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LiLA: lipid lung-based ATLAS built through a
comprehensive workflow designed for an accurate
lipid annotation
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Accurate lipid annotation is crucial for understanding the role of lipids in health and disease

and identifying therapeutic targets. However, annotating the wide variety of lipid species in

biological samples remains challenging in untargeted lipidomic studies. In this work, we

present a lipid annotation workflow based on LC-MS and MS/MS strategies, the combination

of four bioinformatic tools, and a decision tree to support the accurate annotation and semi-

quantification of the lipid species present in lung tissue from control mice. The proposed

workflow allowed us to generate a lipid lung-based ATLAS (LiLA), which was then employed

to unveil the lipidomic signatures of the Mycobacterium tuberculosis infection at two different

time points for a deeper understanding of the disease progression. This workflow, combined

with manual inspection strategies of MS/MS data, can enhance the annotation process for

lipidomic studies and guide the generation of sample-specific lipidome maps. LiLA serves as a

freely available data resource that can be employed in future studies to address lipidomic

alterations in mice lung tissue.
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Accurate annotation of lipid species in lipidomics is
essential for advancing our understanding of lipid biology,
identifying disease biomarkers, and developing potential

therapeutic interventions. It is a foundational step that influences
the validity and impact of lipidomics research. The lipid anno-
tation is a multi-step process that begins with the extraction and
analysis of lipids from a sample, followed by the characterization
and identification of the lipids using different analytical techni-
ques, mainly mass spectrometry (MS). This process also involves
the use of software tools to obtain information about the lipid
structure and the exact composition of fatty acid chains to
increase the biological significance of the lipidome, including
chain length and the unsaturation grade, which are essential for
the specific role of a biological lipid. A liquid chromatography-
mass spectrometry (LC-MS)-based untargeted lipidomics
approach has become the most adopted strategy for clinical stu-
dies to unveil disease mechanisms and potential biomarkers.
However, this strategy renders complex data matrices with
thousands of features corresponding to adducts, in-source frag-
ments, neutral losses, multimers, and isotopologues. Despite its
utmost importance, the proper annotation of a wide variety of
lipid species present in biological samples remains a crucial
bottleneck found in untargeted lipidomics studies1, mainly due to
the complexity of this family of biomolecules and the co-elution
of different lipid classes during the chromatographic analysis.
Additionally, the experimental conditions have a massive impact
on the abundance of characteristic lipid fragments, some of them
being common between isobaric and isomeric lipid species2 and
favouring more than one adduct formation in electrospray
ionization3, which increases the difficulty of the chromatogram
and spectra interpretation. Furthermore, a lipidomics-based
analysis usually renders features that do not correspond to
unique metabolite compounds, and very frequently, we must deal
with the presence of compounds which do not have any biological
relevance in our study, and some of them are even unknown4.
These compounds could interfere with those lipids that, in fact,
are of great significance in our research, resulting in a very time-
consuming process during data analysis in our studies4,5. In
recent years, efforts have been combined to develop multiple lipid
annotation tools to alleviate all these issues, increasing the
number of mass spectral libraries6, however, this is insufficient.
For these reasons came up the necessity of optimizing the lipid
annotation process to increase the number of lipid species
accurately annotated, with greater structural details and a higher
degree of confidence.

Lipidomics studies can be conducted using either a targeted or
an untargeted approach. Typically, targeted analyses aim to
identify and quantify a limited number of lipids. However,
obtaining all the required chemical standards for the lipids of
interest can be difficult, if possible, resulting in limited coverage
of detected lipid species. Conversely, the untargeted lipidomics
approach focuses on simultaneously detecting as many com-
pounds as possible, providing a wide range of lipids/features with
various chemical and physical properties. Still, identifying and
quantifying all detected lipids/features remains a challenge. The
primary hurdle is maximizing the detection and accurate iden-
tification of thousands of metabolites while maintaining a decent
detection dynamic range and quantification capability7,8. In our
case, we were committed to implementing a different analytical
strategy from the data processing point of view.

To achieve this goal, we performed an untargeted lipidomics
analysis using lung tissue of control mice (Mtb−) by an RP-
UHPLC-ESI-QTOF MS, followed by a data-dependent analysis
(DDA) adopting an iterative-MS/MS strategy attempting to
obtain the fragmentation data from the underlying features.
Then, we established an annotation workflow to build an accurate

database containing high-quality lipid annotations using the
obtained DDA data. We relied on the use of four annotation
software programs based on three different and complementary
annotation approaches, including the spectra matching (Lipid
Annotator9, MS-Dial10), the bottom-up strategy (LipidHunter11)
and the fragments intensity rules (LipidMS12)13. Then, we gen-
erated a database with the tentative lipid annotations by com-
bining all the information collected from the four software
programs. Next, we introduced a decision tree to curating the
tentative database by establishing different criteria to decide
whether the tentative annotation was accurate or not, including
the manual inspection of the MS and MS/MS spectra to recon-
struct the parent–fragment ion relationships and verify the lipid
annotations based on structural elucidation rules. Therefore, the
decision tree allowed us to curate the initial database, validate the
accuracy of the annotation, and subtract the false positives that
could interfere with our studies’ outcomes. At the end of the
process, we obtained a database containing 866 accurately
annotated lipid molecular species.

The development of an ATLAS of lipids, which characterizes
the quantitative distribution and relationship of lipids in various
biological samples, is indeed valuable for understanding the
metabolome and lipidome composition. By creating such an
ATLAS, researchers can compare individual studies with animal
models and human population health data, facilitating a com-
prehensive analysis of lipid profiles. Due to the scarcity of a
detailed quantitative inventory of tissue lipidomes, we generated a
Lipid Lung-based ATLAS (LiLA) by performing the semi-
quantification of the lipid species included in the previously
developed mice lung reference database. As a result, 709 lipid
species were semi-quantified using the SPLASH® Lipidomix®
internal standard mixture, providing a comprehensive and multi-
dimensional analysis of lipids. Finally, LiLA was used to reprocess
untargeted data acquired from Mtb-infected mice lung samples
collected at two-time points, four- and twelve-weeks post-infec-
tion (Mtb+4w, Mtb+12w), to unveil the lipid dysregulation
induced by Tuberculosis (TB) and its progression. The strategy of
using an ATLAS containing hundreds of lipid species to reprocess
untargeted data is what we named a hybrid lipidomics approach.

LiLA exemplifies a data-rich resource that is freely available
and will sustain further understanding of lipidomic alterations
within mice lung tissue. Furthermore, our decision tree-based
proposal can assist the annotation process for any lipidomics-
based study and could act as a guideline to generate other sample-
specific lipidome maps.

