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scMD facilitates cell type deconvolution using
single-cell DNA methylation references
Manqi Cai1, Jingtian Zhou2,3, Chris McKennan4 & Jiebiao Wang 1,5✉

The proliferation of single-cell RNA-sequencing data has led to the widespread use of cellular

deconvolution, aiding the extraction of cell-type-specific information from extensive bulk

data. However, those advances have been mostly limited to transcriptomic data. With recent

developments in single-cell DNA methylation (scDNAm), there are emerging opportunities

for deconvolving bulk DNAm data, particularly for solid tissues like brain that lack cell-type

references. Due to technical limitations, current scDNAm sequences represent a small

proportion of the whole genome for each single cell, and those detected regions differ across

cells. This makes scDNAm data ultra-high dimensional and ultra-sparse. To deal with these

challenges, we introduce scMD (single cell Methylation Deconvolution), a cellular decon-

volution framework to reliably estimate cell type fractions from tissue-level DNAm data. To

analyze large-scale complex scDNAm data, scMD employs a statistical approach to aggre-

gate scDNAm data at the cell cluster level, identify cell-type marker DNAm sites, and create

precise cell-type signature matrixes that surpass state-of-the-art sorted-cell or RNA-derived

references. Through thorough benchmarking in several datasets, we demonstrate scMD’s

superior performance in estimating cellular fractions from bulk DNAm data. With scMD-

estimated cellular fractions, we identify cell type fractions and cell type-specific differentially

methylated cytosines associated with Alzheimer’s disease.
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T issue-level quantification of omics has gained popularity in
the last decades because of its mature technology and
affordable cost. Numerous studies on tissue-level omics,

such as gene expression and DNA methylation (DNAm), provide
rich resources to help answer interesting biological questions.
However, bulk omics data are generated from a mixture of cells,
meaning tissue-level analyses are often confounded by cellular
heterogeneity, and cell type-specific (CTS) signals are obscured.
While labor-intensive technologies such as flow cytometry and
immunohistochemistry (IHC) can help measure cell type com-
positions, they are costly and more challenging for solid tissues1.
As a cost-efficient alternative, in silico cellular deconvolution
methods have been developed to recover the cell type composi-
tion of bulk omics data, allowing us to adjust for confounding
cellular heterogeneity and infer CTS associations from bulk
data2–4.

Recent advances in single-cell technology have fueled numer-
ous studies, leveraging high throughput single-cell RNA
sequencing (scRNA-seq) as a reference to estimate cellular frac-
tions in bulk RNA-seq data5,6. However, this progress in scRNA-
seq stands in stark contrast to single-cell DNA methylation
(scDNAm), which remains less studied. As a consequence,
DNAm-based cell proportion estimates are often imprecise and
can only be obtained for coarse cell types compared to RNA-
based deconvolution. For example, deconvolving brain DNAm
has been predominantly restricted to references derived from two
cell types: neurons and non-neurons7,8. Two studies have worked
on providing brain DNAm reference in better resolution other
than two cell types. EpiSCORE9 was proposed to deconvolve
brain DNAm into six cell types. It employs scRNA-seq data to
create a proxy signature for DNAm at the gene level. Specifically,
EpiSCORE uses a scRNA-seq-derived reference to impute the
DNAm at the promoter regions of marker genes and runs
deconvolution based on these imputed signatures. However, not
all CpGs in the promoter region are CTS, and EpiSCORE’s
imputation function mapping marker gene counts to promoter
DNAm is not CTS. These compromise the cell type-specificity
and accuracy of their DNAm signature, which are critical for the
fidelity of deconvolution10. A more recent tool known as
HiBED11 integrates multiple sorted-cell DNAm references to
deconvolve brain tissues into astrocytes, excitatory neurons,
inhibitory neurons, microglia, oligodendrocytes, endothelial cells,
and stromal cells. However, HiBED sources its references from
different platforms such as 450K, EPIC, and whole-genome
bisulfite sequencing (WGBS), leading to potential concerns
regarding the handling of batch or platform effects when merging
data from these sources. There is also a lack of sorted-cell
references to extend it to more cell types.

Fortunately, scDNAm has been emerging in the last few years,
especially for the brain12–15. The data exhibits strong cell type
specificity, offering the potential to deconvolve tissue-level
DNAm data. However, due to technical limitations, these meth-
ods usually detect only a small fraction of the genome in each
single cell (~5% of all CpG sites), and the regions being detected
could be highly variable between cells. Consequentially, the data
is ultrahigh-dimensional and sparse, presenting considerable
computational challenges.

To address these issues, we developed scMD (single cell
Methylation Deconvolution), which uses scDNAm data to gen-
erate a high-quality DNAm reference and deconvolve bulk
DNAm data. scMD leverages the strong cell type-specificity
exhibited by scDNAm markers to perform high-resolution and
accurate cellular deconvolution. Critically, scMD addresses the
statistical and methodological hurdles that accompany scDNAm
data, including its ultrahigh-dimensionality and sparsity, to
identify cell-type marker CpGs and construct a signature that is

amenable to bulk DNAm data. We use six real bulk DNAm
datasets to illustrate scMD’s superior performance over existing
methods, where we show its ability to better estimate cellular
fractions and infer Alzheimer’s disease-related cell types. With
scMD, we can complement bulk DNAm analyses with estimated
cellular fractions to deconfound tissue-level analyses and enable
CTS analyses.

