter UMG, with
the exception of UMG-3, have the genetic capacity for motility
and chemotaxis as well as a varied ability to attach and invade the
host epithelia.

Additional virulence factors in yet to be cultured Campylo-
bacter. Other traits of Campylobacter pathogenesis include iron
acquisition38, toxin production, and antimicrobial resistance39.
Using data from our functional enrichment analysis and anno-
tations generated using the Pathosystems Resource Integration
Center (PATRIC), we further probed the UMGs for virulence
factors associated with these processes. Enterochelin transport
system (ceuA-D), is an iron acquisition system that is highly
conserved in C. coli and jejuni. This transport system was absent
in all 4 Campylobacter UMG (Fig. 5A). However, the UMG
obtained from both humans and rhesus macaques possessed
other genes for iron acquisition including FeoA, HemH, and
HugZ (Fig. 5A).

Additionally, we examined the Liv operon, a key set of genes
involved in the import of the branch chain amino acids leucine,
isoleucine, and valine, that is essential for the colonization of the
avian caecum40. This operon was present in all C. coli and C.
jejuni genomes and all C. hyointestinalis except for the LivJ gene
(Fig. 5A). Interestingly, these genes were absent in all Campylo-
bacter MAGs except for those within UMG-2 (C.infans) which,
like C. hyointestinalis, only lacked the LivJ gene (Fig. 5A). Finally,
we examined a subset of oxidative stress genes important for
survival of Campylobacter in microaerophilic conditions includ-
ing catalase and superoxide dismutase41. All known and UMG
Campylobacter species had at least one of these oxidative stress
genes suggesting some capacity to neutralize reactive oxygen
species (Fig. 5A).

While Campylobacter produces a multitude of toxins, only
cytolethal distending toxin (CDT) has been studied in detail15. All
3 subunits, encoded by cdtA-C are required for toxicity and host
cell death42. Interestingly, the representative genomes of both C.
coli and C. hyointestinalis selected for this analysis lack cdtA and
cdtC while all rhesus macaque isolates, and MAGs encode all 3
genes (Fig. 5B, Table S8). All 3 subunits were present in both the
reference genome and rhesus macaque MAGs of C. jejuni
(Fig. 5B). Finally, while the complete cdt gene set was present in 9
of 27 other known non-Coli/Jejuni Campylobacter species, these
genes were absent in all UMG (Fig. 5B).

The Campylobacter Multidrug Efflux system (CME) plays an
essential role in the resistance of C. coli and jejuni to a multitude
of antimicrobial agents43. CME efflux pumps are composed of
two distinct systems, cmeABC encode the primary efflux pump
while cmeDEF encodes a secondary efflux pump that provides
additional resistance but not to the level of cmeABC44. The
transcription of both efflux pumps is under regulation of cmeR.
Both C. coli and C. jejuni genomes encode all 7 genes (Fig. 5C).
Although C. hyointestinalis MAGs from rhesus macaques encode
the cmeABC system, the human reference genome of C.
hyointestinalis is void of all cme genes (Fig. 5C). With the
exception of MAGs within UMG-4, which encoded the cmeDEF
genes, CMW genes were absent in all UMG (Fig. 5C).

Finally, we examined key genes involved in respiration and
more specifically the electron transport chain. Campylobacter
utilize unique and essential electron donors and acceptors such as
Formate and Fumarate. Key mutations in the nuoC-E genes of
respiratory Complex I (NADH ubiquinone oxidoreductase)
found in C. coli, C. jejuni, and many other cultured Campylo-
bacter facilitate the use of flavodoxin and menaquinone rather
than NADH and ubiquinone as electron carriers to generate
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membrane potential45,46. This pattern can be used to distinguish
between C. coli/jejuni and C. hyointestinalis/fetus which use the
canonical NADH and ubiquinone as their electron transporters.
MAGs from rhesus macaques and genomes from C. coli/jejuni
and C. hyointestinalis isolates recapitulated this pattern (Fig. 5D).

In contrast, all MAGs belonging to UMGs 1-4 lacked all genes
needed to assemble respiratory Complex I (NADH ubiquinone
oxidoreductase) (Fig. 5D). This was also observed in reference
genomes from C. showae, C. mucosalis, C. rectus, C. avium, and C.
troglodytis (Fig. 5D).
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Discussion
It is widely accepted that the gut microbiome plays a key role in
modulating host susceptibility to enteric disease3,4,12–14. How-
ever, microbiome studies are challenging to conduct in humans in
part due to the substantive individual variability of the human gut
microbiome and the difficulties of longitudinal sampling before
and after disease. In this study, we leveraged an infant rhesus
macaque model to define the maturation/evolution of the gut
microbiome throughout the first year of life as well as during and
at the end of acute diarrhea episodes.