Results and discussion
Setting up and optimizing the LC-MS/MS parameters is critical
for the lipid annotation process. The optimization related to the
analytical procedure, including the sample preparation, the chro-
matographic conditions, and the ionization efficiency are critical to
the compound annotation process4. Data-dependent Analysis
(DDA)14,15 is one of the most frequently applied data acquisition
strategies, using user-optimized parameters, which is central to
ensuring high spectral quality, coverage and the number of com-
pound annotations, providing the most comprehensive molecular
insights into a sample16,17. We performed the DDA analysis at two
fixed collision energies (CE), 20 and 40 eV since it has been
demonstrated that combining spectra acquired with different CE
may provide more structural information and, therefore, better
reference mass spectra for lipid annotation18. Additionally, we
selected a small isolation width window (1.3m/z) for the quadru-
pole to isolate the precursor ion, leading to higher MS/MS spectral
quality and increasing the sensitivity, isotope coverage, and anno-
tation rates. The MS and MS/MS m/z range was also optimized for

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05680-7

2 COMMUNICATIONS BIOLOGY |            (2024) 7:45 | https://doi.org/10.1038/s42003-023-05680-7 | www.nature.com/commsbio

www.nature.com/commsbio


the data acquisition. The MS detection range was set between 100
and 1700 m/z to prevent noise from being introduced in the ana-
lysis. In contrast, the range for MS/MS analysis was increased to
40–1700m/z to detect potential characteristic fragment ions with
low m/z values, such as the diagnostic fragment ions of acyl-
carnitines (m/z 85.0289 and 60.0798)19. This approach allowed us
to achieve a more comprehensive analysis while ensuring accuracy
and minimizing noise. To improve MS/MS coverage, we set the
number of MS peaks for subsequent fragmentation and MS/MS
scans to three per duty cycle. We employed the Iterative-MS/MS
mode, which selects the top three precursor ions based on intensity
in each run. By doing so, we aimed to enhance the analysis of the
sample by focusing on the most intense peaks, ultimately leading to
better MS/MS coverage. The precursor ion threshold was also
optimized, looking to a compromise between increasing the MS/
MS coverage of the lipid species present in the sample at lower
abundances but preventing the fragmentation of the background
noise. An additional critical parameter to be considered when
configuring the DDA parameters is the exclusion time. After anMS
peak was selected for fragmentation, we established a 0.1-min
interval to allow the algorithm to select it again if it remained the
most intense peak. Finally, we created an exclusion list that
included reference masses and potential contaminants detected in
the blank samples. In this way, only the compounds from our
sample were selected for fragmentation during the DDA analysis,
while external contaminants were excluded.

However, DDA is a process driven by an automated
instrument which decides on the fly which are the top precursors
and then fragments them one after the other, introducing a
certain level of bias. Moreover, one of the DDA drawbacks is that
sometimes the algorithm leaves lower abundant signals unana-
lyzed and therefore unidentified in the experiment20. Oxylipins,
as bioactive lipid mediators, play a crucial role in numerous
physiological processes, including blood flow regulation and
inflammation. Nevertheless, the analysis of oxylipins poses
important challenges, primarily due to their limited presence in
samples and structural diversity21. Consequently, our study’s
software tools have failed to annotate this class of compounds due
to their low biological abundance, since most of them fell below
the noise threshold set in the DDA analysis. Thus far, manual
data inspection has allowed us to annotate five oxylipins, with
only one having a commercially available standard, which allowed
us to reach a confidence level 1 for this lipid species.
Unfortunately, we have been unable to ascertain a higher level
of structural detail for the remaining compounds, primarily due
to the inherent challenge of determining the precise positions of
the double bonds within their structures (Fig. 1a–g).

Comprehensive workflow for an accurate lipid annotation
using MS/MS data. A thorough description of the lipidomic
profile of a specific biological matrix sample can provide valuable
insights into the diverse range of lipid classes and subclasses
present in the matrix. This information could serve as a reference
for future studies and aid in identifying lipid biomarkers or
potential therapeutic targets22–24. However, the proper annota-
tion/identification of metabolites and lipids present in biological
samples is a big issue that has not yet had a unique and stan-
dardized solution. However, to date, hundreds of scientists
worldwide are doing their best to find and combine different
annotation tools to increase the annotation confidence level and
the number of compounds found in biological samples under
study. As part of this community, we tried to enhance the
annotation process to overcome the obstacles that might appear
during the performance of this arduous task. Here, using the
iterative MS/MS data files obtained from lung samples of healthy

control mice (Mtb−) in both positive (ESI+) and negative (ESI-)
MS ionization modes, we selected four different annotation
software programs based on three different annotation strategies
and combined the information obtained from them to increase
the lung lipidome coverage (Fig. 2).

Lipid Annotator v1.0 (Agilent) and MS-DIAL 4 (Riken) tools
are based on the MS/MS annotation by spectral matching using in
silico libraries included in the software. The in-silico library
included in Lipid Annotator is a modified version of LipidBlast
database. This software uses an algorithm that combines
probability density, Bayesian scoring, and a non-negative least
square fit to search a theoretical lipid library. The software allows
the deconvolution of co-eluted lipid isomers using the Bayesian
probability, determines the relative abundance of those isomers
using non-negative least squares fit, and proposes a possible
annotation for the dominant lipid species9. The Mass
Spectrometry-Data Independent Analysis software (MS-DIAL)
is a data-processing pipeline for large-scale untargeted metabo-
lomics applicable to either data-independent or precursor-
dependent MS/MS fragmentation methods. It was created as a
universal program for untargeted metabolomics that supports
multiple instruments and MS vendors. It contains an enriched
LipidBlast library version and allows the independent spectral
deconvolution of the data and, as a result, the software proposes a
possible precursor ion for each detected peak10. The LipidHunter
software tool performs the lipid annotation process based on a
bottom-up strategy using a predefined fatty acids checklist. This
program is an open-access computational tool for the high-
throughput identification and characterization of lipids in mass
spectrometry DDA data. It uses machine learning algorithms to
analyse the mass spectra of lipids and predict the identities based
on their mass and fragmentation patterns. The software tool
matches product and neutral loss signals obtained by LC-MS/MS
to a user-defined white list of fatty acid residues and lipid class-
specific fragments11. The fourth software employed in this study
was LipidMS 3.0. This tool, launched in 2022, performs the lipid
annotation based on fragmentation rules and fragments intensity.
LipidMS 3.0 is a software package for R, also implemented as a
web-based application, that provides a set of functions for lipid
annotation and includes MS data pre-processing options,
including peak detection and peak alignment12. Since it is built
on the R-environment, it is compatible with the mzR, XCMS and
CAMERA R-packages. It is also integrated with LipidSearch,
providing an easy-to-use interface, allowing users to search for
putative lipid identifications and evaluate the quality of the
results.

To date, no study has been published that utilizes the
combination of these four software tools for lipid annotation,
possibly due to the recent development of some of these tools,
making them unavailable for previous studies. Moreover, learning
how to use these tools and processing the data matrices generated
from them can be time-consuming, further contributing to the
lack of previous research on this topic. A recent review of
bioinformatics tools for MS-based lipidomics analysis revealed
over 30 open-access software tools for lipidomics data processing
and annotation25. MS-Dial, for instance, is one of the most used
software tools due to its versatility and free access, making it
widely adopted in the lipidomics field25–27. Some annotation
tools, such as Lipid Annotator, are not freely accessible, limiting
their usage compared to other more widely available tools.
Although most software provides information about retention
time (RT), mass-to-charge ratio (m/z), adducts, ionization mode,
total lipid composition, and unsaturation grade, only LipidHunter
and Lipid Annotator provide a score for annotation confidence
level and neutral molecular formula. Meanwhile, all software
programs except LipidMS show the fragmentation pattern of each
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feature and the corresponding matching compound. This
information is valuable for verifying the presence of characteristic
lipid class fragments and ensuring annotation accuracy. Further-
more, in some cases, the software’s fragmentation pattern can
help to identify and discard false-positive metabolites based on
mismatched ion fragments.

