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Multiple ageing effects on testicular/epididymal
germ cells lead to decreased male fertility in mice
Tsutomu Endo1,2,3,4✉, Kiyonori Kobayashi2,5, Takafumi Matsumura2,6, Chihiro Emori 2, Manabu Ozawa7,

Shimpei Kawamoto 2, Daisuke Okuzaki 2, Keisuke Shimada 2, Haruhiko Miyata 2, Kentaro Shimada2,6,

Mayo Kodani2,6, Yu Ishikawa-Yamauchi 7,8, Daisuke Motooka2, Eiji Hara 1,2,5,9 & Masahito Ikawa 1,2,6,7,9✉

In mammals, females undergo reproductive cessation with age, whereas male fertility gra-

dually declines but persists almost throughout life. However, the detailed effects of ageing on

germ cells during and after spermatogenesis, in the testis and epididymis, respectively,

remain unclear. Here we comprehensively examined the in vivo male fertility and the overall

organization of the testis and epididymis with age, focusing on spermatogenesis, and sperm

function and fertility, in mice. We first found that in vivo male fertility decreased with age,

which is independent of mating behaviors and testosterone levels. Second, overall sperm

production in aged testes was decreased; about 20% of seminiferous tubules showed

abnormalities such as germ cell depletion, sperm release failure, and perturbed germ cell

associations, and the remaining 80% of tubules contained lower number of germ cells

because of decreased proliferation of spermatogonia. Further, the spermatozoa in aged

epididymides exhibited decreased total cell numbers, abnormal morphology/structure,

decreased motility, and DNA damage, resulting in low fertilizing and developmental rates.

We conclude that these multiple ageing effects on germ cells lead to decreased in vivo male

fertility. Our present findings are useful to better understand the basic mechanism behind the

ageing effect on male fertility in mammals including humans.
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Male fertility requires sufficient numbers of functional
spermatozoa that can contribute to embryonic devel-
opment. Reproductive cessation occurs in aged females,

whereas male fertility gradually declines but persists almost
throughout life1–3. We used the mouse as a model to understand
the effect of ageing on germ cells in the testis and epididymis: two
pivotal male reproductive organs in which spermatozoa are
produced, matured, and stored until ejaculation.

Within the adult mammalian testis, spermatogenesis (the
program of sperm production) is carefully regulated, ensuring
that large numbers of spermatozoa are produced at a constant
rate (Supplementary Fig. 1a). In mice, spermatogenesis begins
with undifferentiated type A spermatogonia, which encompass
the spermatogonial stem cells (SSCs)4–7. The undifferentiated
spermatogonia periodically undergo spermatogonial differentia-
tion to become differentiating spermatogonia (also known as A1/
A2/A3/A4/intermediate/B spermatogonia). Germ cells then
become spermatocytes and undergo meiotic initiation8,9. This
begins with DNA replication followed by two cell divisions,
resulting in the formation of haploid, round spermatids, which
develop into spermatozoa. All germ cells are located in the
seminiferous tubule of the testis and supported by somatic (Ser-
toli) cells, which supply various factors essential for
spermatogenesis10. Spermatozoa are released into the lumen of
the seminiferous tubules (called spermiation) and acquire their
motility and fertility as they migrate through the head (caput),
body (corpus), and distal (cauda) epididymis11,12. Finally, these
functional spermatozoa are stored in the cauda epididymis until
ejaculation (Supplementary Fig. 1a).

The undifferentiated spermatogonia have a remarkable capa-
city for self-renewal and differentiation: they can reconstitute
spermatogenesis upon transplantation to a germ cell-depleted
testis13,14. The effects of ageing on SSCs are well documented
in vitro and in vivo; the transplantation technique has revealed
that SSC numbers and activity decline by 24 months of age and
are affected by somatic environment in the aged testis15,16. In
vitro, the SSCs derived from neonatal mice can produce offspring
via transplantation up to 24 months of culture (1085-fold
expansion), but no spermatozoa are developed after 30 months
(10105 to 10106-fold expansion)17,18. By contrast, the in vitro SSCs
derived from adult mice at 3–4 months of age undergo a decline
of their potential to undergo spermatogenesis after 4–6 months of
continuous expansion culture19. However, the detailed effects of
ageing on germ cells during and after spermatogenesis, in aged
testicular and epididymal environments, respectively, have
remained unclear. Moreover, although several studies collectively
exhibit the impact of ageing on male fertility, sperm parameters,
and testis histology20, it is difficult to interpret their correlations
because each piece of evidence was provided by different species/
strains, time point settings, and experimental conditions. To
address these questions, we first investigated in vivo male fertility
with age, using C57BL/6 J mice as a model. We then compre-
hensively explored the overall organization of the aged testis and
epididymis, focusing on spermatogenesis, and sperm function
and fertility. We conclude that multiple ageing effects on germ
cells during and after spermatogenesis lead to decreased in vivo
male fertility.

Results
In vivo male fertility decreases with age. We monitored in vivo
male fertility in C57BL/6 J mice by mating test from 2 to
24 months of age (Fig. 1a, b), when the mice have shown ageing
signs such as graying hair and body weight loss (from 18 to
24 months) (Fig. 2c). The number of pups per litter (litter size)
derived from females gradually decreased until 24 months of

age (P= 0.0003, Pearson’s correlation) (Fig. 1c), consistent
with a previous report21. The litter size was significantly low
at 22–24 months (P= 0.004, Dunnett’s test) (Fig. 1c), and
pup numbers per vaginal plug in females decreased (albeit not
significantly) with male age (Supplementary Fig. 1b). Preg-
nancy rates in females exhibiting vaginal plugs (litters per
vaginal plug) were not affected with male age (Supplementary
Fig. 1c), indicating that the reduced litter size (Fig. 1c) is a main
symptom of decreased in vivo fertility in aged males.

We then tested for the intervals between successive births
(litters) in females after mating (Fig. 1d). Days between births
(and days between birth and the next pregnancy) in females were
not significantly extended with male age (Fig. 1e and Supple-
mentary Fig. 1d), suggesting that frequency of mating behavior
did not decrease with male age. Because male sexual behavior is
associated with testosterone22,23, we predicted that testosterone
levels in aged males should be normal. Indeed, both serum and
testicular testosterone concentrations in 24-month-old males
were not decreased (Fig. 1f, g). We conclude that in vivo male
fertility decreases with age regardless of their mating behaviors
or testosterone levels.