Results
Overview of scMD. Here we provide an overview of scMD, which
uses scDNAm data to construct DNAm signatures amenable to
bulk data and perform deconvolution (Fig. 1). The most chal-
lenging aspect of scDNAm is its high dimensionality and sparsity,
which arises because only a small fraction (~5%) of the roughly
27 million DNAm sites are measured in each cell (Supplementary
Table 1). The set of measured sites is cell-specific, meaning cell-
type marker selection and signature matrix generation tools that
require fully observed data, like those traditionally employed in
scRNA-seq data16,17, are not applicable in scDNAm. To address
this, we subset sites observed in bulk data, e.g., CpGs on Illu-
mina’s 450k and EPIC arrays or in WGBS, and aggregate them
across cells of the same type to obtain a much smaller and more
computationally tractable cell cluster-level dataset. With methy-
lated and unmethylated read counts, we then use Fisher’s exact
test to identify cell-type marker CpGs from cluster-level scDNAm
data (Methods). This results in CTS p-values that compare one
cell type with all other cell types. By conducting GREAT
analysis18 for our identified marker CpGs, we verified that most
cell-type marker CpGs have the corresponding CTS functions
(Supplementary Table 2 and Supplementary Data 1). After ver-
ifying the CTS functions of those identified cell type marker
CpGs, we construct our signature matrix to be the beta values of
marker sites in each cell type.

In contrast to existing DNAm-based deconvolution approaches
that segregate brain tissue into coarse cell types (neurons and
non-neurons)7 or use RNA-derived19 or sorted-cell11 signatures,
our method takes advantage of recent advancements in brain
scDNAm resources13,15 to construct the first brain scDNAm
signature matrices encompassing seven distinct cell types:
astrocytes, endothelial cells, excitatory neurons, inhibitory
neurons, microglia, oligodendrocytes, and oligodendrocyte pro-
genitor cells (OPC) (Fig. 1). After constructing the DNAm
signature matched with the target bulk DNAm data, we employ
our previously developed robust and precise cellular deconvolu-
tion method, EnsDeconv10 (ensemble deconvolution). For this
work, we integrate different references, data transformations, and
deconvolution algorithms. EnsDeconv incorporates a CTS robust
regression to examine the viable combinations of the factors
related to cellular deconvolution, ensuring optimal cellular
fraction estimation.

Validating scMD using sorted-cell data. We assessed the accu-
racy of scMD in deconvolution using three different sorted-cell
datasets derived from various DNAm platforms. This evaluation
allowed us to understand scMD’s performance across multiple
technologies and gauge its proficiency in accurately deconvolving
different purified-cell samples. We first tested scMD with the
dataset from Mendizabal et al.20, which quantified WGBS DNAm
from sorted neurons (NeuN+) samples and OLIG2+ samples
that indicate oligodendrocytes and OPC. We then utilized the
datasets from Guintivano et al.8 and Gasparoni et al.21, both
containing sorted-cell DNAm samples from NeuN+ and non-
neurons (NeuN−). All samples from the three datasets have
definitive fractions of non-neurons, neurons, or the sum of oli-
godendrocytes and OPC. These datasets provided an opportunity
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to accurately measure scMD’s performance in identifying and
distinguishing between various major brain cell types. Further
details about the validation datasets and the approaches employed
for evaluating the performance of scMD are outlined in the
Methods section and Supplementary Table 3.

We carried out a comparative analysis of scMD with
EpiSCORE19 and HiBED11. Tested on the Mendizabal dataset20,
scMD almost perfectly fits the data, accurately deconvolving the
neuron and oligodendrocyte samples (Fig. 2a). Compared to
EpiSCORE, which has difficulty differentiating OLIG2+ and
other cell types, our proposed method excelled in effectively

identifying sorted-cell samples as their corresponding cell types.
This suggests that scMD can effectively harness signals from the
originally sparse scDNAm data. For a fair comparison, we did not
compare HiBED here, since HiBED utilized the Mendizabal
dataset to construct its reference panel. We also evaluated scMD’s
accuracy in deconvolving 450k array-based samples available
from Guintivano et al.8 (Fig. 2b and Supplementary Fig. 1) and
Gasparoni et al.21 (Fig. 2c), which underscore scMD’s ability
to accurately deconvolve both NeuN+ and NeuN- samples,
thereby demonstrating its versatility and efficiency in brain cell
deconvolution.

Fig. 1 scMD workflow. a Schematic representation of the proposed scMD framework. First, with single-cell DNA methylation (scDNAm) data and cell
cluster labels, we filter the scDNAm data to match bulk DNAm sites (450k, EPIC array, or WGBS), reducing the dimensionality. Second, we aggregate the
scDNAm data at the cluster level to mitigate the issue of prevalent missingness. Third, Fisher’s exact test is utilized to identify marker CpGs by comparing
each cell type against all other cell types. Finally, based on the resulting p-values, a distinctive scDNAm signature is constructed. Here we show seven cell
types: astrocytes (Astro), endothelial cells (Endo), excitatory neurons (ExN), inhibitory neurons (InN), microglia (Micro), oligodendrocytes (Oligo), and
oligodendrocyte precursor cells (OPC). b Detailed demonstration of building DNAm signature matrix from high-dimensional and sparse scDNAm data.
Question marks denote missing data. Column annotations represent cell types. This figure is created with BioRender.com.
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scMD accurately estimates cellular fractions in cerebral cortex.
To gain deeper insights into the performance of scMD, we con-
ducted a comprehensive comparison of scMD with various other
deconvolution methods using real bulk data with IHC-measured
cell counts of four cell types from cerebral cortex samples that
were part of the Religious Orders Study (ROS)22. We also used
our signatures as input into existing deconvolution methods to
demonstrate the importance of our signature matrices and illus-
trate the fidelity of EnsDeconv when applied to DNAm.