A decision tree to curate the massive amount of information
obtained from the different software tools. To manage the large
volume of data produced by the four annotation tools, we com-
bined all CSV files into a single Excel file, which contained all the
information provided by the four software programs relative to
each annotated lipid, including the RT, m/z, abundance, lipid
class, sum composition, the complete compound name where the

chain length and unsaturation grade were indicated (if possible),
the ion species and the formula. Considering all the information,
we established a decision tree based on specific exclusion criteria
to handle the overwhelming data produced by the annotation
tools, avoid false positive annotations, and provide a compre-
hensive lipid profile of the mice’s lung tissue samples (Fig. 3 and
Supplementary Fig. 1). We divided the decision tree into 5 main
steps described below:

1. Lipid species annotated by all four software programs: We
concluded that the lipid was accurately annotated if we
found four entries within the raw database with the same
structural annotation, m/z, and RT. Additionally, we
considered the adduct pattern that each lipid class could
exhibit. In instances where the same lipid species appeared

Fig. 1 The manual inspection process allowed us to detect 5 oxylipins. a Graphical representation of the DDA-MS analysis. b ESI(–)-MS/MS spectrum of
9,12,13-TriHOME commercial standard (Cayman Chemical, MI, USA). c ESI(–)-MS/MS of 9,12,13-TriHOME detected in the mice lung sample displaying
the same RT and fragmentation pattern as the commercial standard. d ESI(–)-MS/MS spectrum of FA 16:0 <9O> or 9-keto palmitic acid. e ESI(–)-MS/MS
spectrum of FA 18:1 <9OOH>. f ESI(–)-MS/MS spectrum of FA 18:1 <9OH>. g ESI(–)-MS/MS spectrum of FA 18:4 <12OH>.
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with the same structural annotation and RT but different
adducts and, consequently, m/z, we reviewed the adduct
pattern that the lipid class could present and selected the
adduct form that rendered the most intense signal3.

2. Lipid species annotated by three out of four software
programs: When three of the four software programs
displayed the same structural annotation, m/z, and RT, we
evaluated the matching score provided by each software. If
the matching score was above 80% in all three software
programs, we determined that the lipid had been accurately
annotated. However, if the matching score was below 80%,
we conducted a manual review of the MS/MS spectra to
identify the lipid’s characteristic fragment ions. After the
inspection, we concluded that the lipid was accurately
annotated if the MS/MS spectrum contained the character-
istic fragment ions. If not, we attempted to provide a
composite annotation by examining if the spectrum
contained at least the characteristic fragment ions of the
lipid class (Supplementary Fig. 1). If previous information
was not confirmed, it was considered a false positive, and we
tried to accurately annotate it relying on structural elucida-
tion rules, focusing on the specific fragmentation pattern of

each lipid class. In this step, the adduct pattern that each lipid
class could exhibit was also considered for those cases where
a particular structural annotation appeared several times at
the same RT but with different m/z.

3. Lipid species annotated by two out of four software
programs: We employed a conservative approach when
two entries with the same structural annotation, m/z and
RT, were detected in our raw database and conducted a
manual inspection of the MS/MS spectrum as previously
detailed. Following this strategy, we could determine if the
structural annotations were accurate. If the annotation was
incorrect, we attempted to provide a more general
annotation of the lipid class (sum composition) or
determine if the software programs had provided a false
positive annotation. In those cases where the annotation
was incorrect and a false positive, we made every effort to
manually annotate the lipid species accurately.

4. Lipid species annotated by one of four software programs:
Maintaining a conservative approach, we manually
inspected the MS and MS/MS data when a lipid species
was only annotated by one software. Regarding the MS
data, an initial search of the m/z using the online tool CEU

Fig. 2 Schematic workflow followed in this study. The lipid annotation was made by using four different software, together with the manual inspection of
the spectra. Data curation was performed using a decision tree to generate a lung lipidome database of healthy mice lung tissue. Finally, the usefulness of
LiLA was tested by using it to unveil the lipid alterations induced by the Mtb in the mice lung samples, by using Profinder software for feature building and
time alignment, MATLAB and SIMCA for statistical analysis, and LINEX for pathway analysis.
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Mass Mediator (CMM) (http://ceumass.eps.uspceu.es/
mediator/)28 was performed to provide a tentative annota-
tion of the lipid class. The tentative assignment was
performed based on (i) mass accuracy (maximum mass
error tolerance 10 ppm); (ii) adduct formation pattern; (iii)
isotopic pattern distribution; (iv) RT and peak shape
matching between ESI (+) and ESI (–); (v) possibility of
cation and anion formation. The MS/MS data were then
inspected to verify the structural annotation of the lipid
species. After collecting all the information provided by the
MS and MS/MS data, we had three different scenarios. First,
the annotation of such lipid species was compatible with
previous information obtained from the MS and MS/MS
data; therefore, the annotation was accurate. If not, we
checked if the lipid class could be confirmed and provided
the sum composition annotation type. In the final scenario,
where the MS and MS/MS data was not compatible with
either the lipid species or class, it was catalogued as a false
positive, and a manual annotation was attempted.

5. Sum composition vs complete compound name: When we
encountered multiple entries with the same RT and m/z but
differing structural annotations, we conducted a manual
review of the MS/MS spectra to confirm the structural
composition (e.g., PC(34:0) vs PC(18:0/16:0)).

6. Unknown features are prevalent in untargeted lipidomics data,
and its annotation/identification remains an important bottle-
neck in the field. As demonstrated in this study, modern
spectral libraries and user-friendly bioinformatic tools can help
annotate hundreds to thousands of lipids of biological interest.
However, even with the best available spectral search tools,
more lipid features typically remain unidentified than
identified29. Our strategy for the features classified as

unknowns was the deep manual inspection of the MS and
MS/MS spectra, cleaning the background noise, establishing
the potential fragmentation patterns based on the neutral
losses observed, and selecting the characteristic fragment ions
for de novo structure elucidation, attempting to reach a final
annotation or unveil the compound type that we were facing.
As a result, we could accurately annotate seven 2-hydroxy fatty
acids and seven 3-hydroxy fatty acids thanks to the work
published by Jiangshuo Li and colleagues30. Some of the
unknown features we obtained were adducts related to the
mobile phase composition employed for this study, which is
still seen as a pitfall in LC-MS3.

The annotation workflow demonstrated its efficacy in precisely
annotating hundreds of lipid species. By optimizing the LC-MS
settings and implementing our annotation workflow, we sig-
nificantly improved the lipidome analysis in mice lung tissue.
Initially, the four software tools suggested 1409 lipid annotations.
After merging the results and eliminating redundant data but
keeping the information of the number of programs that rendered
such annotation, we obtained 1022 lipid annotations. After
applying the annotation workflow, we finally obtained 866
accurately annotated lipids (Supplementary Table 1). As pre-
viously described, the lipid annotation/identification hierarchy is
determined based on the level of structural information that can
be accurately assigned to the molecule31. In this study, we
established a seven-level classification system for lipid annotation
(Fig. 4). Level ‘0’ indicates that the complete structure and ste-
reochemistry of the lipids were confirmed with a reference
standard and special experimental approaches, such as chemical
derivatization before the analysis, hydrolyzation of FAs to their

Fig. 3 The designed decision tree helped us to curate the initial massive amount of information obtained by the four software tools. The decision tree
was designed to increase confidence in the lipid species annotations and remove the false positives. This decision tree consisted of four main steps that
properly guided us to perform an accurate lipid annotation based on quality criteria. The number of software tools that a particular lipid species is
annotated by dictates the path to follow through the different steps within the decision tree. The confidence level of the annotation and its precision, which
means if the software could adequately determine the chain length, the unsaturation grade and position within the lipid structure, were also considered.
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methyl esters, the use of high-energy collision-induced dissocia-
tion, silver ion chromatography, multistage mass spectrometry, or
covalent adduct chemical ionization32, while Level ‘1’ signifies
that the double bond position was specified. Level ‘2’ was assigned
when the fatty acyl/alkyl composition could be described, Level ‘3’
when the exact position of the fatty acyl/alkyl chains could be
identified, Level ‘4’ when only the sum composition was provided
by the MS/MS data, and Level ‘5’ when the sum composition was
obtained with the MS data, Level ‘6’ when only the lipid class was
determined, and finally Level ‘7’ for unknown features. Of the 866
annotated lipid molecular species, only one reached confidence
level ‘1’, 254 were assigned to confidence Level ‘2’, 514 to Level ‘3’,
and 97 to Level ‘4’ (Supplementary Data 1).