Aged testes show impaired sperm production. Because the
decreased fertility in aged males was not due to the decreased
mating frequency, we hypothesized that the testis and/or epidi-
dymis should undergo functional decline. To test this prediction,
we first focused on changes in testes with age. Testis sizes and
weights were similar between 2 and 24 months of age (Fig. 2a, b),
whereas testis weights per body weight were significantly
decreased with age (Fig. 2c, d).

We then compared the testis histologies at 2 and 24 months. In
any given seminiferous tubule cross-section, one sees stereo-
typical associations of germ cells at different steps of their
development into spermatozoa24. In mice, these associations can
be classified into 12 patterns, known as seminiferous stages
I–XII25. At 2 months, almost all tubules contained multiple layers
of germ cell types, whereas at 24 months 8.4% of tubules showed
germ cell depletion (Fig. 2e, f and Supplementary Fig. 2a, b). We
then observed their germ cell associations. In the testis,
spermatozoa are released into the lumen of seminiferous tubules
in stage VIII (before stages IX-X)11,26. At 24 months, the number
of stage IX-X tubules with aligned spermatozoa, which were still
located along the luminal edge of the tubules, per total tubules
was increased to 5.8%, vs. 1.7% at 2 months (Fig. 2g, h and
Supplementary Fig. 2a, c). Similarly, the number of stage IX-X
tubules with aligned spermatozoa per total stage IX-X tubules was
increased to 42.4% at 24 months vs. 10.1% at 2 months (Fig. 2i),
indicating that nearly half of aged tubules exhibit sperm release
failure when spermatozoa reach stage VIII. Moreover, at
24 months, 6.3% of tubules contained more than two stages in
a tubule cross-section area, which were not observed at 2 months
(Fig. 2j, k and Supplementary Fig. 2a). We conclude that about
20% of seminiferous tubules show abnormal stages, including
germ cell depletion, in aged testes.

The remaining 80% of seminiferous tubules showed normal
germ cell association patterns at 24 months (Supplementary
Fig. 2a). However, these aged tubules contained thin layers of
germ cells (Fig. 3a and Supplementary Figs. 2a and 3a). We thus
counted germ cells of these aged tubules in stage VII, when
multiple types of germ cells are ready to undergo key transitions
of spermatogenesis: spermatogonial differentiation, meiotic
initiation, spermatid elongation, and sperm release26,27. Indeed,
the number of type A spermatogonia, which are at undiffer-
entiated states in stage VII28–30, was significantly decreased at
24 months (Fig. 3a, b and Supplementary Fig. 3a). Because the
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number of undifferentiated spermatogonia specifies the total
number of their descendant germ cells, the numbers of
spermatocytes, spermatids, and spermatozoa should corre-
spondingly decrease with age. As predicted, these
cell numbers were decreased at 24 months (Fig. 3c). We
conclude that the efficiency of sperm production is impaired in
whole-aged testes.

Sperm numbers in epididymides are decreased with age. We
next focused on changes in epididymides with age. Both epididymis
sizes and weights were increased with age (Fig. 3d, e); epididymis
weights per body weight were stable with age (Fig. 3f), indicating
that the changes in epididymis weights correspond with body
growth. Because sperm production, including sperm release
(Fig. 2g–i and Supplementary Fig. 2a, c), was impaired in aged
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pregnancy period. Red bar, days between litters (births). Blue bars, days between birth and the next pregnancy. e Days between births. Each red dot
represents the days between births when females (n= 30) were mated with males (n= 5) at 2–4, 12–14, or 22–24 months of age. NS, not significant
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testes, we predicted that sperm numbers stored in cauda epididy-
mides would be correspondingly decreased. We thus counted the
sperm numbers in cauda epididymides, which is a widely used and
sensitive method of assessing sperm production31,32. Indeed, total

sperm numbers in cauda epididymides were significantly decreased
at 24months (Fig. 3g, h and Supplementary Fig. 3b), indicating that
the increased size of the aged epididymides is due not to sperm
numbers but to increased mass of somatic tissues.
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Fig. 2 Aged testes show partial depletion of germ cells and abnormal germ cell associations. a Gross morphology of testes in males at 2 and 24 months
of age. Scale bars, 5 mm. b Testis weight (mg) in males at 2, 6, 12, 18, and 24 months of age. Error bars, mean ± SD. Red dots, testis values in males at 2
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Decreased proliferation of type A spermatogonia leads to the
decreased number of spermatozoa in aged testes. As mentioned
above, the numbers of spermatocytes, spermatids, and sperma-
tozoa were decreased in stage VII at 24 months (Fig. 3c). How-
ever, there were no discernible abnormalities in these germ cells
at the morphological level (Fig. 3a and Supplementary Fig. 3a),
suggesting that the decrease in the numbers of these germ cells
was mainly due to the decreased number of type A spermatogonia
(Fig. 3b). To verify that type A spermatogonia undergo

differentiation, we tested for key molecular features of sperma-
togonial differentiation by immunostaining. In the testis, during
spermatogonial differentiation in stages VII-VIII, type A sper-
matogonia express STRA8 and start to enter mitotic S
phase4,27,29. We confirmed that type A spermatogonia normally
expressed STRA8 and incorporated BrdU, a marker of S phase, at
24 months (Fig. 4a and Supplementary Fig. 4a); because STRA8
and 5-bromo-2-deoxyuridine (BrdU) are also functional markers
of meiotic initiation8,9,27, preleptotene spermatocytes were
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of age. Error bars, mean ± SD. Red dots, epididymis values in males at 2 (n= 5), 6 (n= 5), 12 (n= 5), 18 (n= 5), and 24 (n= 7) months of age. P= 0.0001
and r= 0.49 (Pearson’s correlation). f Epididymis weight per body weights (%) in males at 2, 6, 12, 18, and 24 months of age. Error bars, mean ± SD. Red
dots, testis values in males at 2 (n= 5), 6 (n= 5), 12 (n= 5), 18 (n= 5), and 24 (n= 7) months of age. P= 0.43 and r= 0.02 (Pearson’s correlation).
g Cauda epididymis tubule longitudinal-sections in males at 2 (Left) and 24 (Right) months of age, stained with He-PAS. Upper panels enlarge black boxed
regions in Lower panels. Scale bars, 100 μm. h Total sperm numbers from the cauda epididymis (×106). Blue dots, biological replicates of males at 2 (n= 8)
and 24 (n= 7) months of age. P= 0.02 (one-tailed t test).
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positive for STRA8 and BrdU as expected. Indeed, the number of
BrdU-positive type A spermatogonia was not changed in stages
VII-IX, when they undergo cell division for their differentiation
toward spermatocytes4,29 (Fig. 4b). By contrast, the BrdU-positive
cell numbers were decreased specifically in stages X-XII and I-III,
when undifferentiated type A spermatogonia proliferate4,29

(Fig. 4b). Further, we found that the number of apoptotic
degenerating spermatogonia was not changed with age

(Fig. 4c, d). These results indicate that the decreased proliferation
of type A spermatogonia simply leads to the decreased number of
spermatozoa in aged testes.

