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Single-cell morphological and transcriptome
analysis unveil inhibitors of polyploid giant
breast cancer cells in vitro
Mengli Zhou1,2,3, Yushu Ma1,2, Chun-Cheng Chiang1,2, Edwin C. Rock4, Samuel Charles Butler1, Rajiv Anne4,

Svetlana Yatsenko5,6,7, Yinan Gong1,8 & Yu-Chih Chen 1,2,4,9✉

Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be

driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the

stages of disease and therapeutic stress. Given the importance of PGCCs, it remains chal-

lenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet

need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we

establish a single-cell morphological analysis pipeline with a high throughput and great

precision to characterize dynamics of individual cells. In this manner, we screen a library to

identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of

HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered

cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of

single-cell morphological and molecular investigation reveals promising anti-PGCC strategies

for breast cancer treatment and other malignancies.
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At 2.3 million new cases, breast cancer was the most
diagnosed cancer in 2020. It represents 11.7% of cancer
diagnoses and is the leading cause of cancer death in

women, accounting for 1 in 6 cancer deaths1. Despite the
achievements made in introducing new treatment strategies in the
past decades, the development of tumors toward therapy resis-
tance is prevalent2,3. Many treatment resistance mechanisms of
breast cancer were reported, and growing evidence suggests the
resistance can be driven by polyploid giant cancer cells
(PGCCs)4–6. PGCCs are a special sub-population of cancer cells
with multiple nuclei or a single giant nucleus containing multiple
sets of chromosomes7. While polyploidy is a normal physiological
process in the development of cardiomyocytes and many other
cell types8,9, the mechanism was hijacked by cancer cells to
enhance their resistance to therapies10,11. Given that polyploid
cells exist in premalignant tissues, the number of PGCCs
increases with progression of disease and therapeutic stress12–16.
In addition, oncoviruses and cytomegalovirus trigger the
appearance of PGCCs in tumors17–19. As compared to non-
PGCCs, PGCCs are more resistant to chemotherapy. Once
treatment stress is relieved, relapse from PGCCs by budding to
non-PGCC has been observed20. Both clinical observations and
in vitro experiments highlight the importance of PGCCs in breast
cancer therapeutic resistance and relapse as well as other solid
tumor malignancies.

It was reported that PGCCs acquire the properties of cancer
stem-like cells (CSCs), supported by their enhanced tumor-
initiating capability and up-regulation of relevant biomarkers,
including octamer-binding transcription factor-4 (OCT4),
NANOG, sex-determining region Y-box 2 (SOX2), aldehyde
dehydrogenase-1A (ALDH1A), CD44, and CD13321–23. In
addition, PGCCs were found to correlate with epithelial-to-
mesenchymal transition (EMT) by elevated cell motility, over-
expression of hypoxia-inducible factor-1α (HIF-1α), Twist, Snail,
Zinc Finger E-Box Binding Homeobox 2 (ZEB2), Vimentin, N-
cadherin, and Fibronectin, and down-regulation of
E-cadherin5,15,21,24,25. The association with tumor initiation and
EMT further strengthens the clinical value to inhibit this tumor
sub-population. Recently, using sequencing data from ~10,000
primary human cancer samples and ~600 cancer cell lines, Whole
genome doubling (WGD) cells were found to depend on spindle
assembly checkpoint signaling, DNA replication factors, and
proteasome function4,26.

Researchers have explored anti-PGCC strategies and unveiled
immunosurveillance against cancer cell polyploidy27–30. How-
ever, so far, there is no effective anti-PGCC therapy4. The delay in
developing anti-PGCC therapies is caused by the lack of a high-
throughput method to rapidly quantify PGCCs. Conventional
drug screening assays (e.g., MTT, XTT, or ATP) rapidly measure
the overall inhibition of bulk cancer cells yet provide little
information about the eradication of a small number of PGCCs,
which can cause treatment resistance and relapse. As PGCCs are
defined by their excess DNA content as well as large cell and
nuclear size, the current gold standard to identify/isolate PGCCs
is based on fluorescence-activated cell sorting (FACS) and visual
confirmation21. While flow cytometry can quantify the number
and percentage of PGCCs, it is impractical to (1) screen hundreds
or thousands of compounds using flow cytometry or (2) monitor
the dynamic process of PGCC induction and death. Image-based
segmentation and detection of cells have been developed, but the
methods have not been widely used in the studies of PGCCs31–33.
The limitations of existing approaches highlight the need to
establish a high-throughput and precise analytical method for
PGCC studies.