Surprisingly, none of the four software tools could annotate
lipid species from all the lipid classes included in our database.
Most of the lipids were found by just one or two software tools
(see Fig. 5a). For example, cholesterol esters (CE), monoacylgly-
cerophosphoglycerols (LPG), monoacylglycerophosphoinositols
(LPI) and monoacylglycerophosphoserines (LPS) were identified
by two software. In the case of glycerophosphoglyceropho-
sphoglycerols (CL) and monoradylglycerols (MG), they were
found by just one software. However, some of them, such as the
hydroxy-fatty acids (FA-OH), and some glycerophospholipids
(GP), were found thanks to the manual inspection of the
chromatograms and MS/MS spectra using the CEU Mass
Mediator33 online tool and the MassHunter Qualitative software
v10.0 (Agilent Technologies). Then, the results obtained from
each tool were plotted independently to verify each software’s
annotation capacity, letting us determine the strengths and
weaknesses of each one of them (Fig. 5b–e). For instance, MS-
Dial and Lipid Annotator offered a higher number of annotated

lipids (480 and 341, respectively) compared to LipidMS and
LipidHunter (315 and 278, respectively). In contrast, the number
of false positive annotated compounds was also higher in MS-Dial
than in the other three software detected thanks to the manual
inspection of the MS and MS/MS spectra (Supplementary
Table 2). Despite this limitation, MS-Dial has been used to
develop Lipidome ATLAS in various tissue matrices10.

MS-Dial is the software that provides the highest number of
annotated lipids, representing 55% of the 866 lipids collected in our
library (Supplementary Table 2, Supplementary Data 2). However,
this is too far from the complete lipidomic profile of the mice lung
sample, making the information obtained from the other software
and the manual inspection necessary to complete the picture. After
analyzing the lipid families detected by each software, we found
that Lipid Annotator was more effective in annotating sphingoli-
pids (SP) (ceramides (Cer) and spingomyelins (SM)) and
monoacylglycerophospholipids (LGP) (monoacylglycerophospho-
choline, (LPC) and monoacylglycerophosphoethanolamine (LPE)).
On the other hand, MS-Dial provided more comprehensive
information about GP (glycerophosphocholines (PC), glyceropho-
sphoethanolamines (PE), glycerophosphoinositols (PI), glycero-
phosphoserines (PS), LPG, and LPS) and fatty acids (FA). Both
MS-Dial and LipidHunter detectedmost triradylglycerols (TG) and
diradylglycerols (DG) in our samples, with LipidHunter providing
complementary information about SM lipid species. Notably,
LipidMS was the only software that identified MG and some LGP.

We observed that not all the software tools could annotate the
same lipid species in the same proportion, sometimes giving different
information. Despite the differences observed, by combining multiple
annotation software and gathering all the information they provided,
we could obtain a broader view of the lipid landscape of our

Fig. 4 The confidence levels of lipid annotations used in this work were based on the degree of structural detail accurately assigned to the molecule.
An example of the different annotations a PE lipid could obtain based on the structural details achieved is shown in the figure.
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biological matrix, allowing us to optimize the time and obtain more
information. Furthermore, we emphasize that using only one
annotation software tool without thoroughly inspecting the results
might lead to inaccurate annotations and, consequently, a bias in the
biological interpretation.

The semi-quantification of the mice lung lipidome allowed us
to generate LiLA: a Lipid Lung-based ATLAS. The lipidomics
community has recently emphasized the importance of precise
quantification to harmonize lipidomics data and promote data
comparability. By combining lipid quantification with

Fig. 5 Schematic representation of the software tools performance. a Graphical representation of the software distribution in terms of the annotated lipid
species. The bars display the percentage of lipid species within each lipid class annotated by four (light green), three (pink), two (blue), or one (orange)
software. Finally, the dark green color corresponds to lipids annotated by manual chromatogram and MS/MS spectra inspection. The figures from (b–e)
represent the lipid species annotated by each software tool (Lipid Annotator, (b); MS-Dial, (c); LipidHunter, (d); LipidMS, (e)).
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comprehensive resources detailing lipid-species profiles for var-
ious biological matrices, including murine tissues, standardization
can significantly contribute to advancing our comprehension of
the functional significance associated with specific lipid species34.

Achieving optimal quantitative accuracy necessitates the
utilization of isotopically labeled ISs for every molecular species
present in the sample. Regrettably, implementing this approach
across the entire lipidome remains unfeasible at present. In this
study, we conducted semi-quantification of the mice lung
lipidome covering 866 previously annotated lipid species by
employing lipid-subclass-specific internal standards (ISs). These
ISs were calibrated at six different concentrations each closely
resembling those of the endogenous analytes to design the
calibration curves that were spiked with a pool of lung tissue
samples (Supplementary Table 3 and Supplementary Fig. 2). The
standards for the calibration curve and the pool of lung tissue
samples were analyzed in triplicate following the same analytical
workflow described above. Briefly, the pool of lung tissue samples
was divided into six different Eppendorf tubes and treated for
lipid extraction following the protocol described in the Materials
and Methods section. Once we added the ISs at the six different
concentrations, the vials were then introduced in the RP-UHPLC-
ESI-QTOF MS for the analysis in both ion modes. The raw data
obtained was then processed using the already elaborated list of
866 lipids using the Batch Targeted Feature Extraction mode of
the Agilent MassHunter Profinder software to integrate the area
of each lipid, including the ISs. The area obtained from each IS
was plotted to obtain the calibration curves (Supplementary
Fig. 2). Finally, the lipids present in the healthy mice lung samples
were semi-quantified by interpolating the area in the correspond-
ing IS calibration curve equation to obtain concentration. The
lipids that did not have a class specific IS included in the mixture
were semi-quantified by utilizing a standard compound with the
slightest deviations in RT and mass compared to the correspond-
ing biological compound35. The IS compound used to semi-
quantify each lipid subclass is described in Supplementary Data 3.
At the end of the process, 709 lipid molecular species were semi-
quantified, providing an extensive and detailed characterization
of the lung lipidome (Supplementary Data 3). A semi-
quantification of hundreds of lipid species in lung tissue allows
for comparative studies between experimental conditions, disease
models, and patient cohorts. Moreover, this data can be
integrated with other omics data (genomics, transcriptomics,
proteomics) for better understanding of lung biology and identify
potential connections between lipid metabolism and other
cellular processes.

LiLA potentiated to shed light on the mice lung lipidome
landscape. Owing to the development of our LiLA workflow, we
could accurately annotate lipids from twenty-three different lipid
classes (see Fig. 6), including GP, glycerolipids (GL), SP, Fatty
Acyls, among many other species. The lipid class proportion
depends on several factors, including the analytical conditions,
the complexity of the biological matrix and the resolving power to
distinguish between the different isomeric lipid species and the
co-elution of lipids. It is important to note that lipids are the end
products of various biochemical pathways within the cells and are
heavily influenced by the biological environment36. As a result,
the abundance of different lipid species can fluctuate depending
on the metabolic state of the organism under investigation and
the specific sample composition. In our study, we focused on the
lungs, a heterogeneous organ composed of up to 40 different cell
types, each one with a specific lipid profile distribution37.

