
COMMENT

Melvin is a conversational voice
interface for cancer genomics data
Akila R. Perera 1,2, Vinay Warrier1, Shwetha Sundararaman1, Yi Hsiao 1,3,

Soumita Ghosh1, Linganesan Kularatnarajah1 & Jason J. Pitt 1,4,5✉

Despite large collections of cancer genomics data being openly available, the
inability to quickly interrogate this information remains a barrier for researchers
and oncologists. Here we present Melvin, an Amazon Alexa skill to explore
cancer genomics data through simple conversations.

Cancer genome sequencing initiatives have generated petabytes of data across tens of thousands
of samples. While this has spurred multiple challenges in data processing and warehousing, the
majority of those who consume cancer genomics data – namely researchers and clinicians – need
efficient ways to perform basic queries and analyses. There is a high demand for intuitive tools to
explore downstream results stemming from projects such as The Cancer Genome Atlas
(TCGA)1. Web-based graphical user interfaces (GUIs) have been developed to address this
need1,2. However, for many users, standard GUIs lack accessibility and can require minutes to
answer questions such as, “What percentage of TCGA breast cancer patients have TP53
mutations?” Modern interfaces – particularly those leveraging augmented intelligence – show
promise to streamline inquiries, democratize analytics, and enhance digital health applications in
cancer genomics3,4.

Voice user interfaces (VUIs) are revolutionizing how we access information and perform
tasks. VUIs have multiple advantages over GUIs. 1) A minimal learning curve makes them
convenient for a broad user base. 2) Their conversational nature allows queries to be resolved
both quickly and progressively. For both English and Mandarin, users are able to provide input
nearly three times faster through speech-to-text than manual typing5. 3) They are readily
accessible via mobile phones, computers, and smart home devices. Within the biosciences, VUIs
have been developed only for basic information retrieval (e.g. gene definitions)6 or managing
laboratory operations7,8. These tools do not retain the context necessary to progressively answer
deeper scientific questions. However, when designed to be conversational, VUIs provide an
opportunity for anyone to query complex data – such as cancer genomics – in real time using
natural language.

Results
Here we present Melvin, a VUI to explore and analyze cancer genomics data using any Amazon
Alexa-capable device (e.g. mobile phones, tablets, Amazon Echo, etc.). Most supported queries
involve a combination of three key attributes: GENE, CANCER TYPE, and DATA TYPE. In
Fig. 1a, we demonstrate how individuals can leverage multi-turn conversations in Melvin to
obtain the TP53 mutation rate in TCGA breast cancer. A user begins by saying “Tell me about
mutations,” followed by, “Show me breast cancer.” After processing these requests
through four interoperating cloud-based microservices (Fig. 1b; Supplementary Fig. 1a, b and
Supplementary Table 1 and “Methods” section), Melvin responds by indicating the most
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frequently mutated genes in TCGA breast cancer both audibly
and visually (Supplementary Movie 1). When this query is further
narrowed to TP53, Melvin vocalizes the TP53 mutation rate and
displays a detailed graphical summary (Fig. 1c). This entire
process takes less than 1 minute and requires no physical inter-
action – exemplifying Melvin’s ability to quickly resolve queries
while requiring minimal bioinformatics and UI knowledge from
users.

Cancer genomics knowledge base. Melvin’s knowledge base
contains harmonized genomic datasets representing all 33 cancer
types from TCGA9,10. Users can inquire about mutations (SNVs
and/or indels), copy number alterations (amplifications and/or
deletions), and gene expression (Supplementary Table 2). As a
proof-of-principle, we have integrated mutational and copy
number data from the Breast Cancer Somatic Genetics Study
(BASIS)11 to demonstrate Melvin’s native ability to support
datasets beyond TCGA (Supplementary Movie 2). Ancillary
information – such as gene definitions and therapeutic action-
ability – is available to help contextualize and interpret results
(Supplementary Table 3; “Methods” section; and Supplementary
Movie 3). Importantly, all results, including high-resolution
images, can be instantly emailed to users.