Somatic cells but not germ cells show senescence-associated
β-galactosidase activity in aged testes and epididymides. In
most of germ cell-depleted tubules at 24 months, some
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spermatogonia were present with a few other germ cell types
(Fig. 2e and Supplementary Fig. 2b), like other germ cell-depleted
testis models33–36. The type A spermatogonia in germ cell-
depleted tubules were positive for STRA8 and BrdU (Fig. 4a and
Supplementary Fig. 4a), suggesting that these type A spermato-
gonia were competent to express intrinsic factors for differ-
entiation, but failed to undergo spermatogenesis due to extrinsic
factors (i.e., the somatic environment). Thus, we immunostained
for SOX9, a marker of Sertoli cells. Indeed, the number of Sertoli
cells was decreased at 24 months (Fig. 4a and Supplementary
Fig. 4a, b). We then tested whether germ cells and/or somatic cells
in aged testes show ageing by senescence-associated β-galactosi-
dase (SA-β-gal) staining, a widely used biomarker for cellular
senescence both in vivo and in vitro37–39. At 23 months, germ
cells were negative for SA-β-gal signals, whereas Sertoli cell
cytoplasm, which surrounds germ cells, were positive for the
signals (Fig. 4e and Supplementary Fig. 4c). Moreover, SA-β-gal
signals on the interstitial tissues between tubules were markedly
increased at 23 months compared to 2 months. We conclude that
somatic cells but not germ cells show SA-β-gal signals in aged
testes.

We next tested whether somatic cells in aged epididymides
show histological abnormalities and SA-β-gal activities. In 24-
month-old cauda epididymides, epithelial cell layers of tubules
were thickened and contained some vacuoles (Fig. 4f); these
epithelial cells had strong SA-β-gal signals compared to 2-month-
old epithelial cells, whereas spermatozoa in tubules were negative
for the signals (Fig. 4g and Supplementary Fig. 4d). We conclude
that somatic cells in the aged epididymis show histological
abnormalities and strong SA-β-gal signals.

RNA-Seq analysis in aged testes and epididymides shows up-
regulation of genes related to inflammation and senescence-
associated secretory phenotype factors. To analyze mRNA
expressions in aged testes and epididymides at genome-wide level, we
performed mRNA-Seq on these samples at 2 and 24 months
(Fig. 5a); in 24-month-old testes, 422 genes were up-regulated (fold
change ≥2), and 790 genes were down-regulated (fold change≤−2);
in 24-month-old cauda epididymides, 1086 genes were up-regulated,
and 942 genes were down-regulated. Using these up-regulated and
down-regulated gene lists, we performed Gene Ontology (GO) ana-
lysis. In 24-month-old testes and cauda epididymides, most of the top
10 enriched GO terms (biological process) of up-regulated genes were
related to inflammation (Fig. 5b and Supplementary Fig. 5a), which is
the major ageing phenotype in body tissues40–42. Indeed, heatmap of
differentially expressed genes showed that the genes related to cellular
senescence, which includes senescence-associated secretory pheno-
type (SASP) factors known to stimulate inflammation43, tended to be
up-regulated in aged testes and epididymides (Fig. 5c). We conclude

that mRNA expressions in both aged testes and epididymides show
ageing features at genome-wide level.

We next tested for genome-wide expressions of germ cell-
related genes using the RNA-Seq data. In 24-month-old testes
and cauda epididymides, down-regulated genes related to
spermatogenesis or germ cells were absent in the lists of the top
10 enriched GO terms (Supplementary Fig. 5b). Given that germ
cells in the testis undergo transcriptional repression during late
spermatogenesis (called spermiogenesis), and spermatozoa are
transcriptionally inactive in the epididymis44,45, we focused on
aged testes to perform heatmap analysis of key marker genes for
spermatogenesis or germ cells. We confirmed that most of the
genes for undifferentiated spermatogonia, spermatogonial differ-
entiation, meiosis, and spermiogenesis were not down-regulated
at 24 months of age (Fig. 5c). These RNA-Seq data were
consistent with histological and immunohistochemical data
showing no discernible abnormalities in germ cells (Figs. 3a
and 4a and Supplementary Figs. 3a and 4a). Moreover, key
marker genes for Sertoli cells and Leydig cells were also not
down-regulated (Fig. 5c), suggesting that aged Sertoli cells and
Leydig cells do not impair these expressions at the mRNA level.

Aged epididymides accumulate structurally abnormal sper-
matozoa with decreased motility. Having found that aged epidi-
dymides show histological abnormalities and ageing features, we
hypothesized that the spermatozoa stored in aged epididymides
should undergo morphological and/or functional disorders. As
predicted, the spermatozoa at 24 months had abnormal morphol-
ogies including bent head or bent (or broken) midpiece (Fig. 6a); the
abnormal spermatozoa were more accumulated in cauda (34.9%)
than in caput (9.1%) epididymides at 24 months (P < 0.00001; χ2

test; Fig. 6b). We then performed ultrastructural analysis of cauda
epididymal spermatozoa by SEM. The spermatozoa at 24 months
exhibited structurally abnormal flagella (Fig. 6c and Supplementary
Fig. 6a); the midpiece was abnormally curved next to the sperm head
or broken at the annulus with a split mitochondrial alignment.
Moreover, some spermatozoa at 24 months had midpieces that lack
mitochondria (Supplementary Fig. 6b).

To test whether motility was affected in aged spermatozoa with
the structurally abnormal flagella, we analyzed flagellar bending
patterns of spermatozoa. Abnormal spermatozoa at 24 months
exhibited inflexible movement after incubation in capacitation
media for both 10 min and 120min, when spermatozoa have
undergone hyperactivation46 (Fig. 6d and Supplementary Fig. 6c).
Moreover, motility, progressive motility, and velocity parameters
of spermatozoa at 24 months were lower than those at 2 months
(Fig. 6e, f and Supplementary Fig. 6d). We conclude that aged
epididymides accumulate structurally abnormal spermatozoa
with decreased motility.