On average, scMD significantly outperforms EpiSCORE and
HiBED (Fig. 3a). Especially EpiSCORE exhibits a low correlation
with the measured fractions of microglia and astrocytes. This is
because EpiSCORE consistently estimates microglia fractions to
be zero and tends to overestimate astrocyte fractions (Fig. 3c). On
the other hand, HiBED appears to underestimate astrocytes and
overestimate oligodendrocytes (Fig. 3d). Its estimated astrocyte
fractions have a strong negative correlation with IHC-measured
fractions. In contrast, the fractions estimated by scMD and those
measured through IHC are consistent, especially for astrocytes

and microglia (Fig. 3a, b). This alignment underscores the
importance of accurately estimating microglia fractions, as
microglia is a crucial brain cell type implicated in multiple
diseases, such as Alzheimer’s disease23. We further calculated
mean absolute error (MAE) for the main datasets we used and
conducted the Friedman-Nemenyi posthoc test and one-sided
Diebold-Mariano tests to demonstrate that scMD outperforms
existing methods (Supplementary Tables 4–6). Results also show
that provided they utilize our scDNAm-based signature, existing
deconvolution methods also outperform EpiSCORE (Fig. 3a),
thereby further illustrating the accuracy of our signatures. We do
note, however, that scMD, which utilizes EnsDeconv to perform
deconvolution, outperforms all methods.

Consistent cellular fractions estimated from DNAm
and mRNA. While it is ideal to validate scMD with measured cell
counts, the resources are limited to major cell types and small
sample sizes given the challenges of counting cell types in solid
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Fig. 2 Validating scMD with sorted-cell data. a Validation on Mendizabal et al.20. Bar plots of mean estimated cellular fractions across NeuN+ and
OLIG2+ samples using scMD and EpiSCORE. Different cell types are annotated with different colors. Box plots of cellular fractions in sorted NeuN+
(n= 25 biologically independent samples) and OLIG2+ samples (n= 20 biologically independent samples) are shown on the right. Different colors
represent different methods. b Validation on Guintivano et al.8’s NeuN+ (n= 29 biologically independent samples) and NeuN- samples (n= 29
biologically independent samples). A comparison of scMD, EpiSCORE, and HiBED is presented. c Validation on Gasparoni et al.21’s NeuN+ (n= 31
biologically independent samples) and NeuN- samples (n= 31 biologically independent samples). This section also contrasts the results obtained from
scMD, EpiSCORE, and HiBED. Note that for benchmarking, we aggregated the fraction estimates of cell subtypes to generate the fractions of broader cell
types. For a fair comparison, HiBED is not compared using Mendizabal et al.20, which was utilized by HiBED as a reference. For all box plots, the median is
indicated by the central line, quartiles by the box edges, and whiskers extend to 1.5 times the interquartile range, with outliers plotted individually. The
reference line where the estimated fraction equals one is plotted as a red dashed line. Source data can be found in Supplementary Data 5–7.
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tissues like the brain. Instead, the deconvolution of RNA-seq data
has been well benchmarked and thus can be used as “ground
truth”10. In addition to the ROS data, we further validated scMD
in more cell types and a different platform with the dataset from
Markunas et al.24, which quantified paired DNAm of Illumina
EPIC arrays and RNA-seq bulk data from the nucleus accumbens
(NAc) of 211 individuals. Even though we do not have measured
cell counts, the cellular fractions are available from deconvolving
paired mRNA data. The intuition is that if we possess paired
DNAm and RNA bulk data from the same tissue samples, we
should observe high concordance between the estimated cellular
fractions from these two omics types, given that there is a single
true cellular composition for a tissue sample.

With the above rationale, we first estimated cellular fractions
using RNA data10 as the “ground truth” of cellular fractions for
benchmarking. Equipped with our newly constructed signature
matrices, we deconvolved the NAc bulk DNAm and RNA data
and examined the deconvolution results between these two omics
types. We obtained a strong correlation between estimated RNA-
and DNAm-based fractions when we employed scMD to
deconvolve DNAm samples and EnsDeconv on RNA samples
(Fig. 4a). Except for OPC, all correlations exhibited were close to
or above 0.5. The correlation was especially noticeable among
major cell types such as neurons and oligodendrocytes, where
correlations of 0.82 and 0.89 were observed. Furthermore, the
correlation remained high (0.73) even for the less common
endothelial cells. In contrast, when using EpiSCORE to infer
cellular fractions from DNAm, the correlations are lower than
those of scMD across all cell types (Fig. 4b). Notably, EpiSCORE
consistently estimates microglia fractions to be ~0, and its
correlations for astrocytes and OPC are both negative. When we
employed HiBED for inference, we observed a high correlation
for neurons and oligodendrocytes. However, for other cell types,
the correlations are substantially lower than those of scMD.
Additionally, HiBED tends to overestimate oligodendrocytes and
microglia and underestimate astrocytes and endothelial, showing
higher MAE than that of scMD (Fig. 4c).