Conversations and analytics via a finite state machine. Cancer
genomics queries are often difficult to verbalize in a cohesive

sentence. To circumvent this friction, Melvin allows users to
provide attributes incrementally and in any order (Fig. 2a). This
process is implemented as a finite state machine where Melvin
progressively returns biologically relevant responses based on the
current state (Supplementary Movie 4). In addition to simplifying
interactions via multi-turn conversations, Melvin’s state-based
design retains context to avoid repetitive, single-turn queries –
which are standard for GUI alternatives. For example, after
navigating to mutations, breast cancer, and TP53, a
user may want to replace TP53 with PIK3CA. Instead of
building an entirely new query, users can simply say, “How about
PIK3CA?” Melvin will then return the PIK3CA mutation rate for
breast cancer and associated visual output in seconds. This rapid
switching of values can be done for any attribute type and makes
billions of unique queries possible within a single, seamless
conversation.

This state-based framework also enables Melvin to support
more complex analytical queries. Fig. 2b depicts a user invoking
Melvin’s compare functionality to intersect PIK3CA mutations
and copy number alterations in breast cancer. Compare contrasts
two attribute values of the same type (e.g. mutations and
copy number alterations) in the context of other attribute
types (e.g. PIK3CA and breast cancer). Pragmatically, this
framework allows users to assess alteration co-occurrence,
compare mutational frequencies, and juxtapose putative driver
genes between cancer types (Supplementary Table 4). Addition-
ally, we have developed split-by which allows users to determine

Fig. 1 Melvin’s architecture supports multi-modal responses to common cancer genomics queries. a Engaging Melvin through an Alexa-enabled device, a
user has already expressed two attributes of interest – a CANCER TYPE (breast cancer) and a DATA TYPE (mutations). Next, the user expresses a
GENE (TP53). The user’s voice utterance is captured by the device and sent to Alexa Skills Service. b The transcribed query is received by the Melvin
Intent Handler (1) which calls the Out-of-vocabulary Mapper Service (OOVMS) (2) to map the utterance to a supported attribute. The navigation state is
updated (3) based on the identified attribute type (GENE) and its value (TP53). The updated navigation state (breast cancer, mutations, and TP53)
dictates the real-time analysis request, which is sent to the Data Explorer Service (4). c Computed results are sent to the Intent Handler where speech and
graphical responses are generated and relayed back to the user. GDC Genomic Data Commons, TCGA The Cancer Genome Atlas, NCBI National Center
for Biotechnology Information.
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how a quantitative variable – such as the expression of PIK3CA –
varies based on a binary variable, like mutations in TP53 (Fig. 2c;
Supplementary Movie 5).

Crowdsourcing to enhance voice recognition. Correctly
understanding user requests – or utterances – is essential for VUI
functionality. Pronunciations for domain-specific terms, parti-
cularly gene names, are often out-of-vocabulary (OOV) – making
accurate speech-to-text conversion difficult for Amazon Alexa. To

address this, we developed an approach to crowdsource utter-
ances for cancer-associated genes12, cancer types, and data types
(Supplementary Figure 2; Supplementary Data 1, 2; Methods). A
dataset of > 24,000 utterances was collected from domain experts
of mixed nationalities (see Methods) and subsequently utilized in
Melvin’s OOV Mapper Service (OOVMS). Incoming user utter-
ances that cannot be mapped to a supported attribute by exact or
crowdsourced utterance matching are subject to a random forest
classifier (Supplementary Fig. 3a–c). This latter model –

Fig. 2 Melvin’s state-based navigation flow enables genome analytics through multi-turn conversations. a The Melvin navigation state is composed of
three main attributes: GENE, CANCER TYPE, and DATA TYPE. At the beginning of a user session, all three attributes have empty values. Incoming attribute
values are used to update the current state and dictate Melvin’s response. b Example of a compare operation. With the context of PIK3CA (GENE) and
breast cancer (CANCER TYPE), the user expresses the desire to compare two data types – copy number alterations and mutations.
c Example of a split-by operation. The user has navigated to a state containing PIK3CA (GENE), breast cancer (CANCER TYPE), and gene
expression (DATA TYPE). The user then requests PIK3CA expression partitioned mutations in TP53.
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constructed using character, length, and phonetic features of the
crowdsourced utterances – predicts the best matching GENE,
CANCER TYPE, or DATA TYPE. Overall, Melvin’s OOVMS
correctly mapped 88.9% of test utterances – a 69.8% improve-
ment over Amazon Alexa’s baseline performance (Methods).