Fig. 4 Somatic cells but not germ cells show senescence-associated β-galactosidase activity in aged testes and epididymides. a Immunostaining for
STRA8, BrdU, and SOX9, with hematoxylin counterstain, on testis cross-sections of males at 2 (Left; a stage VII-VIII tubule) or 24 (Middle, a tubule in
stages VII-VIII; Right, a tubule showing germ cell depletion) months of age. Arrows, Sertoli cell nuclei. Arrowheads, type A spermatogonia (white) and
preleptotene spermatocytes (black). Scale bars, 20 μm. b Number of BrdU-positive type A spermatogonia per tubule section area (mm2). Blue dots,
biological replicates of males at 2 (n= 3) and 24 (n= 5) months of age. P= 0.03 and 0.01 (Tukey-Kramer test). NS, not significant (P > 0.05; Tukey-
Kramer test). P= 0.008 and 0.002 (one-tailed t test). NS, not significant (P > 0.05; one-tailed t test). c Testis tubule cross-sections of males at 2 (Left; a
stage I-II tubule) or 24 (Middle, a stage I-II tubule; Right, a tubule showing germ cell depletion) months of age, stained with hematoxylin and periodic acid-
Schiff (He-PAS). Arrowheads, degenerating spermatogonia. Scale bar, 20 μm. d Number of degenerating spermatogonia per tubule section area (mm2).
Blue dots, biological replicates of males at 2 (n= 3) and 24 (n= 5) months of age. NS, not significant (P > 0.05; Tukey-Kramer test). e Senescence-
associated β-galactosidase (SA-β-gal) staining, with Nuclear Fast Red counterstain, on testis cross-sections of males at 2 (Left) or 23 (Right) months of
age. Insets (red) enlarge red boxed regions. Scale bars, 100 μm. f Cauda epididymis tubule longitudinal-sections in males at 2 (Left) and 24 (Middle and
Right) months of age, stained with hematoxylin and periodic acid-Schiff (He-PAS). Upper panels enlarge black boxed regions in Lower panels. Red bars,
epithelial cells. Asterisks, vacuoles. Scale bars, 20 μm. g Senescence-associated β-galactosidase (SA-β-gal) staining, with Nuclear Fast Red counterstain, on
cauda epididymis tubule longitudinal-sections of males at 2 (Left) or 24 (Right) months of age. Insets (red) enlarge red boxed regions. Scale bars, 100 μm.
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Fig. 5 RNA-Seq analysis in aged testes and epididymides shows up-regulation of genes related to inflammation and senescence-associated secretory
phenotype factors. a Scatter plots of RNA-Seq data comparing the normalized FPKM values for all genes in testes (Left) or cauda epididymides (Right) of
males at 2 (x-axis, n= 5) vs. 24 (y-axis, n= 5) months of age. Red dots, up-regulated genes (fold change ≥2). Blue dots, down-regulated genes (fold
change≤−2). Gray dots, no differential gene expression (−2 <fold change <2). b Gene Ontology (GO) terms (biological process) of up-regulated genes
(fold change ≥2) on RNA-Seq data in testes (Left) or cauda epididymides (Right) of males at 2 (n= 5) vs. 24 (n= 5) months of age. The top 10 enriched
terms are displayed based on the -log10 (P-value). Y-axis, −log10 (P-value). Blue graphs, GO terms related to inflammation. c Heatmap of differentially
expressed genes related to cellular senescence, undifferentiated spermatogonia, spermatogonial differentiation, meiosis, spermiogenesis, Sertoli cells, and
Leydig cells, on RNA-Seq data in testes or cauda epididymides of males at 2 (n= 5) vs. 18 (n= 5) vs. 24 (n= 5) months of age.
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Spermatozoa in aged epididymides adversely affect in vitro
fertilization and subsequent early embryonic development. To
evaluate the fertilizing ability of aged spermatozoa in the epidi-
dymis, we performed in vitro fertilization (IVF). The number of
fertilized eggs per total oocytes was significantly decreased when
24-month-old spermatozoa were used for IVF (Fig. 7a). The

number of two pronuclear (2PN) eggs per fertilized eggs tended
to increase with age (Fig. 7b), indicating that aged spermatozoa
do not cause polyspermic (≥3PN) fertilization.