scMD identifies cell types associated with Alzheimer’s disease.
To demonstrate the utility of scMD-estimated cellular fractions, we
tested their associations with clinical phenotypes related to Alzhei-
mer’s disease (AD). We utilized the brain DNAm data from Mount

Sinai Brain Bank (MSBB), which also collected variables such as age,
Clinical Dementia Rating (CDR), the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) score, and Braak stage.
The CDR was employed as an assessment tool to evaluate dementia
and cognitive status, assigning ratings on a scale of 0 to 5, which
correspond to escalating levels of severity in pathology25. The
CERAD score is a four-level semi-quantitative measure of neuritic
plaques. Braak stage is a widely used classification system indicating
the progression of AD and categorizes the advancement of neurofi-
brillary tangles and amyloid plaques in the brain, with stages ranging
from 0 to 6, representing increasing levels of pathology severity26,27.

Given the neurodegeneration that accompanies AD, comparing
cell-type fractions across age and various AD phenotypes is
therefore of scientific interest. We conducted a comprehensive
study examining the correlation of various phenotypes in MSBB
with estimated cellular fractions using scMD, EpiSCORE, and
HiBED (Fig. 5a and Supplementary Table 7). Consistent with
previous studies28,29, scMD detected a significant decrease in
OPC with aging. While HiBED identified a significant decrease in
inhibitory neurons, EpiSCORE failed to associate any cell types
with age. Among the three AD-related phenotypes, we found the
most differential fraction signals in clinical dementia rating. With
scMD, we observed significantly increased fractions of microglia
and oligodendrocytes and decreased fractions of OPC and
excitatory neurons.

In contrast, EpiSCORE highlighted only a significant rise in
astrocytes and oligodendrocytes and a decline in neurons.
Meanwhile, HiBED identified increased microglia and oligoden-
drocytes and decreased excitatory neurons.

Interestingly, as two aspects of AD, neuritic plaques and
neurofibrillary tangles show strikingly different differential
fraction results. scMD, EpiSCORE, and HiBED all did not
identify any cell types associated with neuritic plaques (as
indicated by the CERAD score), but there are some cell types
associated with neurofibrillary tangles (as measured by Braak
score). For instance, scMD and HiBED-estimated microglia and
excitatory neuron proportions increase and decrease as the Braak
stage increases, respectively (Fig. 5b–h and Supplementary Fig. 2),
and inhibitory neuron proportions exhibit little change. The
observed increase in microglia proportions suggests an enhanced
immune response and neuroinflammation, which are known to
be critical in neurodegenerative disorders like AD23. Additionally,
the substantial decline in excitatory neurons is compelling.
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Fig. 3 Cell type deconvolution results for ROS data. a Benchmarking of scMD and other deconvolution methods on ROS data. EpiSCORE uses its RNA-
derived reference. HiBED employs its sorted-cell DNAm reference. All other methods adopt our scDNAm references. For scMD, EpiSCORE, and HiBED,
each dot denotes one correlation for each cell type. For other methods, each dot represents the average of Spearman’s correlation across scenarios in each
cell type. A scenario is defined as a particular setting with a specific deconvolution method and reference dataset. The black vertical line shows the mean of
the average Spearman’s correlation across scenarios, and the error bars present means ± standard error of the mean. b–d Scatterplots illustrate the
relationship between the estimated fractions of scMD, EpiSCORE and HiBED (x-axis) against the corresponding fractions measured using
immunohistochemistry (IHC) in ROS data (y-axis). This comparison involves 49 biologically independent samples. The correlation is calculated by pooling
fractions across cell types. Note that for benchmarking, we aggregated scMD’s and HiBED’s fraction estimates of neuronal subtypes to generate the
neuronal fractions. Source data can be found in Supplementary Data 8.
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Excitatory neurons play a crucial role in signal transmission and
neural communication within the brain. The reduction in their
cell count implies potential disruptions in synaptic activity and
impaired neuronal function in affected brain regions. These
findings align with previous research emphasizing neuronal loss
as a sign of neurodegenerative disease.

Similarly, we also used EpiSCORE to estimate cell fractions from
MSBB data and identified cell types associated with AD
(Supplementary Fig. 3). EpiSCORE identified oligodendrocytes
and OPC associated with the Braak score. Consistent with Fig. 4b,
EpiSCORE estimates microglia proportions to be almost all zero
and therefore not able to infer a significant correlation between
their proportions and the Braak stage. While the decrease in
neurons among AD patients is confirmed with EpiSCORE
(Supplementary Fig. 3), it lacks the resolution to show the decrease
is primarily driven by excitatory neurons since it does not estimate
neuronal subtypes. Furthermore, scMD-estimated cellular fractions
enable CTS differential methylation analyses. We used CellDMC30

to identify cell type-specific differentially methylated cytosines
(CTS-DMCs) (Supplementary Table 8 and Supplementary Data 2).
With scMD-estimated cellular fractions, we identified 22 CTS-
DMCs in microglia associated with age (Fig. 5i) and 57 DMCs in
OPC with FDR < 0.05. Notably, among the most significant CpGs
in microglia, cg18574144 is within the gene body of THOP1, which
is currently under investigation as a potential biomarker for
Alzheimer’s disease31. For CDR, we detected 195 DMCs in
astrocytes. We also identified dozens of DMCs in inhibitory

neurons for Braak score (neurofibrillary tangles). We also found
some CTS-DMCs coincide with AD GWAS loci or nearby regions
(Supplementary Data 3 and Supplementary Table 9). For instance,
cg23393368, a DMC in astrocytes associated with CDR dementia
staging, is close to rs4817090, an AD GWAS SNP mapped to gene
APP that is important for AD.