The lungs are a crucial part of the respiratory system,
absorbing oxygen, and expelling carbon dioxide. In this regard,

pulmonary surfactant is critical in maintaining normal lung
function by reducing surface tension at the air-liquid interface in
alveolar spaces and enhancing an efficient gas exchange. Equally
important, the lungs are exposed to inhaled particles and
microorganisms from birth. Therefore, cilia, mucus, and the
cough reflex are the first-line lung defenses before immunity to
prevent pathogen access to the lower airways and avoid an overt
inflammatory response. This is one of the principal reasons why
lungs are so sensitive to lipid metabolic equilibrium since
pulmonary physiology relies on lipids for important extracellular
activities ensured by surfactant and consisting of sphingolipid/
glycerolipid network38. In our work, GL and GP constituted 45%
and 31% of the total lipid content detected in healthy mice lung
samples (Fig. 6a). In general terms, the pulmonary surfactant is
composed of a mixture of 80% GP, 5–10% neutral lipids, and
8–10% proteins. Regarding the GP, PC represented 13% of the
total GP lung content. It could be related to the pulmonary
surfactant composition, in which PC represents 80-85% of its
mass. More specifically, palmitoyl-containing PCs were detected
as the most abundant lipid species in the lung tissue, including
PC 16:0/16:0 (3156.72 ng/mg), PC 16:0/18:1 (1630.01 ng/mg), PC
16:0/18:2 (1344.03 ng/mg), PC 16:0/16:1 (1194.09 ng/mg), and PC
16:0/14:0 (555.36 ng/mg). PC 16:0/16:0 is the main lipid
component of surfactant, which saturated acyl chains allow it to
pack tightly at the air/liquid interface, producing maximum
surface tension reduction at the end exhalation and lead to
stabilization of open lungs39,40. In addition to PC, other
phospholipids found in pulmonary surfactants, such as PE, play
a crucial role in facilitating and promoting curvature in non-
bilayer surfactant forms, which are essential intermediates during
the transitions from bilayers to interfacial films and their
interconversions throughout surfactant metabolism. Meanwhile,
PI has been shown to enhance the rate of alveolar fluid clearance
and stabilize the surfactant monolayer, making it an essential
component of pulmonary surfactant. Additionally, the PG are
responsible for the modulation of the macrophage’s function and
lung maturity41.

In the lung tissue, TG accounted for 39% of the total GL
content (Fig. 6a). As previously reported, TG have been
implicated in lung surfactant metabolism as a potential source
of fatty acids for phospholipid synthesis42. Additionally, since the
lungs require substantial amounts of energy to perform their
functions, it is reasonable to hypothesize that energy-storage
lipids would be present in considerable proportions43. Paying
attention to the SP, we can highlight their critical role in
maintaining the structural integrity of the lungs, cell survival and
stress response38. In addition, they are closely related to
inflammatory reactions, and multiple studies have shown that
sphingolipid levels are altered in various lung diseases, such as
asthma and chronic obstructive pulmonary disease (COPD). It
has been shown that increasing levels of Cer favor pathological
hyperinflammation in the lungs38. Cer can promote the activation
of immune cells, such as macrophages, and the production of
pro-inflammatory cytokines, such as TNF-alpha and IL-644. This
can help to amplify the immune response to the infection, but it
can also contribute to lung damage and inflammation. In addition
to their roles in the immune response, SP have also been
implicated in the pathogenesis of pulmonary infections. For
instance, specific pathogens, such as Neisseria gonorrhoeae and
Pseudomonas aeruginosa, have been shown to exploit the
hydrolysis of cell surface SM to generate ceramide-rich micro-
domains that serve as portals for their entry into macrophages,
promoting their growth and survival in the lungs45,46. These SP
metabolites can also interfere with the host immune response,
allowing the pathogen to evade detection and clearance38. Based
on previous facts, it is not surprising that the proportion of SP
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was also high in the lung samples due to its crucial implications
for the lung function.

To obtain a comprehensive understanding of the lipid
composition in mice lung tissue, we utilized a variety of
visualization approaches. The first approach involved plotting
the different lipid classes based on their m/z and RT in minutes,
as demonstrated in Fig. 6b. This visualization technique enabled
us to rapidly categorize the lipid classes that varied in terms of the
number of carbon atoms and/or degree of unsaturation. By
examining the elution patterns of the lipid classes based on the
specific chromatography employed in this study, we could
identify any potential false-positive annotation suggested by the
software by assessing their alignment with the expected RT
values. Furthermore, we manually inspected the data to enhance
the confidence level of our annotations, as illustrated in Fig. 6c.
This involved examining the RT values of different lipid species
within a specific lipid class, considering factors such as the
number of carbon atoms in their acyl chains and the degree of
unsaturation. To better classify the lung lipidome profile, we
plotted the intensity and degree of unsaturation for each lipid,
classified by lipid class (refer to Supplementary Fig. 3). This
meticulous analysis allowed us to refine our annotations and
increase their reliability.

The hybrid lipidomics strategy unveiled the lipid dysregulation
induced by Mtb and the TB progression. Before the onset of the

COVID-19 pandemic, Tuberculosis (TB), caused by the pathogen
Mtb, was ranked as the top cause of death from infectious disease
worldwide, surpassing even HIV/AIDS. In 2020 alone, an esti-
mated 1.5 million individuals died of TB, imposing an important
health and socio-economic burden on low- and middle-income
countries. Gaining a deeper understanding of the pathogenesis of
TB hinges on investigating its epicenter: the granuloma. This
biological matrix represents an ideal medium for biomarker
discovery as it directly reflects the local changes induced by Mtb
infection or TB drug therapy in the host. However, our knowl-
edge of metabolic alterations in lung tissue samples remains
limited. Unfortunately, the need for more studies based on lung
tissue samples can be attributed to the highly invasive nature of
sample collection and the limited amount of tissue that can be
obtained. In this regard, an in-depth examination of the lipid
alterations induced by the Mtb in the host lipidome during the
infection might unveil potential new biomarkers for better disease
characterization and provide new insights toward developing
improved diagnostic and therapeutic approaches.

The Mtb-infected mice lung samples collected at two-time
points, four- and twelve-weeks post-infection (Mtb+4w,
Mtb+12w), were analyzed using the RP-UHPLC-ESI-QTOF
MS-based approach to unveil the lipid dysregulation induced by
TB. The already developed Lipid Lung-based Atlas (LiLA) was
used to reprocess the untargeted data using the Batch Targeted
Feature Extraction mode of the Agilent MassHunter Profinder

Fig. 6 Healthy mice lung tissue lipidome landscape. a The circle diagram illustrates the relative proportions of lipid classes detected in our samples. The
lipid class distribution was determined using a four-annotation software combined with manual inspection of the spectra. The inner circle of the diagram
represents the lipid categories, while the outer circle denotes the specific lipid classes. The size of each section within the diagram corresponds to the
abundance percentage of the respective lipid class. b RT mapping plot depicting each lipid species precursor’s m/z and RT across the 19min
chromatographic run. Lipid classes are denoted by color. c Example of the manual inspection process performed for several TG lipid species to check the
elution order based on the carbon atom number and the degree of unsaturation.
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software, from which 741 features for ESI (+) and 445 features
for ESI (-) were obtained, being some of them commonly shared
between the two ionization modes. The obtained data matrices
were filtered based on the coefficient of variation (CV) in the
QCs, keeping features with CVs lower than 30%. Data sets after
filtering consisted of 738 features for ESI (+) and 440 for ESI(−).
Subsequently, each feature’s percentage of change was calculated
to observe the main alterations induced by the Mtb infection and
the trend of such dysregulations due to the evolution of infection.