After IVF, we cultured fertilized eggs (embryos) and monitored
their development from 1-cell (Day 0) to blastocyst stages (Day
4). Morula and blastocyst formation rates were significantly
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Fig. 6 Aged epididymides accumulate abnormal spermatozoa with decreased motility. a Morphology of cauda epididymal spermatozoa in males at 2
(Left) and 24 (Middle and Right) months of age. Upper panels enlarge black boxed regions in Lower panels. Arrowheads, bent head (dark gray) and bent
(or broken) midpiece (light gray). Scale bars, 20 μm. b Number of abnormal spermatozoa per total spermatozoa (%), collected from caput and cauda
epididymides, in males at 2 (n= 5 biological replicates) and 24 (n= 6 biological replicates) months of age. Percentages of abnormal spermatozoa were
increased from 1.2% (16/1291 at 2 months) to 9.1% (122/1344 at 24 months) in caput epididymides (P < 0.00001; χ2 test), and from 9.1% (158/1628 at
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bars, mean ± SD. Blue dots, biological replicates of males at 2 (n= 6) and 24 (n= 9) months of age. P= 0.03, 0.02, 0.01, 0.009, and 0.00005 (one-tailed
t test). NS, not significant (P > 0.05; one-tailed t test).
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Fig. 7 Spermatozoa in aged epididymides adversely affect in vitro fertilization and subsequent early embryonic development. a Number of fertilized
eggs per total oocytes (%) at 8 h after in vitro fertilization (IVF), by using spermatozoa in males at 2, 6, 12, 18, and 24 months of age. Error bars, mean ± SD.
Blue dots, biological replicates of males at 2 (n= 13), 6 (n= 3), 12 (n= 3), 18 (n= 5), and 24 (n= 8) months of age. P= 0.0002 and r=−0.58 (Pearson’s
correlation). b Number of two pronuclear (2PN) eggs per fertilized eggs (%), at 8 h after IVF, by using spermatozoa in males at 2, 6, 12, 18, and 24 months
of age. Error bars, mean ± SD. Blue dots, biological replicates of males at 2 (n= 13), 6 (n= 3), 12 (n= 3), 18 (n= 5), and 24 (n= 8) months of age.
P= 0.02 and r= 0.35 (Pearson’s correlation). c Number of embryos at each stage per total 2PN eggs (%), at Day 1–4 after IVF, produced using
spermatozoa from males at 2 and ≥24 months of age. Error bars, mean ± SD. Blue dots, biological replicates of males at 2 (n= 9) and ≥24 (n= 12) months
of age. P= 0.04 and 0.006 (one-tailed t test). NS, not significant (P > 0.05; one-tailed t test). d Blastocysts, at Day 4 after IVF, produced using
spermatozoa from males at 2 (Far left) and ≥24 (Center left, Center right, and Far right) months of age. Insets, number of embryos at blastocyst stage per
total 2PN eggs (%). Red dots, blastocysts. Scale bars, 100 μm. e Blastocyst diameter without zona pellucida (μm), at Day 4 after IVF, using spermatozoa
from males at 2 (n= 5) and ≥24 (n= 5) months of age. Error bars, mean ± SD. Each red dot represents a blastocyst (n= 91, at 2 months; n= 79, at
≥24 months). P= 0.001 (one-tailed t test). f Blastocysts at Day 4 after IVF, using spermatozoa from males at 2 (Left) and ≥24 (Right) months of age,
immunostained for OCT4 and CDX2 (merged), with DAPI counterstain. BF, bright field, were merged with DAPI. Z-stack images (10–12 μm thickness) were
converted into single projection images. Scale bars, 30 μm. g Blastocyst cell number, at Day 4 after IVF, using spermatozoa from males at 2 (n= 3) and ≥
24 (n= 5) months of age. Each red dot represents a blastocyst (n= 20, at 2 months; n= 35, at ≥24 months). P= 0.0006 and 0.0002, and <0.00001
(one-tailed t test). Total cells, DAPI-positive cells. Inner cell mass (ICM) cells, OCT4-positive and CDX2-negative cells. Trophectoderm (TE) cells, CDX2-
positive cells. h Number of ICM cells per total cells (%) in blastocysts at Day 4 after IVF, by using spermatozoa in males at 2 (n= 3) and ≥24 (n= 5)
months of age. Each red dot represents a blastocyst (n= 20, at 2 months; n= 35, at ≥24 months). NS, not significant (P > 0.05; one-tailed t test).
i Number of blastocysts per total 2PN eggs (%), at Day 4 after IVF (c), using spermatozoa from males at ≥24 months of age. Error bars, mean ± SD. Blue
dots, biological replicates of males at ≥24 (n= 12) months of age, were divided into two groups: high (90–73%) and low (71–22%) IVF rates at Day 0. NS,
not significant (P > 0.05; one-tailed t test).
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decreased in embryos derived from spermatozoa at ≥24 (24–26)
months (Fig. 7c, d); at Day 4, the decrease in the number of
blastocysts was due not to delayed development, but to
degeneration or fragmentation of embryos (Fig. 7d and
Supplementary Fig. 7). Moreover, the diameters of blastocysts
derived from ≥24-month-old spermatozoa were significantly
decreased (Fig. 7e). We confirmed that these blastocyst cell
numbers, including inner cell mass (ICM) and trophectoderm
(TE) cells, were decreased, using markers OCT4 and CDX247,48

(Fig. 7f, g); the number of ICM cells per total cells was
comparable between 2 and ≥24-month-old spermatozoa (Fig. 7h).

We tested whether low IVF rates by aged spermatozoa are
correlated with low embryonic developmental rates. There were
no differences in blastocyst formation rates between the embryos
derived from high (90-73%) and low (71–22%) IVF rates by
spermatozoa at ≥24 months (Fig. 7i), indicating that low IVF
rates and low embryonic developmental rates are caused
independently by aged spermatozoa.

Both somatic cells and spermatozoa in aged epididymides
accumulate DNA damage. Because low blastocyst formation
rates are correlated with sperm DNA damage that does not affect
sperm morphology or fertilization49–52, we analyzed DNA
damage in aged testes and epididymides. We first immunostained
for γH2AX (phosphorylated H2A histone family member X),
which is a sensitive molecular marker of DNA damage (double-
strand break)53. In 2-month-old testes, strong γH2AX signals
were detected in the preleptotene spermatocytes undergoing
meiotic DNA double-strand breaks and in sex bodies of pachy-
tene spermatocytes (Fig. 8a and Supplementary Fig. 8a), as pre-
viously reported27,54. Localization patterns of γH2AX signals
were comparable between 2 and 24-month-old testes; no ectopic
signals were detected in germ cells or Sertoli cells at 24 months
(Fig. 8a and Supplementary Fig. 8a). By contrast, γH2AX signals
were detected in tubular epithelial and interstitial cells of 24-
month-old cauda epididymides, whereas there were no signals in
epididymides at 2 months (Fig. 8b and Supplementary Fig. 8b).

We next tested whether speramtozoa stored in aged epididy-
mides undergo DNA damage. In spermatozoa, most histones
including H2AX, are replaced with protamines55. We thus
measured the levels of DNA damage using the comet assay,
which is a single-cell gel electrophoresis technique to detect DNA
fragments in spermatozoa56,57. Sperm comet tail lengths, which
represent fragmented DNAs, were significantly increased at ≥ 24
months (Fig. 8c, d). We conclude that spermatozoa in aged
epididymides accumulate DNA damage.

Discussion
We investigated the effect of ageing on male fertility and germ
cells in testes and epididymides. We now show that in vivo male
fertility decreases with age, that overall sperm production in aged
testes is decreased, and that the spermatozoa in aged epididy-
mides exhibit abnormal morphology and structure, decreased
motility, increased DNA damage, and low fertilization and
developmental rates. Here we propose that these multiple ageing
effects on germ cells lead to decreased in vivo male fertility
(Fig. 8e).