There is a relevant study32 that also presented DMCs in
association with Braak scores using the MSBB dataset. They
identified a total of 236 significant DMCs at the tissue level. We
conducted a correlation test between the test statistics from our
CTS-DMC analysis and those reported in their study, and most cell
types show concordance (Supplementary Fig. 4). Notably, the bulk
data analysis adjusted for neuron fraction. However, their
adjustment did not consider the non-neuron fractions, nor the
finer granularity of cell types that we employed in our analysis. This
limitation may lead to the observed suboptimal correlations in
some cell types that may be confounded in bulk data analysis by
cellular fractions. We also conducted an enrichment analysis using
gprofiler2 and have included the results in Supplementary Data 4.
We identified some interesting enriched pathways, such as the AD
pathway for endothelial DMCs associated with CDR.

Discussion
The scMD method we developed presents a considerable
advancement in the ability to analyze and understand the cellular
heterogeneity of the brain at the molecular level using DNAm
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Fig. 4 Cell type deconvolution results for NAc data. Deconvolution of bulk NAc data (n= 211 biologically independent samples): comparison of cell
type estimation using scMD (a), EpiSCORE (b), and HiBED (c). Scatter plots showcase the relationship between the estimated cell fractions from RNA data
(x-axis) using EnsDeconv and DNAm data (y-axis). scMD and EpiSCORE estimate six cell types since NAc does not have excitatory neurons, while HiBED
does not estimate OPC.
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Fig. 5 Cell type deconvolution results and CTS-DMC analysis for MSBB data. Identified differential cellular fractions and methylated cytosines with the
Mount Sinai Brain Bank (MSBB) data (n= 201 biologically independent samples). a Correlation between cellular fractions and age and AD phenotypes. * p-
value < 0.05. b–h scMD identified pairs of phenotypes and cellular fractions. In Figure c, the scatterplot is presented with a shaded area representing the
confidence interval around the LOESS smooth line. The results of HiBED and EpiSCORE are shown in Supplementary Figs. 2 and 3. i Differentially
methylated cytosines in microglia associated with aging using scMD estimated cellular fractions. Significant CpGs are annotated to genes if available. For
all box plots, the median is indicated by the central line, quartiles by the box edges, and whiskers extend to 1.5 times the interquartile range, with outliers
plotted individually. Source data for Figure b–h can be found in Supplementary Data 9.
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data. By constructing signature matrices for seven distinct brain
cell types, scMD offers a much finer level of detail than previous
deconvolution methods and has the potential to extend to more
cell types with detailed scDNAm references. scMD goes beyond
existing approaches by effectively leveraging recent advancements
in scDNAm data resources, bridging the gap between single-cell
and bulk DNAm data. This utilization of single-cell data in the
generation of our signature matrices captures the intrinsic cellular
heterogeneity of the brain, which is an important consideration in
studying various brain-related diseases and conditions.

The accuracy of scMD is reflected in its high performance
in various validation studies across different DNAm platforms.
First, scMD consistently outperformed other approaches in the
deconvolution of purified-cell and bulk datasets, highlighting
its robustness and potential for widespread applications. By
comparing scMD with ten existing deconvolution methods, we
showed that it has higher concordance and lower mean absolute
error when comparing estimated and ground truth fractions. Fur-
thermore, scMD demonstrated high concordance between the RNA-
estimated fractions and DNAm-estimated fractions, suggesting that
scMD is successful in capturing useful signals from the original
sparse scDNAm data. Lastly, we showed that scMD can precisely
identify the fractions of microglia and excitatory neurons associated
with AD. Via CTS-DMC analyses with various AD-related pheno-
types, we demonstrated the usage of scMD in downstream analyses
and validated that some CTS DMCs coincide with known AD
GWAS loci.

Despite the evident promise shown by scMD, it is essential to
recognize certain challenges and limitations that may warrant
future work. First, there may be a computational burden presented
by processing scDNAm data due to its high dimensionality. The
massive volumes of raw data require computational resources to
process and reduce storage and memory. However, given the
availability of scDNAm data on public online platforms, we have
mitigated this issue through our parallel computation approach.
This method allows for the rapid and efficient processing of many
cells at once during the construction of a cell-type signature matrix.
Another potential issue lies in the performance of the model being
contingent on the quality and scope of the reference single-cell data
used to build the signature matrices. Despite incorporating diverse
sources of data to create our matrices, representation of certain cell
types, particularly rare ones, may be limited. Furthermore, the
method’s efficacy in tissues and conditions not represented in the
training data awaits further evaluation. As scDNAm is increasingly
applied to various tissue types, we anticipate a broadened use of
scMD beyond the brain.