After performing multivariate (MVDA) data analysis, the
initial PCA plots generated for both ESI(+) and ESI(−) modes
showed the QCs as tightly clustered, ensuring the stability and
reproducibility of the system (Supplementary Fig. 4a, b). After
that, the supervised PLS-DA plots showed clear discrimination
among the three groups, where the Mtb+4w post-infection group
was located in between the Mtb+12w and the Mtb− group
(Supplementary Fig. 4c, d). Finally, we generated supervised
OPLS-DA (Supplementary Fig. 4e, f for Mtb+4w vs Mtb- and
Supplementary Fig. 4g, h for Mtb+12w vs Mtb-) to shed light on
the most affected lipids that can be used to determine the
principal lipid networks altered depending on the progress of
infection. All the PLS-DA and OPLS-DA models displayed
suitable quality parameters (explained variance, R2 ≥ 0.6; and
predicted variance, Q2 ≥ 0.4) with a difference among them lower
than 0.347. The quality parameters and the CV-ANOVA p-value
found in the legend confirmed the reliability of these models.
From the OPLS-DA models, we also extracted the VIP value,
which refers to the contribution and relevance of each lipid in the
model. Those lipids with a VIP value lower than one were not
considered relevant for the model. In addition, we performed
univariate (UVDA) statistical analysis using MATLAB (R2022a,
MathWorks) to evaluate the significance of each lipid concerning
the biological variability, obtaining a p-value of each lipid species
within each studied biological condition (Mann Whitney U test),
and a general p-value comparing the three groups (Kruskal Wallis
test). After data normalization, filtration by CV in QC samples
(<30%) and based on the VIP threshold (VIP > 1.0) and p ≤ 0.05
in Mann–Whitney U test, 66 and 68 lipids were found to be
statistically significant when comparing Mtb+4w with the Mtb-

group in ESI(+) and ESI(−), respectively. Then, 119 and 79 lipids
were found to be statistically significant when comparing
Mtb+12w with the Mtb- group in LC-MS ESI(+) and LC-MS
ESI(−), respectively (Supplementary Data 4).

Once the final data matrix was obtained, the Lipid Network
Explorer (LINEX) web tool (https://exbio.wzw.tum.de/linex/) was
used to visualize and analyze functional associations of lipids on
networks, enabling the study of the lung lipidome in the context
of metabolic reactions48 (Fig. 7a–c). Figure 7a shows a general
overview of the functional associations of lipids on networks in
healthy mice lung samples, where a different colour was assigned
to each lipid subclass. Figure 7B, C corresponds to the same
functional lipid association but, in this case, we also compare the
changes observed in the levels of each lipid species, Mtb+4w vs
Mtb−and Mtb+12w vs Mtb−, respectively. At first glance, it can
be observed that there is a general decrease on the levels of TG
and DG when comparing the Mtb+4w group with the Mtb−

(Fig. 7b, c). The decrease on their levels was more profound after
12 weeks post-infection (Mtb+12w vs Mtb−). The decrease of TG
and DG levels in response to Mtb infection indicates that the
pathogen may utilize these lipid species as a carbon source during
its intracellular survival within host cells49. On the other hand,
most of the GPs were found to increase, showing a more
considerable increment in their levels after 12 weeks post-
infection. Notably, we observed a considerable increase in the
levels of two specific PI species, namely PI 18:1_20:4 and PI
16:0_20:4, in the Mtb+4w group compared to the healthy control

group (Fig. 7d). The levels of these PI species showed a
remarkable increment of 214% and 170%, respectively. Further-
more, in the Mtb+12w post-infection group, the levels of PI
18:1_20:4 and PI 16:0_20:4 exhibited a more pronounced
increase, reaching increments of 309% and 243%, respectively,
compared to the healthy control group. These findings are of
particular interest considering the unique lipid composition of the
Mtb plasma membrane. In Mtb, PI and its metabolically derived
products, such as mannosylated phosphatidylinositol lipids,
account for more than 50% of the total lipid content50. In fact,
mannosylated phosphatidylinositol specifically increases the
homotypic fusion of endosomes and endosome-phagosome
fusion, suggesting meaningful interferences with the endo-
lysosomal network during Mtb infection. Bis(monoacylglycero)
phosphates (BMP) are widely recognized as lysosomal markers
that play a central role in determining the fate of lysosomal
content by promoting the degradation and sorting of lipids.
Consistent with previous reports, the lysosomal content and
activity are globally elevated in Mtb-infected macrophages over
time and defines an adaptive homeostasis in the infected
macrophage51. Our results demonstrated a great increment in
the level of BMP lipids (Fig. 7e) and their precursors, the PGs
(Fig. 7f), especially after 12 weeks post-infection. Therefore, the
relevant elevation observed in the levels of these BMP, PI, and PG
lipid species highlight the global alteration of the host lysosomal
system, which is a defining feature of Mtb-infected macrophages,
suggesting their potential involvement in the host-pathogen
interaction and the pathogenesis of TB infection. Although their
distribution among the various biological organelles is different,
SP are mainly enriched at the outer leaflet of the plasma
membrane. Therefore, pathogens, including Mtb, inevitably
interact with this class of lipids during phagocytosis. As shown
in Fig. 7b, c, Cer and HexCer levels were also increased in
response toMtb infection. Ceramides, critical intermediates in the
biosynthesis of complex SP, are highly involved in cellular
signaling processes, especially in regulating apoptosis, and cell
differentiation, transformation, and proliferation. The most
remarkable increments detected when comparing both post-
infection time points with the control group were displayed by
the Cer 18:0;O2/16:0 (113% Mtb+4w vs Mtb-; 196% Mtb+12w vs
Mtb−), Cer 18:0;O2/24:1 (102%Mtb+4w vs Mtb-; 152%Mtb+12w
vs MtbESI(−)) and HexCer 18:1;O2/16:0 (325% Mtb+4w vs Mtb-;
290% Mtb+12w vs MtbESI(−)). These results align with the
reported increment in the Ceramide levels in mycobacteria-
induced necrotic lung granulomas52. All these findings add to our
understanding of the metabolic adaptations Mtb employs to
sustain its growth and persistence within the host environment.
Further investigations into the mechanisms underlying these
alterations, as well as the precise role of these lipid species in Mtb
infection, would provide valuable insights into the interplay
between host lipid metabolism and Mtb pathogenesis. Moreover,
exploring potential therapeutic strategies to modulate these lipid
pathways could offer new avenues for combating TB and limiting
the intracellular survival of Mtb.

A well-established and specific annotation workflow plays a
vital role in ensuring the accuracy and reliability of lipid
annotation. Our workflow, integrating four software tools for
lipid annotation and a decision-tree-based approach, has proven
its efficacy in enhancing the reliability of lipid annotations
obtained in untargeted lipidomics studies. Moreover, the
synergistic combination of the Hybrid-lipidomics strategy and
the semi-targeted approach has enabled a comprehensive and
multi-dimensional analysis of the lung lipidome. Notably, LiLA
has provided valuable insights into specific lipid signatures
induced by Mtb infection in the lung. This exemplifies the
significance of LiLA in the diagnosis, prognosis, and selection of
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Fig. 7 Lipid dysregulation induced by Mtb infection and the TB progression. a LINEX Lipid network of the mice lung tissue with node colored by lipid
classes. Keeping the same lipid distribution within the networks, plots B and C represent node size scaled by −log10 of FDR and colored by fold change for
the comparison between (b) Mtb+4w (n= 6) vs Mtb− (n= 6), and (c) Mtb+12w (n= 5) vs Mtb− (n= 6). Blue colors indicate lower concentrations of
lipids. All edge connections are colored by reaction type as follows: chain length (blue), desaturation (orange), FA addition (green), head group
modification (red). d–f Bar chart with the experimental values of PI (d), BMP (e), and PG (f) lipid species in each group. The error bars represent the
standard error of the mean (SEM). *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ns, not significant in the comparison.
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therapeutic targets for lung-related disorders, including pulmon-
ary diseases, infections, and lung cancer. The robustness and
utility of our approach pave the way for advancing lipidomic
research and its application in understanding complex biological
systems and identifying potential biomarkers for lung-related
diseases.