We find that the frequency of mating behavior and (both
serum and testicular) testosterone levels are not decreased until
24 months of age. By contrast, previous reports showed the
decreased serum testosterone levels with age in mice20,58. This
difference between previous reports and our finding likely reflects
differences in strains/genetic background of mice and/or housing
environments; in our C57BL/6 J mouse model, their average
lifespan is 29 months59. Testosterone is required for the

development of spermatocytes and spermatids during meiotic
progression and spermiogenesis, respectively60,61. Indeed, there
were no morphological abnormalities or developmental arrests in
spermatocytes or spermatids at 24 months in our mouse model,
indicating that testosterone levels in aged mice are high enough to
maintain spermatogenesis. Nevertheless, in vivo fertility decreases
in aged males. Our findings provide evidence that aged males
undergo testosterone-independent functional decline in testes and
epididymides, resulting in the decreased in vivo fertility.

In aged males, we find that the efficiency of sperm production
is impaired in whole testes. Specifically, about 20% of semi-
niferous tubules showed abnormal stages (germ cell associations):
germ cell depletion, sperm release failure, and perturbed stages
(more than two stages in a tubule cross-section area). The
remaining 80% of aged tubules with normal stages contained
lower number of germ cells compared to young tubules. The
decreased number of undifferentiated spermatogonia, caused by
their decreased proliferation, is consistent with previous SSC
transplantation studies showing decreased SSC numbers and
activity in aged testes15,16. We now find that during and after
spermatogonial differentiation, germ cells in aged testes show no
morphological abnormalities or developmental arrests from dif-
ferentiating spermatogonia to spermatozoa. Indeed, key marker
genes for spermatogenesis are not down-regulated in aged testes
at genome-wide level. We thus conclude that decreased number
of spermatozoa in aged seminiferous tubules with normal stages
is simply due to the decreased proliferation of undifferentiated
spermatogonia.

Transplantation of young SSCs into aged testes has revealed
that the function of the somatic environment declines with age15.
We now provide several observations that support the declined
function of somatic environment in aged testes. First, somatic
cells but not germ cells show an ageing feature, SA-β-gal signal, in
aged testes. Second, our observation that aged testes partially
exhibit germ cell depletion, sperm release failure, and perturbed
stages, accord with published phenotypes of Sertoli Cell dys-
functions by genetic ablations11,62,63. Further, type A spermato-
gonia in germ cell-depleted aged tubules expressed STRA8 and
entered S phase, which are key functional features of spermato-
gonial differentiation, suggesting that these spermatogonia are
intrinsically competent to undergo differentiation and subsequent
spermatogenesis. Finally, we show that the number of Sertoli cells
is decreased in aged testes. The decreased Sertoli cell numbers
may be involved in decreased number of germ cells and/or
abnormal seminiferous stages of aged testes because Sertoli cell
numbers determine the capacity of germ cells and sperm pro-
duction in the tubule64–66. Further studies are needed to deter-
mine how aged Sertoli cells functionally affect germ cells and
spermatogenesis.

We do not yet know whether (and how) other somatic cell
types in aged testes and epididymides affect sperm production
and sperm function, respectively. We find that strong SA-β-gal
signals on the interstitial tissues in aged testes and tubular epi-
thelial cells in aged epididymides. Moreover, in both aged testes
and epididymides, genes related to inflammation and cellular
senescence are up-regulated at genome wide level. The simplest
interpretation of these observations is that interstitial tissues in
aged testes and tubular epithelial cells in aged epididymides
undergo inflammation and cellular senescence. Indeed, the
interstitial tissues in testes comprise blood vessels, T cells, and
dendritic cells, all of which are known to undergo inflammation
and senescence with age67–70, and the epithelial cells in aged
epididymides show morphological abnormalities and DNA
damage. Although interstitial tissues in testes also comprise
Leydig cells, which produce testosterone, functional decline of
testosterone production has yet to occur at least at 24 months of
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age. It will be of great interest to determine the somatic cell types
that undergo functional decline and impair sperm production
and function (directly or indirectly) with age.

We find that aged epididymides contain morphologically and
structurally abnormal spermatozoa; the abnormal spermatozoa
were more abundant in cauda epididymides than in caput epi-
didymides. The abnormalities in aged spermatozoa restricted
their movement, thus resulting in decreased sperm motility. We
postulate that both morphological/structural abnormalities and
decreased motility in aged spermatozoa cause decrease fertiliza-
tion rates, based on published data of abnormal
spermatozoa71–73. We also find that low fertilization rates in aged

spermatozoa are not correlated with low developmental rates,
indicating that aged spermatozoa have an impairment other than
abnormal morphology/structure and decreased motility. Indeed,
we provide evidence that aged spermatozoa accumulate DNA
damage, which is known to decrease developmental and preg-
nancy rates after fertilization49–52. In contrast to aged epididy-
mides, we did not detect obvious DNA damage signals on germ
cells or somatic cells in aged testes. This finding suggests that aged
epididymides may accumulate much more DNA damage than
aged testes.

In summary, our findings demonstrate that decreased sperm
production in aged testes and functional defects of spermatozoa
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in aged epididymides lead to decreased in vivo male fertility. In
humans, male fertility is thought to decline with age; semen
parameters including semen volume, sperm motility, and normal
sperm morphology, start to decline after 35 years of age, and
these declines are remarkable over 50 years of age3. Specifically,
when comparing the semen quality of a 50-year-old man to a 30-
year-old man, there was a 3–22% decrease in semen volume, a
4–22% decrease in normal sperm morphology, and a 3–37%
decrease in sperm motility74. However, the current knowledge on
aging of men’s fertility is limited because it is largely obtained
from non-invasive semen analysis. Moreover, the decreased fer-
tility in older men can be caused not only by ageing but also by
diseases or exposure to environmental factors such as chemicals
and nutrition. Our histological- and molecular-based findings
derived from a C57BL/6 J mouse model are useful to better
understand the basic mechanism behind the ageing effect on male
fertility in humans as well as other mammals.

Methods
Animals. All animal experiments were approved by the Animal
Care and Use Committee of the Research Institute for Microbial
Diseases, Osaka University. We have complied with all relevant
ethical regulations for animal use. Wild-type C57BL/6 J mice were
purchased from Charles River Laboratories Japan, Inc. (Yoko-
hama, Japan) and CLEA Japan, Inc. (Tokyo, Japan). Unless
otherwise noted, experiments were performed on male mice at 2,
6, 12, 18, 24, and ≥24 (from 24 to 26) months and female mice at
2 months of age; 24 or 24–26 months of age was used as one of
the aged time points, based on previous reports of ageing
research75–77 and on the fact that average lifespan of C57BL/6 J
mice is 29 months59.

5-bromo-2-deoxyuridine incorporation. Males received i.p.
injections of 10 μL/g body weight of 10 mg/mL BrdU (Sigma-
Aldrich, USA) in PBS, 4 h before they were sacrificed.