Data presented in this manuscript recapitulate the pattern of
microbiome stunting that has been observed in humans with
diarrheal disease14,47. This disruption was associated with
increased intra-group variability and a reduced diversity of the
gut community. The divergence between microbial communities
of animals that remained asymptomatic and those that developed
diarrhea was evident as early as 1–3 month of age before any
clinical episode. Moreover, relative abundance of Campylobacter
was increased as early as 3-months of age in the microbiome of

infants that later developed diarrhea. These findings suggest that
subclinical colonization with pathobionts may disrupt the
maturation of the microbiome and precede clinical disease3,13,48.

In addition to the prokaryotic microbiome, we also profiled the
gut mycobiome of infant macaques. We report that the diversity
of the mycobiome increased with age, a process that was dis-
rupted by diarrhea, as evidenced by the abundance in rhizophy-
dium and metschnikowia continentalis at 12-months of age. In
humans, dysbiosis of the gut mycobiome has been reported in
individuals with irritable bowel syndrome (IBS) and following
antibiotic treatments49,50. Further studies are needed to deter-
mine if the mycobiome is truly disrupted by diarrheal disease or
simply a co-variate of microbial dysbiosis.

We also found that the gut microbiome of dams that gave birth
to infants who experienced diarrhea was both functionally and
taxonomically distinct prior to the infants becoming sick,
including increased pathogen burden (C. jejuni and E. coli). Our
data align with recent findings from human cohorts that
demonstrated that the maternal microbiome can modulate the
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infant microbiome composition, immune development, and
infant growth51–53. However, the mechanism by which the
maternal microbiome influences protection and/or vulnerability
to disease in the infant deserves further attention as the maternal
microbiome is dynamic during the perinatal period.

Similar to what has been shown in humans, the microbiome of
infant macaques that were still nursing was enriched in pathways
associated with milk-oligosaccharide degradation such as fucose
degradation54. Additionally, microbial pathways for the produc-
tion of short-chain fatty acids were increased in post-weaned
infants in agreement with observational data from humans54,55.
As noted with taxonomic stunting, diarrhea also disrupted the
functional maturation of the infant gut microbiome leading to a
reduction in the abundance of folate transformation pathways
and an increase in palmitoleate biosynthesis pathway among
others. Folate, or vitamin B9, is among the essential vitamins that
the host relies on the commensal microbes to synthesize and
transform prior to absorption56. In line with this observation,
reads mapping to some organisms known to be critical in this
pathway such as several Bifidobacterium species (B. pseudocate-
nulatum, B. adolescentis, B. longum) were detected57. Together,
these observations indicate that diarrheal disease disrupts the
colonic microbiome’s ability to transform folate, in line with
histopathological finding from infant macaques with EED11.

In agreement with our previous findings, we show that diarrhea
was associated with increased abundance of the immunomodu-
latory palmitoleic acid production pathways9,58. Finally, we found
that a history of diarrhea resulted in a gut microbiome enriched
in pathways for the utilization of alternative electron acceptors
such and Nitrate and Sulfate. Host inflammation has been shown
to increase Nitrogen electron acceptor and antibiotic use can
disrupt redox states within the gut59. It is possible that these shifts
in redox dynamics prolong microbial dysbiosis and exacerbate
inflammatory outcomes.

Taxonomically, we report decreased abundance of beneficial
microbes (i.e., Prevotella, Treponema succinifaciens and H.
macacae) in infants that experienced diarrhea across the entire
timeline. In humans, operational taxonomic units of Prevotella
have been reported to be overrepresented healthy infants and
adults in countries outside of the United States of America60 in
agreement with our earlier report that the infant macaque
microbiome was more closely related to that of children in
LMIC9. Furthermore, H. macacae has previously been shown to
have a potentially antagonistic association with Campylobacter
likely through physical competition for resources in the colonic
mucosa9,61. Lactobacillus, a prominent genus in the infant gut,
was also reduced following diarrhea62. Lactobacillus and Trepo-
nema may play a similar role to H. macacae in humans63,64. In
contrast, Campylobacter spp. were among the major taxa that
were more abundant in infants that later experienced diarrhea.
Due to the self-limiting nature of Campylobacter infection, it is
probable that, following acute diarrhea, the relative abundance of
these bacteria will decrease overtime. However, sick individuals
may become asymptomatic carriers resulting in future re-
occurrence or spread of the disease. In addition, total Campylo-
bacter burden is higher than that of C. jejuni and C. coli combined
in LMIC countries26–28, suggesting an important role for other
Campylobacter species. We and others have identified multiple
MAG Campylobacter species from both rhesus macaques and
humans that have yet to cultured9,10,27. Indeed, several studies
have suggested an important role for these unidentified Campy-
lobacter species in growth and cognitive stunting in
children28,65,66. Here we identified 4 genetically distinct Campy-
lobacter clusters (UMG) including 15 MAGs assembled in this
study and 7 previously assembled MAGs9,10,34. We combined the
MAGs detected in the infant macaque microbiome with 10

MAGs assembled from human samples that could not be classi-
fied to determine their relatedness27,35,36.