Advances in modern imaging technology and computer vision
provide an attractive alternative to quantify PGCCs by cellular

morphological analysis. In this work, we established a high-
throughput, reliable, and precise single-cell morphological ana-
lysis pipeline to rapidly quantify the number of PGCCs and non-
PGCCs (Fig. 1). In addition to a snapshot one-time measurement,
the dynamics of PGCC development can be monitored. The
method can be widely applied to PGCC studies, especially
screening for anti-PGCC compounds. Using our innovative
method, we screened a library of 172 regulators of cancer-relevant
pathways. The experiments identified promising compounds that
either inhibited all cancer cells or only PGCCs, including HDAC
inhibitors, proteasome inhibitors, and ferroptosis inducers. In
addition, we performed single-cell transcriptome sequencing
(scRNA-Seq) to identify breast PGCCs’ unique molecular fea-
tures. The altered cell cycle, metabolism, sensitivity to ferroptosis,
and pathways of PLK1, Aurora, and FOXM1 suggest treatment
strategies. This preliminary success provides not only promising
compounds to kill PGCCs but also an innovative pipeline to
investigate other heterogeneous cancer cell populations with high
throughput.

Methods
Cell culture. We cultured MDA-MB-231, MDA-MB-436, MDA-
MB-468, Vari068, and BT474 cells in Dulbecco’s modified eagle
medium (DMEM, Gibco 11995) supplemented with 10% fetal
bovine serum (FBS, Gibco 16000), 1% GlutaMax (Gibco 35050),
1% penicillin/streptomycin (pen/strep, Gibco 15070), and 0.1% of
plasmocin (InvivoGen ant-mpp). We cultured SUM149 and
SUM159 cells in F-12 (Gibco 11765) media supplemented with
5% FBS (Gibco 16000), 1% pen/strep (Gibco 15070), 1% Gluta-
Max (Gibco 35050), 1 μg mL−1 hydrocortisone (Sigma H4001),
and 5 μg mL−1 insulin (Sigma I6634), and 0.1% of plasmocin
(InvivoGen, ant-mpp). We cultured SKBR3 and T47D cells in
RPMI 1640 medium (RPMI, Gibco 11875) supplemented with
10% fetal bovine serum (FBS, Gibco 16000), 1% GlutaMax (Gibco
35050), 1% penicillin/streptomycin (pen/strep, Gibco 15070), and
0.1% of plasmocin (InvivoGen, ant-mpp). The summary of breast
cancer cell types is in Supplementary Table 1. MDA-MB-231,
SUM149, and SUM159 cells were obtained from Dr. Gary Luker’s
lab at the University of Michigan. Vari068, MDA-MB-436, MDA-
MB-468, BT474, SKBR3, and T47D cells were obtained from Dr.
Max Wicha’s lab at the University of Michigan. Vari068 is a
patient-derived cell line (originally derived from an ER-/PR-/
Her2- breast cancer patient who had signed informed consent)
adapted to the standard two-dimensional culture
environment34–36. We maintained all cells at 37 °C in a humi-
dified incubator with 5% CO2. All the cells were cultured and
passaged when the cells reached over 80% confluency in the dish.
Cell lines have been authenticated by short tandem repeat pro-
filing. All cell lines were cultured with mycoplasma antibiotics
Plasmocin and examined for mycoplasma contamination by
sensitive PCR assays.

Cell transfection. We stably transfected TNBC cells using Xfect™
Transfection Reagent (Takara 631317) with 5 μg of pDsRed2-Nuc
Vector plasmid (Takara 632408). The red fluorescent proteins
(DsRed2) fused with three copies of the nuclear localization signal
(NLS) of the simian virus 40 large T-antigen translocated into the
nucleus of cancer cells, so nucleus-red cells could be generated for
time-lapse tracking of population dynamics. The transfected cells
were selected using G418 (Takara 631307) treatment and sorted
by flow cytometry for red fluorescence.

Compound screening to identify inhibitors of PGCCs. For our
screening experiments, we assembled a library comprising 172
compounds, as detailed in Supplementary Data 1. These

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05674-5

2 COMMUNICATIONS BIOLOGY |          (2023) 6:1301 | https://doi.org/10.1038/s42003-023-05674-5 | www.nature.com/commsbio

www.nature.com/commsbio


compounds were prepared at a concentration of 10 mM, dis-
solved in either DMSO or PBS, following the precise guidelines
provided by the respective vendors. To facilitate the screening
process, we subjected these compound solutions to serial dilution,
ultimately achieving a final concentration of 1 μM for utilization
in our screening experiments (Figs. 1–3). The application of
DMSO at a concentration of 0.01% served as our control treat-
ment. In preparation for the screening experiments, cells were
harvested from culture dishes using 0.05% Trypsin/EDTA (Gibco
25200). Following this, the cells were gently centrifuged at