Mating test. Single 2-month-old males were caged with two of 2-
month-old females for 4 months, and the females were replaced
with new 2-month-old females every 4 months, until the males
reached the age of 24 months. The numbers of pups, litters, and
vaginal plugs in females were counted in each cage.

Serum testosterone measurement. Blood samples were placed in
1.5 mL tubes at room temperature for 30 min, and centrifuged at
1000 × g for 30 min at 4 °C to collect serum. The serum testos-
terone concentrations were measured by a Parameter Testoster-
one Assay Kit (KGE010, R&D Systems, USA) according to the
manufacturer’s protocol.

Testicular testosterone measurement. Testicular testosterone
concentrations were measured as reported previously78,79. In
brief, a mouse testis was homogenized in 1 mL of distilled water.
As internal standards, Testosterone-13C3 was added to mouse
testis suspensions. Testosterone was extracted with 4 mL of
methyl tert-butyl ether. After the organic layer was evaporated,
the extract was dissolved in 0.5 mL of methanol and diluted with
1 mL of distilled water. The sample was applied to OASIS MAX
cartridge which had been successively conditioned with 3 mL of
methanol and 3 mL of distilled water. After the cartridge was
washed with 1 mL of distilled water, 1 mL of methanol/distilled
water/acetic acid (45:55:1, v/v/v), and 1 mL of 1% pyridine
solution, the testosterone was eluted with 1 mL of methanol/
pyridine (100:1, v/v). After evaporation, the residue was reacted
with 50 μL of mixed solution (80 mg of 2-methyl-6-nitrobenzoic
anhydride, 20 mg of 4-dimethylaminopyridine, 40 mg of picolinic

acid, and 10 μL of triethylamine in 1 mL of acetonitrile) for
30 min at room temperature. After the reaction, the sample was
dissolved in 0.5 mL of ethyl acetate/hexane/acetic acid (15:35:1, v/
v) and the mixture was applied to InertSep SI cartridge which had
been successively conditioned with 3 mL of acetone and 3 mL of
hexane. The cartridge was washed with 1 mL of hexane, and 2 mL
of ethyl acetate/hexane (3:7, v/v). Testosterone was eluted with
2.5 mL of acetone/hexane (7:3, v/v). After evaporation, the residue
was dissolved in 0.1 mL of acetonitrile/distilled water (2:3, v/v)
and the solution was subjected to a LC-MS/MS. The limit of
quantification of testosterone was 1 pg per tube. All measure-
ments were performed at ASKA Pharma Medical (Fujisawa,
Japan).

Histology. Testes and epididymides were fixed overnight in
Bouin’s solution, embedded in paraffin, sectioned, and stained with
hematoxylin and periodic acid-Schiff (PAS). All sections were
observed under a light microscope. Germ cell types were identified
by their location, nuclear size, and chromatin pattern80. Degen-
erating spermatogonia were identified by their location, nuclear
size and morphology, and cell shrinkage36,80. Seminiferous tubule
stages were determined using hematoxylin and PAS-stained cross
sections, according to morphological criteria25,80. In brief, the
12 stages were identified primarily based on the first 12 steps of
spermatid development. When the patterns of germ cell associa-
tions were changed in males at 24 months of age, the stages were
identified according to spermatid development25. Seminiferous
tubule cross-section areas were measured by ImageJ software.

Sperm count and morphology. The cauda epididymal sperma-
tozoa were dispersed in PBS, and then their numbers were
counted, or their morphology was observed, under a phase-
contrast microscope (BX50, Olympus, Tokyo, Japan).

Ultrastructural analysis of spermatozoa. Ultrastructural analysis
of cauda epididymal spermatozoa by scanning electron micro-
scopy (SEM) was performed as described previously81. In brief,
cauda epididymal spermatozoa were incubated in TYH medium
to disperse, collected in a tube, washed with 0.1 M phosphate
buffer (pH 7.4), mounted on coverslips, and fixed with 1% glu-
taraldehyde in 0.1 M phosphate buffer on ice. After washing, the
specimens were postfixed with 1% osmium tetroxide in 0.1 M
phosphate buffer containing 1% potassium ferrocyanide,
conductive-stained with 1% tannic acid solution and 1% osmium
tetroxide solution, dehydrated in ethanol, and critical point dried
by a Samdri-PVT-3D system (Tousimis, Maryland, USA). The
specimens were coated with osmium tetroxide by osmium coater
HPC-30W (Vacuum Device, Ibaraki, Japan). Electron micro-
graphs were captured with an S-4800 field emission scanning
electron microscope (Hitachi, Tokyo, Japan).

Sperm motility analysis. Cauda epididymal spermatozoa were
dispersed in TYH medium82 for analyzing sperm motility. At 10
and 120min after the sperm incubation, velocity parameters were
examined by using the CEROS II sperm analysis system (software
version 1.5.2; Hamilton Thorne Biosciences, Massachusetts,
USA). For analyzing flagellar bending patterns, sperm motility
was videotaped at 200 frames per second using an Olympus BX-
53 microscope equipped with a high-speed camera (HAS-L1,
Ditect, Tokyo, Japan) as described previously83. Obtained frame
images were analyzed using the sperm motion analyzing software
(BohBohsoft, Tokyo, Japan)84. Single frames throughout one
beating cycle were superimposed; in abnormal (bent or broken
mid piece) spermatozoa with unclear beating cycle, 20 frames
were superimposed.
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Sperm comet assay. The alkaline comet assay was done using the
CometAssay Kit (Trevigen). Specifically, spermatozoa were
incubated in TYH medium for 30 min at 37 °C in an incubator
with 5% CO2. The spermatozoa were diluted with 50 μL PBS
(final conc.: 1 × 105 spermatozoa/mL), mixed with molten low-
melting-point-agarose (Trevigen), and then put on the comet
slide. Sample slide were immersed in lysis solution (Trevigen)
with 40 mM dithiothreitol at 4 °C for 20 min, and then Actinase
(final conc.: 10 μg/mL) was added. After incubation for 2 h at
room temperature, the slides were immersed in alkaline solution
for 1 h at 4 °C. After electrophoresis for 40 min at 1 Volt/cm, the
slides were stained by SYBR Gold (Thermo Fisher Scientific,
Massachusetts, USA). The comet tail length of about 30 sperma-
tozoa per slide was measured with ImageJ software.