In summary, we present a robust and versatile tool for
researchers to deconvolve bulk DNAm data with scDNAm
references. By offering more accurate, detailed, and efficient
analyses of brain cell composition from DNAm data, our method
facilitates deeper exploration into the molecular aspects of brain
function and pathology. In our future work, we plan to refine and
expand the capabilities of scMD. We aim to incorporate addi-
tional cell types and explore various tissue types with the
expansion of scDNAm. Additionally, we aim to integrate other
omics data to deepen our understanding of cellular heterogeneity
in the brain and other tissues.

Methods
Details of the proposed scMD framework
Processing scDNAm data. Our goal is to build high-quality
DNAm references using scDNAm technology. The initial step
towards achieving this objective involves harmonizing the dif-
ferences in DNAm technologies between traditional bulk DNAm
data and the noisier scDNAm data. Compared to bulk DNAm
data, scDNAm is significantly sparser (with 95% missing data)
and higher in dimensionality. The challenge is to bridge the
gap between the dimensionality of the traditional bulk DNAm
data and that of the scDNAm data. Traditional bulk DNAm
data typically use arrays of 450k or EPIC CpG sites, while
scDNAm is characterized by its sparse quantification across bil-
lions of genomic locations (CG + CH). To address this issue, we
employ a strategy that involves subsetting the DNAm sites
measured with 450k/EPIC arrays or WGBS. This approach serves
twofold. Firstly, it accelerates the overall process. Secondly, it
simplifies the process of identifying marker CpGs, which are
crucial for various analyses in the field of epigenetics. By
employing this technique, we can successfully reduce the
dimensionality of scDNAm data to make it comparable to its bulk
counterpart. After achieving a reduced-dimension scDNAm
dataset, the subsequent step is to derive CTS p-values to identify
marker CpGs. Given the inherent sparsity of scDNAm data,
characterized by prevalent (95%) missing values, it is not feasible
to identify specific markers and construct signatures in the same
manner as with scRNA-seq data.

To generate a DNAm signature matrix akin to a reference, we
first aggregated the methylated counts and coverage of DNAm of
each cell type:

mcik ¼ ∑
Nk

j¼1
mcijk; covik ¼ ∑

Nk

j¼1
covijk;

where mcik represents the cumulative count of all methylcytosine
for the ith CpG site and kth cell type, Nk denotes the number of
cells belonging to the cell type k, and covik is the total cytosine
basecalls, incorporating both methylcytosine and unmethylcyto-
sine for the ith DNAm site and kth cell type. Subsequently, we
carry out two-sided Fisher’s exact tests for each cell type across all
DNAm sites. To differentiate cell type k from all other cell types
for a given DNAm site i, we formulated Table 1.

The p-value of Fisher’s exact test corresponding to cell type k at
the DNAm site i is derived as

pik ¼
∑kMik

� �
! ∑kUik

� �
! ∑k0≠kcovik
� �

! covik
� �

!

Mik

� �
! ∑k0≠kMik0
� �

! Uik

� �
! ∑k0≠kUik0
� �

! ∑kcovik
� �

!
:

Once we calculated the CTS p-values for each cell type across all
DNAm sites, we arranged these values in ascending order. Based on
a detailed evaluation of two sorted-cell datasets, we selected the top
100 marker DNAm sites for each cell type based on their p-values
(Supplementary Fig. 5). This aligns with existing methods, such as
minfi7, which opted to select the top 100 differentially methylated
marker DNAm sites per cell type. This strategic selection offers
dual benefits. It not only accelerates the deconvolution process,
making the computational burden manageable for extensive bulk
DNAm datasets, especially for WGBS bulk DNAm data, but also

Table 1 The 2 × 2 contingency table of Fisher’s exact test for comparing cell type k with other cell types for ith CpG.

Cell type k Other cell types Row total

Methylcytosine Mik=mcik ∑k0≠kMik0 ¼ ∑k0≠kmcik0 ∑kMik

Unmethylcytosine Uik= covik−mcik ∑k0≠kUik0 ¼ ∑k0≠kcovik0 �∑k0≠kmcik0 ∑kUik

Column total covik ∑k0≠kcovik0 ∑kcovik
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enhances accessibility for the broader scientific community. By
reducing computational costs, our approach alleviates the chal-
lenges for researchers, particularly those in resource-constrained
settings, when handling large datasets.

Here we use an example to illustrate how scMD handles the
large-scale raw scDNAm data. The original compressed raw
scDNAm files for more than 4200 nuclei from Lee et al.13 totaled
a substantial 717 GB. After filtering for only CpG sites, the data
was condensed to 183.2 GB. Further refinement at the cluster
level reduced the data size to a more manageable 17.4 GB before
loading into the R environment. Through the application of
parallel computation across 20 nodes, we were able to generate an
EPIC-based signature within ~10 min. Supplementary Table 1
provides detailed information on the number of DNAm sites
before and after processing. To offer detailed instructions for
scMD, we outline the algorithm in Supplementary Algorithm 1. It
includes five steps from reducing dimensions, identifying marker
CpGs, constructing scDNAm signature, to estimating cellular
fractions with ensemble deconvolution (EnsDeconv).