The MAGs that we identified as UMG-2 shared significant
genetic homology and likely belong to the same group as the
recently identified candidate species C. infans that was assembled
from the metagenome of a child experiencing severe diarrhea in
India27. UMGs 3 and 4 contained genomes assembled from both
human and rhesus macaques but their relationship to other
known Campylobacter species had not been previously investi-
gated. Using reported data sets27,35,36, we found that MAG
groups UMG-2 and UMG-4 were largely distributed in LMIC
countries, suggesting a broader impact of uncultured Campylo-
bacter. We investigated the genomic diversity of these uni-
dentified Campylobacter MAGs, focusing on known virulence
factors and metabolic processes. One caveat to this analysis is the
fact that MAGs are often of lower quality that whole genomes
sequences (WGS) generated from isolates. Indeed, MAGs are
rarely assembled into a single genomic contig and therefore more
likely to miss genes that are difficult to assemble from a mixed
sample. Therefore, we focused our analysis on large groups of
genes that encoded shared functions, notably flagellar assembly,
adhesion, components of an efflux pump, iron acquisition and
cellular respiration.

UMG-3 lacked all genes for chemotaxis and flagellar assembly
suggesting that they are non-motile. This gene group is critical for
the ability of pathogenic Campylobacter to invade the host
mucosa and contact the host epithelia as well as secreting non-
flagellar proteins that impact virulence67,68. Interestingly C. gra-
cilis, and C. hominis also lack a flagellum but still cause period-
ontal disease and colonize the guts of children in the LMIC
countries respectively69–72. Additional analyses showed that the
amino acid sequences of cadF and ciaB in rhesus MAG were
nearly identical to those of human reference genomes suggesting
a broad ability of Campylobacter to colonize multiple species. Iron
acquisition in C. jejuni/coli is primarily facilitated by a side-
rophore enterochelin scavenger system encoded by the ceu
genes73. This system was found in both the human reference
genome as well as C. jejuni/coli MAGs assembled from rhesus
macaques but was absent in the genomes of nearly all other
Campylobacter species including the 4 UMGs. However, the
Campylobacter UMG contained alternative genes for iron
acquisition (hugZ, ftr1, feoA/B)74–76. These finding suggest that
our unknown UMGs use alternative iron acquisition methods
which may impact their pathogenicity. Additionally, UMG-2/C.
infans encoded genes in the liv operon, a branch chain amino acid
uptake system that is essential for avian colonization40. The
presence of these genes may indicate that UMG-2/C. infans may
have an avian reservoir which provide an explanation for its
global distribution.

UMGs lacked genes to produce cytolethal distending toxin
(CDT), which has been shown to cleave host DNA resulting in
cell death77. All three essential components were present in the C.
coli and C. hyointestinalis genomes assembled from rhesus
macaque samples. CDT is a key component of Campylobacter
pathogenicity and its absence in UMGs suggest that they may
have additional yet to be described toxins or modes of causing
disease. Another key virulence factor is the ability to resist toxic
compounds such as bile salts, heavy metals, or antimicrobial
agents. This is primarily accomplished in C. jejuni/coli via are the
cme Multidrug efflux pumps cmeABC and to a lesser extent
cmeDEF44,78 that confer resistance to multiple structurally
unrelated antimicrobial compounds including rifampin, cepha-
lothin, cefoperazone79,80. The cme genes were absent in the
UMGs identified in this study with the exception of UMG-4,
which encoded cmeDEF. This finding may explain why these
organisms cannot be isolated on standard Campylobacter selective
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media. However, since the CME pumps are the primary
mechanism by which C. jejuni/coli tolerate bile salts81, it is likely
that the Campylobacter UMG encode a different efflux pump that
could be challenging to identify without first cultivating these
UMG species.