To mitigate scenarios where the OOVMS fails to properly map
a user’s utterance, we developed a web portal where users can
submit personal pronunciations (Supplementary Figure 4). Users
can specify their intended target (e.g. KRAS) and record audio of
their own pronunciation (e.g. “keɪ ras”). This tells Melvin, “When
you hear me say ‘keɪ ras’ I mean ‘KRAS.’” Personal pronuncia-
tions are tethered to users’ Amazon Alexa accounts and can be
managed within a simple web-based console.

Discussion
While the application of voice technology is still in its infancy,
Melvin demonstrates its utility within cancer genomics and data
analytics. There are multiple opportunities to extend this work.
Despite the strong performance of the OOVMS, large-scale
crowdsourcing of pronunciations could further improve our
machine-learning model and increase the list of attributes Melvin
supports. This includes a broader sampling of national and
regional accents (see Methods) for gene name pronunciations.
Notably, crowdsourced data could be repurposed to enable voice
assistants to say gene names using common vocalizations.

In addition to offering faster data exploration through spoken
natural language, VUIs may have specific benefits for scientific
discussions. They could serve as augmented intelligence agents to
help oncologists and bioinformaticians interpret panel sequencing
reports within molecular tumor boards (Supplementary Fig. 5)13.
For example, attendees could engage Melvin to determine if a gene
of interest is putatively actionable or frequently mutated in a given
cancer type. As voice technology improves, VUIs may be able to
capture the context of entire group conversations and play a more
proactive role – such as relaying relevant information without an
explicit prompt. With its VUI and ability to query databases,
Melvin complements other conversational agents such as
ChatGPT. In the future, hybrid platforms integrating voice, vetted
biomedical databases, and large language models could further
enhance digital health applications.

VUIs come with additional security considerations as users’ voice
recordings could contain private information or be used nefariously
(e.g. voice cloning)14. Importantly, Melvin only receives users’
speech-to-text translations from Amazon Alexa and cannot access
user-provided audio data (Supplementary Note 1). However, it is
possible that users’ voice recordings will be retained by Amazon
Alexa itself15. We provide details on how this can be circumvented
in Supplementary Note 2. Like with any new technology, it is
important for users to weigh potential risks prior to use.

Through its state machine approach, Melvin automatically
returns analyses and visualizations based on the current attributes
and their values (i.e. state). Here, we had to balance analytical
detail with concise, conversational responses and fast navigation.
A potential limitation of Melvin is its gene-centric design, which
may require minor modifications if other genomic elements are to
be queryable. Nonetheless, the Melvin framework is extensible
and can support more advanced analytics by expanding the
number of possible attributes and intents. Key aspects of Melvin’s
codebase have been open-sourced to encourage communal
development (see Software Availability). Additionally, we will
continue to augment the operations Melvin can perform in
response to user feedback.

As demonstrated with the addition of BASIS, Melvin has been
designed to ingest other cancer genomics datasets. We will con-
tinue to add high-value datasets (e.g. ICGA PCAWG16) over

time. With a large Internet of Things footprint, Melvin could
provide a complementary interface to cancer genomics datasets
hosted by GDC9, cBioPortal2, or Xena1. As these data warehouses
continue to grow, innovative solutions are required to provide
on-demand insights. By enabling users to formulate queries
through natural language, Melvin helps promote data democra-
tization, scientific discovery, and clinical translation in cancer
genomics.

Methods
Cloud architecture and design. In addition to the custom
Interaction Model (Supplementary Notes 2 and 3), Melvin con-
sists of four, loosely-coupled microservices deployed on Amazon
Web Services (AWS): Intent Handler; Navigation State Tracking,
Out-of-Vocabulary Mapper Service (OOVMS); and Data
Explorer Service (Supplementary Fig. 1a, b and Supplementary
Notes 4 and 7). A serverless computing model is used to build
and host the Data Explorer Service and OOVMS components
under the AWS Lambda platform. This allows Melvin to be
instantaneously scalable without manual intervention. The
serverless-framework toolkit packages multiple system compo-
nents (e.g. OOVMS and Data Explorer Service) into bundles that
can be deployed via AWS Cloud Formation platform. Data
contained within the Data Explorer Service are structured within
Amazon Aurora relational databases. Amazon DynamoDB is
utilized to manage state-based tracking, crowdsourced utterances,
and personal pronunciations. For additional details on result
caching, message passing, and application programming inter-
faces (APIs), please see Supplementary Notes 4 and 7.