Ensemble deconvolution. After obtaining the signature matrix
from scDNAm data, the subsequent crucial step involves per-
forming deconvolution on DNAm datasets. To accomplish this,
we employed our previously developed method EnsDeconv10. In
essence, EnsDeconv represents a deconvolution technique that
draws inspiration from ensemble learning, wherein the outputs of
multiple deconvolution algorithms are combined to achieve
enhanced estimation accuracy. EnsDeconv focuses on important
factors such as the choice of reference datasets, data transfor-
mations, and deconvolution methods. EnsDeconv implements
CTS robust regression to synthesize results from different
deconvolution settings, resulting in more robust and accurate
results than randomly choosing one setting. Taking into account
all possible combinations of the aforementioned factors in
deconvolution, we leveraged ensemble learning to generate
P̂1; ¼ ; P̂D, representing the estimated cellular proportions from
each of the D scenarios. In this context, we define a scenario as a
specific setting with a particular reference dataset, transforma-
tions approach, and deconvolution method. We treat the
ensemble learning problem as a robust regression problem:

argmin W1; ¼ ;WK 2 ½0; 1�S
ðW1; � � � ;WK Þ1K ¼ 1S

∑
d
∑
K

k¼1
k Ŵdk �Wkk2;

where Wk denotes the k-th cell type’s ensemble fraction for S
samples, Ŵdk represents the estimate for the k-th cell type frac-

tion in the d-th deconvolution scenario, and k vk2 ¼ ð∑iv
2
i Þ1=2 is

the vector equivalent of absolute deviation.
In this study, we utilized two scDNAm references, Lee et al.13

and Tian et al.15, to implement the EnsDeconv approach. In
terms of data transformations, scDNAm adopts both beta-value
and M-value transformations. In addition, our implementation of
EnsDeconv incorporated nine diverse deconvolution methods,
each founded on unique theoretical bases and specifically
designed for various purposes. A portion of these techniques
was originally developed for deconvolving bulk DNAm data, e.g.,
quadratic programming33 and robust partial correlations
(RPC)34. In parallel, we also integrated several deconvolution
methods primarily designed for RNA-seq experiments. These
included the robust regression technique from FARDEEP35,
support-vector regression from CIBERSORT36, the penalized
regression method with elastic net regularization featured in
DCQ37, a log-normal model from ICeDT38, and non-negative
least squares (NNLS).

DNA methylation datasets
Brain scDNAm datasets. In this study, we began by generating a
reference for scDNAm using snmC-seq data obtained from Lee
et al.13. The dataset utilized in this study is comprised of
4,238 single human brain prefrontal cortex cells, enabling the
simultaneous capture of chromatin organization and DNA
methylation information. The scDNAm data was downloaded
from the GEO database (GSE130711). To ensure data quality, we
utilized the cell-type annotation provided by the authors and
excluded any cells marked as outliers, resulting in a total of 4,234
cells for further analysis. The distribution of cell-type annotations
in the remaining dataset consisted of 670 inhibitory neurons
(InN), 945 excitatory neurons (ExN), 1250 oligodendrocytes
(Oligo), 449 astrocytes (Astro), 416 microglial cells (Micro), 315
endothelial cells (Endo), and 189 oligodendrocyte progenitor cells
(OPC). To map the scDNAm data to the DNAm sites in the bulk
DNAm dataset, we specifically considered cytosines in the CG
context while excluding those in the CH context. Additionally, we
incorporated data from a newly collected dataset Tian et al.15,
which employed snmC-seq3 technology to profile whole-genome
DNAm data. We obtained the cluster-level data from the frontal
cortex for the same seven cell types as Lee et al.13.

Sorted-cell brain DNAm datasets for validation. Descriptions of
DNAm validation datasets used in this part are summarized in
Supplementary Table 3. In order to assess the accuracy of our
signature matrices, we used three sorted-cell datasets that con-
tained either sorted neuron samples and non-neuron samples or
oligodendrocyte samples as validation datasets. The first dataset
Mendizabal20 is a whole-genome bisulfite sequencing (WGBS)
postmortem human brain dataset. It is composed of two cell
populations: NeuN+ and OLIG2+. We focus on healthy controls,
and the sample size is 25 and 20 respectively for the two cell
types. The data is downloaded from GEO (GSE108066). The
second dataset Guintivano8 is an Illumina Human 450k Methy-
lation dataset and profiled in the postmortem frontal cortex of
two different cellular populations (NeuN+ vs. NeuN-) generated
from 29 individuals using flow sorting. Additionally, Guintivano
contains 9 mixed samples, which are empirical blends of neuronal
and glial DNA in increments of 10%. We downloaded the
Guintivano data through the Bioconductor package FlowSorted.
DLPFC.450k. The third dataset Gasparoni21 is an Illumina
Human 450k Methylation dataset that contains 62 sorted-cell
frontal cortex brain samples, including 31 NeuN+ samples and
31 NeuN- samples. Gasparoni data is available at GEO
(GSE66351). We processed the Mendizabal data by extracting a
subset of DNAm sites that corresponds to the specific locations
matched with scMD and EpiSCORE references respectively. We
prepossessed the Gasparoni, and Guintivano data using the minfi
package7. We evaluated the performance of scMD and EpiSCORE
using total MAE comparing estimated and measured fractions.