C. jejuni/coli harbor key mutations in the nuoC-E genes of
respiratory Complex I (NADH ubiquinone oxidoreductase) that
facilitate the use of flavodoxin and menaquinone rather than
NADH and ubiquinone as electron carriers to generate mem-
brane potential45,46. Similar isoforms of nuoC-E were detected in
19 additional reference Campylobacter species. Isoforms of nuoC-
E genes necessary for the use of NADH and ubiquinone were only
detected in C. hyointestinalis, C. fetus, C. iguaniorum, and C.
lanienae. Surprisingly, UMGs 1–4 lacked the genes for a Complex
I all together. Complex I genes are also absent in C. avium, C.
showae, and C. troglodytis. The metabolic implications of this
finding are unclear highlighting the need for additional studies.

Despite these findings, this study comes with some key lim-
itations. Firstly, while our use of an infant macaque model allows
for the control of many variables which typically confound
microbiome studies, this model is not guaranteed to reflect
clinical findings in LMIC infants. While similar to gut micro-
biome of human the macaque microbiome has its own unique
constituent such as H. macacae which are not found in humans.
Secondly, this study is limited to molecular methods such as
metagenomic genome assembly. While these finding provide
strong evidence for pathogenic, metabolic and physiological
characteristic of the described UMG Campylobacter, these bac-
teria remain uncultured and therefore lack phenotypic support
for our findings.

In summary, this study highlights the need to better under-
stand the role of uncultured, Campylobacter species in childhood
diarrheal disease burden. While our primary data are derived
from infant macaques, the recent sharp increase in publicly
available MAGs allowed us to trace these MAGs to human
samples obtained from LMIC. This comparative genomic analysis
paves the way to address this critical gap in our knowledge.

Materials and methods
Animal cohorts. All rhesus macaque studies were overseen and
approved by the OHSU/ONPRC Institutional Animal Care and
Use Committees (IACUC) per the National Institutes of Health
guide for the care and use of laboratory animals. Animals were
housed per the standards established by the US Federal Animal
Welfare Act and The Guide for the Care and Use of Laboratory
Animals. We have complied with all relevant ethical regulations
for animal use. All animals were tested for simian viruses (Simian
Immunodeficiency Virus, Simian Retrovirus 2, Macacine her-
pesvirus 1, and Simian T lymphotropic virus) and received a
tuberculin test semi-annually.

Infant rhesus macaques are exclusively breastfed for the first
3 months, after which, they are introduced to solid foods and are
generally weaned by about 7 months of age. Outdoor-housed
rhesus macaques are fed twice daily with Lab Diet, Monkey Diet
5038 (Ralston Purina, St Louis, MO, USA), containing at most
15% crude protein, 5% crude fat, 6% crude fiber, 9% ash, and 12%
moisture and after, supplemented daily with fresh fruit and
municipal water.

A total of 130 infants were used in this study. Of these 130
infants, 25 were born to dams vaccinated with 40 μg of H2O2

inactivated Campylobacter Coli by intramuscular administration
twice during their pregnancy and were themselves subsequently
vaccinated with the same vaccine as the dams at 1, 3, and
12 months of age; 28 infants were born to unvaccinated dams and
were themselves vaccinated at 1, 3, and 12 months of age; finally,

50 infants were born to unvaccinated dams and were themselves
vaccinated at 1, 3, and 5 months of age. An additional 27 infants
were born to unvaccinated dams and did not receive any vaccines
themselves. Details of the vaccination are included in a separate
study29. We also utilized fecal samples from the dams of these
infants (n= 103).

For all infants, fecal swabs were obtained at 1, 3, 6, 9 and
12 months of age as well as upon entry and exit from clinic for
diarrhea treatment which consisted of oral hydration, antibiotics,
and probiotics administered on a case-by-case basis. Each sample
was screened for Campylobacter coli and jejuni as well as Shigella
flexneri and dysenteriae by microbial culture.

16S amplicon sequencing. Total DNA was extracted from rectal
swabs using the DNeasy Powersoil Pro Kit (Qiagen, Valencia, CA,
USA). The hypervariable V4-V5 region of the 16S rRNA gene was
amplified using PCR primers (515F/926R with the forward pri-
mers including a 12-bp barcode). PCR reactions were conducted
in duplicate and contained 12.5 ml GoTaq master mix, 9.5 ml
nuclease-free H2O, 1 ml template DNA, and 1 ml 10 μM primer
mix. Thermal cycling parameters were 94 °C for 5 min, 35 cycles
of 94 °C for 20 s, 50 °C for 20 s, 72 °C for 30 s, followed by 72 °C
for 5 min. PCR products were purified using a MinElute 96 UF
PCR Purification Kit (Qiagen, Valencia, CA, USA). Libraries were
sequenced (2 ×300 bases) using an Illumina MiSeq.