Cancer genomic data sources. Melvin’s Data Explore Service
contains a collection of genomic datasets from the 33 cancer types
within The Cancer Genome Atlas (TCGA). DNA-based alteration
data – mutations and copy number alterations – were down-
loaded from the genomics Data Commons (GDC). Mutational
calls were taken from four different variant callers: MuTect2,
Somatic Sniper, Varscan, and Muse (Data release: 8.0). For a
mutation to be included in Melvin, it needed to be called by two
or more callers and assigned a MODERATE or HIGH functional
impact according to Variant Effect Predictor (VEP). As indels
were only called by MuTect2 and Varscan, we required each to be
called by both tools to be classified as a mutation in the Data
Explorer Service. Per-sample, genic CNAs were also downloaded
from the GDC Portal. RNA expression data is from UCSC Toil
RNAseq Recompute Compendium (version: 2016-04-12). BASIS
SNVs and indels (mutations) were downloaded from the ICGC
portal. The impact_id for each mutation was mapped to an
Ensembl Variant Effect Predictor (VEP) consequence_type.
Only MODERATE and HIGH impact mutations from each
gene’s longest transcript (Ensemble v75 GTF) were retained. The
union of SNVs called by CaVEMan and the PCAWG Consensus
SNV-MNV caller – as well as the union of indels called by Pindel
and the PCAWG Consensus INDEL caller – were made queryable
by Melvin. Copy number alteration data (copy_-
number_somatic_mutation.BRCA-EU.tsv.gz) was downloaded
from the ICGC portal. For each sample, genes (gene_af-
fected) were annotated as loss/deletion, neutral, or gain/
amplification using the mutation_type field. Only BASIS
samples (n= 344) that had both mutation and copy number
alteration data were made available via Melvin. All genomic
datasets were filtered to only include genes from the consensus
coding sequence (CCDS) project (version: 22). Homo sapien gene
definitions and locations are sourced from the National Centre
for Biotechnology Information (NCBI) (File: Homo_-
sapiens.ags.gz; accessed May 2019). The therapeutic
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actionability of genes within oncology – as well as the associated
pharmacologic agents – was taken from the US Food and Drug
Administration’s (USFDA) Table of Pharmacogenomic Bio-
markers in Drug Labeling (accessed July 2021). Peptide and
protein domain information for supported Homo sapien genes
were taken from Pfam (accessed 1 Oct 2019).

Crowdsourced and custom utterances. Using our Pronunciation
Quiz skill (Supplementary Figure 2; Supplementary Note 6), we
crowdsourced utterances (i.e. pronunciations) for genes within
the Cancer Gene Census (Supplementary Data 1), cancer types
within TCGA and potential synonyms, as well as genomic data
types and their potential synonyms (n= 897) (Supplementary
Data 2) from 9 domain experts at the Cancer Science Institute of
Singapore. This group was composed of individuals from differ-
ent ethnicities (Singaporean, Indonesian, Sri Lankan, American,
and Indian) – adding accent diversity to the collected data. 24,093
utterances were collected in total. On average, each expert pro-
vided 3 pronunciations for each of the aforementioned domain-
specific terms. Due to the time required to generate such training
data, we limited our gene pronunciations to the most cancer-
relevant genes found within the Cancer Gene Census. However,
we also developed the Custom Pronunciation Web Portal (Sup-
plementary Note 6) to allow users to utilize Melvin to explore
genes of interest that are not within the Cancer Gene Census.
Taking the user pronunciations of the domain-specific terms, a
crowdsourced database was populated with attribute values, ASR
transcriptions, and attribute types (eg. {MYC, “MICK”, GENE}).

Out-of-vocabulary mapper service design and testing. The
OOVMS is a component in the Melvin system that helps to
accurately identify the domain-specific term or phrase uttered by
the user. The voice request from the user – query utterance – is
captured by Alexa and its speech transcription is provided for
further processing. These query utterances undergo a chain of
three, sequential pipelines: (1) exact matching; (2) crowdsourced
utterance mapping; and (3) predicted matching (Supplementary
Fig. 3a–c).