Methods
Animals. Animals were divided into three different groups:
healthy controls (Mtb−, n= 6), infected mice four weeks post-
infection (Mtb+4w, n= 6) and infected mice twelve weeks post-
infection (Mtb+12w, n= 5). Seven- to eight-week-old female
BALB/c mice were purchased from Jackson Laboratories. Mice
were housed in a pathogen-free facility with ad libitum access to
water and food. All procedures were conducted according to NIH
guidelines and protocols were approved by the Institutional
Animal Care and Use Committee of the University of Alabama at
Birmingham.

Mice were aerosol infected with Mtb H37Rv using the aerosol
inhalation exposure system (Glas-Col, USA) to deliver ~120–250
CFU/mouse lung. The infection dose was estimated by enumer-
ating the lung CFU at 24 h post-infection. Mice were sacrificed
using anesthesia with isoflurane followed by gentle cervical
dislocation. Mice organs were aseptically harvested and homo-
genized in 2 ml of 1× PBS, pH 7.4. Serial dilutions of
homogenates were prepared in 1× PBS and plated on 7H11 agar
plates supplemented with 10% ADS (Albumin, Dextrose, and
NaCl), Carbenicillin (25 mg/L) and Cycloheximide (25 mg/L).
Plates were incubated at 37 °C for ~21 days before counting
colonies. Finally, lung samples were transferred to an N2(l)-
containing recipient to freeze the tissues and stored at −80 °C to
avoid postmortem metabolic processes.

Reagents. LC-MS grade methanol (MeOH), acetonitrile (ACN),
and isopropanol (IPA) were obtained from Fisher Scientific
(Pennsylvania, United States). Methyl-tert‑butyl ether (MTBE)
and ammonium fluoride (NH4F) (ACS reagent, ≥ 98%) were
purchased from Sigma‐Aldrich (Steinheim, Germany). Ammonia
solution (28%, GPR RECTAPUR®) and acetic acid glacial (Ana-
laR®NORMAPUR®) were obtained from VWR Chemicals
(Pennsylvania, United States). Reverse‐osmosed ultrapure water,
used to prepare all the aqueous solutions, was obtained from a
Milli‐Qplus185 system (Millipore, Billerica, MA, USA). 9,12,13-
TriHOME commercial standard (Cayman Chemical, MI, USA).

Sample Treatment for Lipid Extraction. The sample preparation
and lipid extraction were performed at the Centers for AIDS
Research and Free Radical Biology, University of Alabama at
Birmingham (Birmingham, AL, United States), following a pro-
tocol initially described and optimized at CEMBIO (Madrid,
Spain)53. Briefly, approximately 75 mg of lung tissue was mixed
with a cold (–20 °C) mixture of MeOH:H2O (1:1, v/v) added in a
ratio of 1 mg tissue:10 µL of extraction solvent. Next, the tissue
samples were homogenized using Dounce homogenizer. After the
homogenization, 200 µL of homogenate was mixed with 640 µL of
MeOH and 160 µL of Methyl-Tert-Butyl ether (MTBE) to extract
hydrophobic compounds49,53. Samples were then vortex-mixed
for 1 h at room temperature (RT) and centrifuged at 4000 g for
20 min at 20 °C. The samples were then passed through spin X
columns (0.22 µm filter), and 200 µL of the filtered sample was
dried at RT in the vacuum concentrator. From here, the samples
were sent to CEMBIO for the UHPLC-MS analysis. Before the
analysis, dried samples were re-suspended with 200 µL of MeOH/
MTBE/H2O (7.4:1.6:1, v/v/v), which contained the corresponding
ISs (C17-sphingosine at 1 ppm for positive ion mode, and d31-

palmitic acid at 3 ppm for negative ion mode). Samples were then
centrifuged (16,100g, 5 min, 15°C) before transferring them into
sample vials with glass inserts for LC-MS analysis.

Quality Control Samples. Quality Control (QC) samples were
prepared by pooling equal volumes, 20 µL in our case, of each
prepared lung sample and were processed identically in parallel
with the rest of the study samples. Then, 100 µL of the pooling
mix was placed into a UHPLC-MS chromatography vial with an
insert, which was analyzed throughout the run to provide infor-
mation about the system’s stability and performance and the
reproducibility of the sample treatment procedure54. Four blank
samples were prepared along with the rest of the samples, fol-
lowing the same lipid extraction procedure. The blank samples
were then analyzed at the beginning and at the end of the ana-
lytical sequence to identify common contaminations. Finally, the
analysis of lung extracts was performed on an Agilent 1290
Infinity II UHPLC system coupled to an Agilent 6545 quadrupole
time-of-flight (QTOF) mass spectrometer in both positive and
negative ion modes using the analytical conditions previously
described3 and also detailed below.

Semi-quantification. Semi-quantification of lipids was performed
using Agilent MassHunter Profinder software (B.10.0.2, Agilent
Technologies, Santa Clara, CA, USA) and Microsoft Excel 2016.
First, 6-point calibration curves were designed for each standard,
covering the concentration range of the native lipids of the cor-
responding lipid class while still displaying a linear behavior of
ISs in the concentration-response relationship. For this purpose,
pooled healthy lung tissue samples were spiked with SPLASH®
Lipidomix® Mass Spec Standard mixture (Avanti) amounts to
reach the needed concentration. Next, the peak areas from the
lipid species contained in the IS mixture were extracted using the
Batch Targeted Feature Extraction mode. Afterwards, the cali-
bration curves were generated for each standard and only cali-
bration points resulted in a calibration curve with R > 0.990 were
approved.

Lipidomics analysis
Analytical conditions selected for the RP-UHPLC-ESI-QTOF MS
lipidomics analysis. The analytical platform selected for data
acquisition was an Agilent 1290 Infinity II Ultra-High Perfor-
mance Liquid-Chromatography (UHPLC) system coupled to an
Agilent 6545 quadrupole time-of-flight (QTOF) mass spectro-
meter. We used an Agilent InfinityLab Poroshell 120 EC –C18
(3.0 × 100 mm, 2.7 μm) (Agilent Technologies) column and a
compatible guard column (Agilent InfinityLab Poroshell 120 EC
–C18, 3.0 × 5 mm, 2.7 μm), both held at 50 °C. The Agilent 1290
Infinity II Multisampler system was used to uptake 1 μL of
extracted samples, maintaining the temperature at 15 °C to pre-
serve compounds and avoid lipid precipitation. The mobile
phases used for both positive and negative ionization modes
consisted of (A) 10 mM ammonium acetate, 0.2 mM ammonium
fluoride in 9:1 water/MeOH and (B) 10 mM ammonium acetate,
0.2 mM ammonium fluoride in 2:3:5 acetonitrile/MeOH/iso-
propanol. The multi-wash strategy consisted of a mixture of
methanol:isopropanol (50:50, v/v) with the wash time set at 15 s,
and an aqueous phase:organic phase (30:70, v/v) mixture to assist
in the starting conditions. The chromatography gradient started
at 70% of B at 0–1min, 86% at 3.5 –10 min, and 100% B at
11–17 min. The starting conditions were recovered at minute 17,
followed by a 2 min re-equilibration time; for a total running time
of 19 min. The flow rate during the analysis was kept constant at
0.6 mL/min.
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The parameters of the Agilent 6545 QTOF mass spectrometer
equipped with a dual AJS ESI ion source were: 150 V fragmentor,
65 V skimmer, 3500 V capillary voltage, 750 V octopole radio
frequency voltage, 10 L/min nebulizer gas flow, 200 °C gas
temperature, 50 psi nebulizer gas pressure, 12 L/min sheath gas
flow, and 300 °C sheath gas temperature. Data were collected in
positive and negative ESI modes in separate runs, operated in full
scan mode from 40 to 1700 m/z with a scan rate of 3 spectra/s. A
solution consisting of two reference mass compounds was infused
throughout the whole analysis: purine (C5H4N4) at m/z 121.0509
for the positive and m/z 119.0363 for the negative ionization
modes; and HP-0921 (C18H18O6N3P3F24) at m/z 922.0098 for the
positive and m/z 980.0163 (HP-0921 + acetate) for the negative
ionization modes. These masses were continuously infused into
the system through an Agilent 1260 Iso Pump at a 1 mL/min
(split ratio 1:100) to provide a constant mass correction.