Raw FASTQ 16S rRNA gene amplicon sequences were
uploaded and processed using the QIIME2 analysis pipeline82.
Briefly, sequences were demultiplexed and the quality filtered
using DADA283, which filters chimeric sequences and generates
an amplicon sequence variant (ASV) table equivalent to an
operational taxonomic unit (OTU) table at 100% sequence
similarity. Sequence variants were then aligned using MAFFT84

and a phylogenetic tree was constructed using FastTree285.
Taxonomy was assigned to sequence variants using q2-feature-
classifier against the SILVA database (release 138)86. To prevent
sequencing depth bias, samples were rarified to 13,781 sequences
per sample before alpha and beta diversity analysis. QIIME 2 was
also used to generate the following alpha diversity metrics:
richness (as observed ASV), Shannon evenness, and phylogenetic
diversity. Beta diversity was estimated in QIIME 2 using weighted
and unweighted UniFrac distances87.

Shotgun metagenomic library preparation and analysis. Shot-
gun metagenomic libraries were prepared from 100 ng of gDNA
using the iGenomx RIPTIDE (iGenomx, South San Fransisco CA)
per iGenomx recommended protocol and sequenced on an Illu-
mina HiSeq 4000 2 × 100. Raw demultiplexed reads were quality
filtered using Trimmomatic88, and potential host reads were
removed by aligning trimmed reads to the Macaca mulata gen-
ome (Mmul 8.0.1) using BowTie289. Trimmed and decontami-
nated reads were then annotated using the HUMAnN3 pipeline
using default settings with the UniRef90 database and assigned to
Metacyc pathways. Functional annotations were normalized
using copies per million (CPM) reads before statistical
analysis90–92. Species-level taxonomy was assigned to quality-
controlled short reads using Metaphlan332.

Metagenomic genome assembly and analysis. Trimmed and
decontaminated reads were assembled into contigs using meta-
SPAdes with default parameters93. Assembled contigs <1 kb were
also binned into putative metagenomically assembled genomes
(MAGs) using MetaBat94. Genome completeness/contamination
was tested using CheckM95, and all bins with a completeness
> 80% and contamination < 2% were annotated using PATRIC96.
The taxonomy of draft genomes was determined using PATRIC’s
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similar genome finder. For all assembled genomes classified as
Campylobacter a core gene codon tree was build using PATRICs
Phylogenetic tree building tool which used RAxML97 to align
protein sequences of 50 single copy genes found in all genomes
included in the analysis.

Pangenomic analysis was conducted using Anvi’o-V733.
Assembled fasta files for each genome were first converted to
db files using the anvi-script-FASTA-to-contigs-db command,
which uses Prodigal98 to call open reading frames. Each db file
was then annotated against the COG database99 using the anvi-
run-ncbi-cogs command. After generating the genome storage file
with the anvi-gen-genomes-storage command, the anvi-pan-
genome command was used with parameters outlined in the
Anvi’o pangenomics tutorial (https://merenlab.org/2016/11/08/
pangenomics-v2/). The pangenome was visualized and aesthetics
were modified using the anvi-display-pan command. GCs found
in only a single genome were collapsed into the Singletons bin.
GCs found in three or less genomes without a clear pattern, i.e., 3
genomes from 3 different species were collapsed into the
Accessory bin to improve the visualization of more abundant
GC’s. To calculate ANI in Anvi’o, the anvi-compute-ani
command, which utilizes PyANI100, was used. To identify
functions (i.e., COG annotations) that were differentially
distributed among the phylogroups, we used the anvi-compute-
functional-enrichment-in-pan command as previously
described101. Taxonomy of these MAGs were further classified
using the Genome Taxonomy Database Tool Kit (GTDB-Tk
v2.1.1) and GTDB release 214102,103.

Statistics and reproducibility. PERMANOVAs were performed
using the R package Vegan104 function ADONIS. 1-way, non-
parametric Kruskal-Wallis ANOVA were implemented using
PRISM (V8) to generate p-values and utilizing the Dunns post-
hoc-test when the initial ANOVA was significant. The linear
discriminant analysis effect size (LEfSe) algorithm was used to
identify differentially abundant taxa and pathways between
groups with a logarithmic Linear discriminant analysis (LDA)
score cutoff of 2105.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The datasets supporting the conclusions of this article are available on NCBI’s Sequence
Read Archive under project numbers PRJNA954012, PRJNA896946, and
PRJNA1017507. Supplemental data sets can be found on the online repository Mendeley
Data under https://doi.org/10.17632/8w9r67phvt.2 (Supplemental Tables) and https://
doi.org/10.17632/7hszwny74w.2 (Supplementary Data 1).
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