In the exact matching pipeline, the incoming query utterance is
cleaned, case transformed, and lemmatized to match exact entities
(GENE, CANCER TYPE, or DATA TYPE) from a lookup. In cases
where the least disambiguation is required, this stage should yield
results, thereby foregoing subsequent pipelines. The next pipeline,
crowdsourced utterance matching, exploits the database of
crowdsourced utterances generated via Pronunciation Quiz
(Supplementary Fig. 2 and Supplementary Note 6). The
performance of this pipeline is dependent on the distribution of
attribute pronunciation variations captured in the crowdsourced
utterance database. Any query utterance that cannot be resolved
by exact matching is subjected to a lookup within the
crowdsourced utterances. If the query utterance can be mapped
to a single attribute value via crowdsourced utterances, that
attribute value is returned by the OOVMS.

Finally, any query utterance that cannot be resolved by the first
two pipelines is subjected to predicted matching. A machine
learning (ML) model trained on 90% (n= 21,683) of the
crowdsourced utterance corpus is prepared to predict an optimal
match for the incoming utterance. The preparation of the ML
model consists of three steps: (i) dataset preparation, (ii) feature
engineering, and (iii) model building. In dataset preparation,
basic preprocessing is carried out on the utterance corpus. This
involves cleaning and case transformation. In feature engineering,
the raw dataset is transformed into flat features that can be used
for training an ML model. The utterances are transformed into a
combination of representations that are generated using

traditional NLP (n-grams and TF-IDF) and context-aware vector
representations (word embeddings). Phonetic representation and
syllables are also captured in the final set of features generated. In
the final step of model building, a random forest classifier (Scikit
Learn) is trained – using the aforementioned features – to learn
the mappings between the crowdsourced utterance transcriptions
and intended target terms. A random forest classifier is a set of
decision trees, each built over a random extraction of features and
dataset observations. When subjected to a query utterance, it then
combines the predictions from all trees, and the final result is
calculated by a majority vote (with ties split randomly)
(Supplementary Figure 3c).

The remaining 10% (n= 2,410) of the crowdsourced
utterance corpus was subjected to the dataset preparation steps
mentioned above and used for testing. We then determined the
percentage of test utterances that could be accurately mapped
by Amazon Alexa’s native ASR transcriptions versus our three-
step OOVMS.

End-to-end testing framework. In addition to high coverage to
unit testing, we developed a comprehensive end-to-end testing
framework to continuously ensure microservice function, proper
utterance mapping, and the veracity of Data Explorer Service
results. See Supplementary Notes 8 and 9 for further details.

Statistics and reproducibility. Statistical testing in Melvin is
performed using the numpy (version: 1.18.1) and scipy (version:
1.5.2) Python libraries. Melvin’s visualizations are generated using
the Python libraries seaborn (version: 0.11.2), matplotlib (version:
3.1.3), squarify (version: 0.4.3), and pywaffle (version: 0.6.1).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data within Melvin’s Explorer Service was taken from publicly available sources.
Details of these sources as well as dataset release versions can be found in the Methods
section.

Code availability
Melvin is freely available as an Amazon Alexa skill (https://www.amazon.com/dp/
B09NZSRBNS). Codebases underlying the Melvin skill (https://github.com/pittlab-
genomics/Melvin_Alexa_Skill; https://doi.org/10.5281/zenodo.10118441)17, Melvin
intent handler (https://github.com/pittlab-genomics/Melvin_Alexa_Intent_Handler;
https://doi.org/10.5281/zenodo.10118447)18, Pronunciation Quiz skill (https://github.
com/pittlab-genomics/Pronunciation_Quiz_Alexa_Skill; https://doi.org/10.5281/zenodo.
10118435)19, and Pronunciation Quiz intent handler (https://github.com/pittlab-
genomics/Pronunciation_Quiz_Intent_Handler; https://doi.org/10.5281/zenodo.
10118425)20 are publicly available as Git repositories as well as a Zenodo repositories.
Additional Melvin use cases and animated video demonstrations can be found here:
https://www.melvin.pittlabgenomics.com/.
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