1,000 rpm for 4 min, subsequently re-suspended in the appro-
priate cell culture media, and seeded into the wells of 96-well
plates. For the experiments of Figs. 2c, 4b, 5e, 6c, and Supple-
mentary Figs. 5 and 6, depending on the proliferation rates of cell
lines, different numbers of cells were seeded. For Vari068, SKBR3,
MDA-MB-436, MDA-MB-468, T47D, and BT474 cells, 4000 cells
in 100 μL media were seeded per well. For SUM149 cells, 2,000
cells in 100 μL media were seeded per well. For SUM159 and
MDA-MB-231 cells, 1000 cells in 100 μL media were seeded per
well. Following seeding, the cells underwent a 24-h cultivation
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period before being subjected to the compounds for a 48-h
treatment duration. Upon completion of the treatment phase, the
cells were stained using a combination of 0.8 μM Calcein AM,
1.6 μM Ethidium homodimer-1 (from the Invitrogen™ L3224
Live/Dead Viability/Cytotoxicity Kit), and 5 μM Hoechst 33342
(Thermo Scientific 62249). The staining conducted over a 30-min
incubation period within the controlled environment of the
incubator prepared the cells for subsequent imaging and analysis.
For the experiments presented in Fig. 4a, Vari068 cells were flow-
sorted to isolate PGCCs. We then seeded 4,000 sorted PGCCs in
100 μL of media per well for drug treatment. In the experiments
corresponding to Figs. 3c and 6d, and Supplementary Figs. 7–15,
4000 cells were seeded in 100 μL of media per well for all cell
lines. After 24 h of culture, the cells were exposed to PGCC-
inducing agents for 48 h. Following this, the cell suspension was
aspirated to eliminate the PGCC-inducing agents, and the testing
compounds were directly introduced to treat mixed populations
for an additional 48 h, without the need for flow sorting. The
same staining and imaging protocol was applied to quantify the
number of PGCCs and non-PGCCs following the treatments. We
acknowledge that varying treatment timelines can substantially
impact PGCC formation and survival. In this study, we have
selected the treatment schedule as presented. In future investi-
gations, we will explore the effects of different treatment sche-
dules. For the experiments regulating cellular ROS level (Fig. 6),
Rotenone (10 μM for Vari068 and SKBR3, 300 nM for SUM159,
and 3 μM for BT474) was used to boost the ROS level, and
GSK2795039 (40 μM for Vari068, BT474, and SKBR3 and
100 μM for SUM159) was used to reduce cellular ROS level.
CellROX™ Deep Red Reagent (Thermo Scientific C10422) 5 μM
was added for measuring the ROS level.

Image acquisition. Cells in 96-well plates were imaged using an
inverted microscope (Nikon Ti2E). Brightfield and fluorescence
images were captured with a 4x or 10x objective lens and a
monochrome CMOS camera (Hamamatsu ORCA-Fusion Gen-III
SCMOS Camera). The field of view spans approximately 14mm²,
accommodating up to 10,000 cells per image. Hoechst-stained cell
nuclei were imaged via a DAPI filter set, while live and dead
staining used FITC and TRITC filter sets, respectively. CellROX™
Deep Red staining was imaged using a Cy5 filter set. Auto-focusing
ensured image clarity during imaging, taking under 9 min to cap-
ture images from a 96-well plate. Time-lapse experiments, tracking
cell population dynamics, were conducted using a Tokai Hit stage
top environment control on the Nikon Ti2E microscope.

Single-cell morphological analysis software. The goal of image
processing is to quantify the number of viable cells and

distinguish PGCCs from non-PGCCs. A custom MATLAB
(2021b) program was developed to perform the task in three
steps: (1) identify cell nuclei with Hoechst staining, (2) determine
whether the cell is alive or dead, (3) recognize PGCCs with the
large size of the cell nucleus. The Hoechst staining image was first
filtered by top-hat and bottom-hat filters to reduce the back-
ground, enhanced by contract adjustment, and binarized to
quantify the size of nuclei37. Cell debris was excluded by their
smaller sizes. Live/Dead staining was used to exclude dead cells
with dim Live signals and bright dead signals. The cell counting
method was modified from our previous works38–40. The live cells
with nuclei larger than 300 pixels using a 4X objective lens and
1875 pixels using a 10X objective lens (817 μm2 area, equivalent
to a circle with a diameter of 32 μm) were considered PGCCs, and
the others were considered non-PGCCs. The threshold was
determined by empirical validation with flow cytometry and
visual confirmation (Fig. 1). For time-lapse experiments, Live/
Dead staining was not used as that affects cell viability. The
nuclear size was determined with the transfected nuclear red
fluorescent proteins.