Additionally, the iterative-MS/MS acquisition mode was
performed for both positive and negative ion modes. We
performed ten runs of a selected sample using two different
collision energy, 20 eV and 40 eV (five measurements per
voltage). For each run, the software selects the three more intense
precursor ions, which were fragmented to obtain the spectrum for
a specific time point. In the subsequent measurement of the same
sample, for the same specific time point, the software excluded
the previous three selected ions and selected the following three
more intense precursor ions. By measuring the sample several
times, we obtained thousands of MS/MS spectrums at the end,
covering most of the broader lung lipidome spectrum3.

Software programs parameters.

– Lipid Annotator v1.0 (Agilent): The method parameters used
in the data processing with Lipid Annotator were as follows:
Q-Score ≥ 20.0, adduct selection H+, Na+ and NH4

+ for
positive ion mode and H- and C2H3O2

− for negative ion
mode. As we were performing an untargeted analysis, we
selected all lipid classes to perform the search against the
database. For the ID parameters, the Mass Threshold was set
at mass deviation ≤20.0 ppm, the “Report top candidate only”
option was selected, the Fragment score was ≥30, the Total
score was ≥60, and the Constituent Level was ≥ 10%.

– MS-DIAL 4 (Riken): the raw vendor-format data files or the
common mzML data need to be converted into “.ibf” files
using the MS IBF file Converter software. For MS/MS data
reprocessing, the following parameters were selected: soft
ionization for LC-MS/MS, chromatography separation type,
conventional LC-MS method type, and profile data as the
data type. We selected the corresponding ionization mode
(positive or negative) for each analysis and Lipidomics as the
target omics. The MS1 and MS/MS m/z detection window
was set at 40–1700 Da, and the retention time window was set
at 0–19 min. The peak detection window, smoothing level was
set as 1 scan. The Accurate mass tolerance was 0.01 Da for
MS1 and 0.025 for MS2 for the Identification window, and
the identification score cut off was set at 70%. Next, we
selected specific adducts depending on the ionization mode
that we were analyzing (H+, Na+ and NH4

+ for positive and
H- and C2H3O2

- for negative ion mode). The rest of
parameters were set as default.

– LipidHunter: The parameters used for the analysis were
0–19 min as the scan range, 40–1700 m/z range, ±0.75m/z
precursor window, DDA Top 6, ±20 ppm for MS tolerance
level, the absolute intensity for the MS level threshold was set
at 1000, ±20 ppm MS/MS tolerance level, the absolute
intensity for the MS/MS level threshold was set at 10, 80%
isotope score, 75% Rank score and 0.10% as the minimum

relative intensity for the scoring.
– LipidMS 3.0: We reprocessed our data by selecting the Batch

processing option in the corresponding ionization mode. The
m/z tolerance for MS1 and MS/MS was set at 20 ppm. The
tolerance for the RT window was set at 30 s. The rest of the
parameters were set as default. Finally, the lipid classes
selected for the annotation process were established according
to the ionization mode.

Hybrid lipidomics analysis. To illustrate the benefit of counting
with an extensive lipid database of a particular biological matrix,
we investigated the lipid alterations induced by the Mtb infection
at two different time points (4 weeks, Mtb+4w and 12 weeks,
Mtb+12w) post-infection. The previously obtained database,
including molecular formulas, mass, and RT information, was
imported into the Agilent MassHunter Profinder software
(B.10.0.2, Agilent Technologies, Santa Clara, CA, USA) using the
Batch Targeted Feature Extraction mode to perform the feature
extraction and time alignment. Features were built as the sum of
coeluting ions that are related by charge-state envelope, iso-
topologue pattern, and/or the presence of different adducts and
dimers in the analyzed samples. To detect coeluting adducts of
the same feature, the following adducts were selected: [M+H]+,
[M+Na]+, [M+K]+, [M+NH4]+ and [M+ C2H6N2+H]+ in
LC-ESI(+)-MS; [M-H]−, [M+Cl]−, [M+CH3COOH-H]−, and
[M+ CH3COONa-H]− in LC-ESI(-)-MS.

Statistical analysis. Before proceeding with statistical analysis, we
implemented data normalization and filtration processes to
ensure data quality. Features with mean blank values above 10%
of the mean value in the samples were removed. The raw data
matrices were then normalized by the IS to account for unwanted
variance due to sample preparation and the analytical run. Then,
the features were selected based on their CV in the QCs, with a
cut-off threshold of 30%.

We employed both univariate (UVDA) and multivariate
(MVDA) data analysis methods to investigate the differences
between the two Mtb infection time points (Mtb+4w and
Mtb+12w) compared to the control group (Mtb−). To evaluate
the lipid alterations among the three stages, we used Matlab
(R2022a, MathWorks) to perform the Kruskal–Wallis test
(p ≤ 0.05) after normality testing using the Shapiro-Wilk test.
Subsequently, we conducted pairwise analyses using the
Mann–Whitney U test to determine whether a specific lipid
was significant in a comparison (Mtb+4w vs Mtb−; Mtb+12w vs
Mtb−). Finally, the Benjamini–Hochberg correction test inspected
the false discovery rate at level α= 0.05. Regarding MVDA,
Pareto scaling was applied before generating the unsupervised
principal component analysis (PCA-X), partial least square-
discriminant analysis (PLS-DA), and orthogonal partial least
square-discriminant analysis (OPLS-DA) models (SIMCA
P+ 17.0, Umetrics). The tight clustering of the QCs in the
PCA plots (positive and negative ion modes) ensured the
reliability and robustness of the analytical procedure (Supple-
mentary Fig. 4a, b). PLS-DA was then performed to expose the
global lipidomic changes caused by Mtb infection, and the groups
were compared using the OPLS-DA model to maximize class
discrimination and identify the underlying driving factors among
the variables. The variable influence on projection (VIP) values
were computed using the OPLS-DA models, selecting lipids with
a VIP ≥ 1 and a jackknife confidence interval value other than
zero. Finally, the OPLS-DA models were validated with cross-
validation and the CV-ANOVA tool provided by SIMCA-P+
software.
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Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Data described in the manuscript is available to readers in Metabolomics Workbench
Repository55 (Study ID ST002911), Project https://doi.org/10.21228/M8MQ7C.
Lipidomics minimum reporting checklist56 https://doi.org/10.5281/zenodo.8413676.
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