Bulk brain DNAm datasets for validation. The bulk DNA
methylation (DNAm) data for the Mount Sinai Brain Bank
(MSBB)25 were obtained from Synapse (ID: syn21347197). This
data encompasses 201 tissue samples derived from the para-
hippocampal gyrus region of the brain (Brodmann area 36), and
processed using the Illumina EPIC platform. We first decon-
volved the MSBB DNAm data, subsequently examining the
relationship between cellular fractions and the Braak stage of
Alzheimer’s disease (AD).

We also used brain DNAm data from the Religious Orders
Study (ROS), specifically from the dorsolateral prefrontal
cortex (DLPFC) tissue of 49 senior donors. This dataset
incorporates both bulk DNAm data, captured through a 450k
array as described by De Jager et al.22, and measured cell-type
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fractions as reported by Patrick et al.39. The study measured the
proportions of four distinct cell types, namely astrocyte,
microglia, neuron, and oligodendrocyte. Note that we excluded
endothelial cells since prior studies confirmed their poor quality
of measured cell counts10.

In addition, paired bulk DNAm and RNA data from the
nucleus accumbens (NAc) were obtained from public reposi-
tories, GSE147040 and GSE171936, respectively. The DNAm data
for NAc was profiled using the Infinium MethylationEPIC
microarray following the guidelines provided by the manufac-
turer. The raw idat files were subsequently processed and
normalized using the minfi R package.

Single-cell RNA-sequencing references to deconvolve bulk
RNA-seq data. In our prior research, we compiled a selection of
scRNA-seq reference datasets10. For the present study, we utilized
the brain scRNA-seq data curated by STAB40 from three studies:
Darmanis et al.41, Hodge et al.42, and Habib et al.43. Deconvo-
lution results were then obtained via EnsDeconv. The single
deconvolution methods implemented in EnsDeconv to derive the
RNA estimated fraction extend beyond those used in DNAm
EnsDeconv. Notably, we excluded deconvolution methods initi-
ally intended for DNAm deconvolution, including Houseman
et al.33 and RPC. This included an additional hybrid scale
method–dtangle44–and two deconvolution approaches specifi-
cally designed for scRNA-seq references: MuSiC5 and Bisque6.
These methods are not used in the DNAm deconvolution due to
their methodological incompatibility with DNAm data. The
datasets analyzed in this study were derived from previously
published research that received ethical approval.

Statistics and reproducibility. In our analysis of scDNAm
datasets, we first applied Fisher’s exact test to the aggregated,
subsetted scDNAm data. Subsequently, we selected the top
100 markers for each cell type as ranked by the Fisher-exact test
p-value to construct distinct signatures. These signatures were
then utilized to estimate the cell type proportions in various bulk
datasets. We also compared with the EpiSCORE-derived sig-
nature. The resources needed to generate the EpiSCORE refer-
ence matrix, including the code and data, were directly sourced
from the Code Ocean repository: https://codeocean.com/capsule/
2549317/tree/v3. Our investigation extended to comparing the
proportion estimates derived from scMD, HiBED, and Epi-
SCORE. We systematically applied each method across all sam-
ples within multiple datasets, including those from Mendizabal
(n= 45), Guintivano (n= 58), Gasparoni (n= 62), ROS (n= 49),
MSBB (n= 201), and NAc (n= 211). This comprehensive
application allowed us to obtain the estimated proportions for
each dataset. To validate our findings, we conducted correlation
tests. These tests compared the estimated proportions from each
method with the actual measured fractions for the Mendizabal,
Guintivano, Gasparoni datasets, and the RNA-estimated fractions
for NAc. To assess our model’s accuracy, we conducted
Friedman-Nemenyi posthoc test on MAE to compare scMD,
HiBED, and EpiSCORE. We also performed a one-sided Diebold-
Mariano test to compare the absolute errors in estimated versus
measured fractions for scMD, HiBED, and EpiSCORE. Addi-
tionally, we delved into examining the differential cellular frac-
tions associated with varying phenotypes in the MSBB datasets,
considering the results from scMD, HiBED, and EpiSCORE.
Further enhancing our analysis, we utilized CellDMC to identify
cell type-specific differentially methylated cytosines (CTS-DMCs)
based on the fractions estimated by scMD.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The processed signatures from our research are accessible at the GitHub repository:
https://github.com/randel/scMD/tree/main/Processed_data_450k850k. The Lee
scDNAm data is obtainable from the NCBI’s GEO database under the accession number
GSE130711. The Tian scDNAm data can be accessed at GSE215353. The Guintivano
DNAm data is available through the Bioconductor package FlowSorted.DLPFC.450k.
The Gasparoni DNAm data is publicly accessible via GSE66351, and the Mendizabal
DNAm data can be found under GSE108066. The NAc bulk DNAm and RNA data are
listed under GSE147040 and GSE171936,. The bulk data for ROS and MSBB, along with
their clinical data, are accessible via the AD Knowledge Portal: ROS data (syn3219045)
and MSBB data (syn3159438). Source data underlying main figures are provided in
Supplementary Data 5–9.

Code availability
scMD is publicly hosted on GitHub (https://github.com/randel/scMD)45. EnsDeconv is
available on GitHub (https://github.com/randel/EnsDeconv). EpiSCORE is downloaded
from https://github.com/aet21/EpiSCORE. HiBED is downloaded from https://github.
com/SalasLab/HiBED.
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