In vitro fertilization and embryo culture. Mouse in vitro ferti-
lization (IVF) was performed as described previously85. In brief,
2-month-old females were given an injection of 5 IU of pregnant
mare serum gonadotropin (PMSG; ASKA Pharmaceutical Co.,
Tokyo, Japan), followed 48 h later by 5 IU of human chorionic
gonadotropin (hCG; ASKA Pharmaceutical Co.) for super-
ovulation. At 14 h after hCG injection, oocytes with cumulus cells
(cumulus-oocyte complexes: COCs) were collected in 100 μL
drops of TYH medium covered with paraffin oil. Cauda epidi-
dymal spermatozoa were collected from males and incubated in
TYH medium for 2 h for capacitation. Capacitated spermatozoa
were added to each drop containing COCs at a final concentra-
tion of 2 × 105 spermatozoa/mL. To remove cumulus cells, COCs
were treated with hyaluronidase (1 mg/mL) for 5 min. At 8 h after
incubation (post-insemination), the formation of pronuclei was
observed under a Hoffman modulation contrast microscope.
After IVF (Day 0), the embryos were cultured in KSOM medium
up to Day 4 (from 1-cell to blastocyst stages) and observed under
a phase contrast microscope. Blastocyst diameters were measured
by ImageJ software.

Immunostaining on Testis and epididymis sections. Testes and
epididymides were fixed in Bouin’s solution for 2 h at room
temperature, embedded in paraffin, and sectioned at 5 µm
thickness. Slides were de-waxed, rehydrated, and heated in
10 mM sodium citrate buffer (pH 6.0). The slides were then
blocked with 2.5% horse serum (Vector Laboratories, California,
USA) for 30 min, incubated with primary antibodies for 1 h,
washed with PBS, incubated with the secondary antibodies
(ImmPRESS-HRP detection kit, Vector Laboratories) for 30 min,
and washed with PBS, at room temperature. The primary anti-
bodies are as follows: anti-STRA8 (1:500 dilution; ab49405,
Abcam, Massachusetts, USA), anti-BrdU (1:500 dilution; ab6326,
Abcam), anti-SOX9 (1:200 dilution; AB5535, Millipore, Massa-
chusetts, USA), and anti-γH2AX (1:200 dilution; ab11174,
Abcam). For colorimetric detection, slides were developed using a
DAB substrate kit (Vector Laboratories), counterstained with
Mayer’s hematoxylin, dehydrated, and mounted with Permount
(Fisher Scientific).

Immunostaining on blastocysts. Blastocysts were fixed in 4%
paraformaldehyde for 40 min at 4 °C, washed with PBS, per-
meabilized with 0.5% Triton X-100 in PBS for 20 min, and
washed with PBS. The blastocysts were then blocked with 2.5%
goat serum for 45 min, incubated overnight with primary anti-
bodies at 4 °C, washed with PBS, incubated with the secondary
antibodies for 30 min at room temperature, and washed with PBS.
The combinations of primary and secondary antibodies are as
follows. Anti-OCT4 (1:200 dilution; PM048, MBL Life Science,

Nagoya, Japan) with goat anti-rabbit DyLight 549 (1:250 dilution,
Thermo Fisher Scientific); and anti-CDX2 (1:150 dilution; B-
MU392AUC, BioGenex, California, USA) with goat anti-mouse
DyLight 488 (1:250 dilution, Thermo Fisher Scientific). Finally,
blastocysts were whole-mounted with Antifade Mounting Med-
ium with DAPI (H1200, Vector Laboratories) and observed under
a confocal laser scanning microscope (C2+, Nikon, Japan).
Z-stacks were collected at 0.4 μm intervals, and the maximum
intensity projection images were generated from the z-stacks with
total 10–12 μm thickness.

Senescence-associated β-galactosidase staining. Testes and epi-
didymides were embedded in O.C.T. compound (Sakura Finetek,
Tokyo, Japan) and frozen in liquid nitrogen. Frozen blocks were
sectioned at 8 μm thickness, fixed in 2% paraformaldehyde
(containing 0.2% glutaraldehyde) for 15 min at room tempera-
ture, washed with PBS, incubated in staining solution (containing
40 mM citric acid, 5 mM K4[Fe(CN6)3H2O, 5 mM K3[Fe(CN)6],
and 1 mg/mL X-gal)39 for 20 h at 37 °C, and washed with PBS.
Slides were counterstained with Nuclear Fast Red solution,
dehydrated, and mounted with Permount (Fisher Scientific).

RNA-Seq analysis. Testes and epididymides were placed in
TRIzol (Thermo Fisher Scientific), homogenized, and stored at
−20 °C. Total RNAs were prepared according to the manu-
facturer’s protocol. Libraries were prepared using a TruSeq
Stranded mRNA Sample Prep Kit (Illumina, California, USA)
according to the manufacturer’s protocol. Whole-transcriptome
sequencing was applied to the RNA samples using an Illumina
HiSeq 2500 platform in a 75-base single-end mode. Sequenced
reads were mapped to the mouse reference genome sequences
(mm10) using TopHat version 2.0.13 in combination with
Bowtie2 version 2.2.0 and SAMtools version 0.1.18. Normalized
FPKM were calculated using Cuffnorm or Cuffdiff version 2.2.1
and each value lower than 0.1 was set to 0.1. Gene Ontology (GO)
analysis was performed using Enrichr86. Heatmaps of differen-
tially expressed genes were calculated with Subio software and
visualized with Microsoft Excel.

Statistics and reproducibility. Statistical analysis was performed
using GraphPad Prism 9. Data are represented as mean ± SD of
three or more biological replicates. When comparing two groups,
the t test (one-tailed as indicated) or the χ2 test was employed. To
compare three or more groups, Pearson’s correlation or one-way
ANOVA with the Tukey-Kramer post hoc test was used. To
compare multiple experimental groups with a control group, one-
way ANOVA with Dunnett’s post hoc test was used. The sample
sizes represent independent biological replicates. All experiments
were performed at least three times.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The source data behind the graphs are available in Supplementary Data 4. The obtained
RNA-seq data have been deposited in the NCBI Gene Expression Omnibus (accession
code GSE226150) (https://www.ncbi.nlm.nih.gov/geo/). All other data are available from
the corresponding author (or other sources, as applicable) on reasonable request. Further
inquiries can be directed to the corresponding author (atendo@g.ecc.u-tokyo.ac.jp).
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