Flow cytometry and cell sorting. Flow cytometry was performed
to quantify and isolate PGCCs and non-PGCCs with and without
compound treatments. Becton Dickinson LSR Fortessa II was
used for the cellular analysis. Cells were cultured for 24 h, treated
with compounds for 48 h, and then stained with 4 μM of Calcein
AM, 4 μM of Ethidium homodimer-1 (Invitrogen™, L3224 Live/
Dead Viability/Cytotoxicity Kit), and 20 μM of Hoechst 33342
(Thermo Scientific 62249) for 30 min in an incubator. After
staining, cells were harvested from culture dishes/plates with
0.05% Trypsin/EDTA (Gibco 25200) and centrifuged at 1000 rpm
for 4 min. Then, the cells were re-suspended in PBS (Gibco
10010) supplemented with 1% FBS (Gibco 16000) at a con-
centration of around 1 × 106 cells per mL. Obtained raw data were
analyzed and visualized using FlowJo 10. For the experiments
measuring cellular ROS level, 5 μM CellROX™ Deep Red staining
reagent (Thermo Scientific C10422) was used. When quantifying
PGCCs by flow cytometry, we first examined cellular DNA
content by Hoechst staining to identify the G2/M peak (Fig. 1e).
The cells having more DNA than those in the G2M phase were
considered PGCCs. Dead cells determined by Live/Dead staining
were excluded from the analysis. Sony MA900 Cell Sorter was
used to isolate PGCCs and non-PGCCs for functional and
molecular analysis. To isolate PGCCs and non-PGCCs for single-
cell RNA-Seq, stringent cell selection (top 1% Hoechst high for
PGCCs and bottom 5% Hoechst low for non-PGCCs) was per-
formed to exclude ambiguous cases. The sorted cells were visually
confirmed under the microscope.

Fig. 1 Single-cell morphological analysis to identify PGCCs. a A conceptual diagram of single-cell morphological analysis, which can rapidly identify
individual cells as PGCCs, non-PGCCs, and dead cells and monitor the dynamics of cell populations. The diagram was generated with elements from the
Biorender. b The single-cell morphological analysis of control and Docetaxel-treated SUM159 cells. Without treatment, 5129 non-PGCCs, 2 PGCCs, and 20
dead cells were recognized. With Docetaxel treatment, the population was shifted to 356 non-PGCCs, 76 PGCCs, and 124 dead cells. The green dots
represent non-PGCCs, the orange dots represent PGCCs, and the red dots represent dead cells (Scale bar: 1 mm). The enlarged images of representative
SUM159 breast cancer PGCCs, non-PGCCs, and dead cells are also presented (Scale bar: 50 μm). c, d Separation of live and dead SUM159 cells by Live/
Dead staining using the single-cell morphological analysis. Each dot represents a cell. The x-axis represents the fluorescent intensity of Live (FITC green)
staining, and the y-axis represents the fluorescent intensity of Dead (TRITC red) staining. Only cells with high Live intensity and low Dead intensity were
considered live cells. c DMSO control (n= 5685 cells). d 1 μM Docetaxel treatment (n= 566 cells). e Identification of PGCCs and non-PGCCs by single-
cell morphological analysis according to the area of cell nuclei. SUM159 and Vari068 breast cancer cells were treated with DMSO control (5674 non-
PGCCs and 2 PGCCs for SUM159 and 2,059 non-PGCCs and 164 PGCCs for Vari068) and 1 μM Docetaxel (396 non-PGCCs and 81 PGCCs for SUM159
and 841 non-PGCCs and 178 PGCCs for Vari068). f Dynamics of cell status. SUM159 cells with and without Docetaxel treatment were imaged every
30min for 2 days. The x-axis represents time (hours), the left y-axis (black) represents the number of non-PGCCs, and the right y-axis (red) represents the
number of PGCCs. The black curve indicates the number of non-PGCCs, and the red curve indicates the number of PGCCs. (n= 4).
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Ploidy evaluation by G-banding metaphase analysis. The cell
populations enriched by the PGCCs and by non-PGCCs were
obtained after a flow cytometry sorting and placed in 5mL complete
Chang Marrow media (Irvine Scientific 91060). Cells were incubated
with 10 μg/mL of ethidium at 37 °C for 90min and treated with

0.1 μg/mL of Colcemid for 30min before harvest. Samples were
incubated with hypotonic solution (0.075M KCl) for 25min and
fixed in methanol:acetic acid (3:1). Metaphase cells were spread on a
glass slide and stained using a trypsin-Giemsa method. The number
of chromosomes in each cell was counted to assess cell ploidy.
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Microfluidic 3D cancer spheroid formation and drug testing
on-chip. The 3D cancer spheroids were formed and cultured
based on microfluidics we previously developed41,42. Following
the loading of cancer cells, spheroid formation occurred within
microfluidic chambers over the course of one day. Once spher-
oids were formed, they underwent various treatments, including a
DMSO control, a four-day exposure to Docetaxel, and a two-day
treatment with anti-PGC compounds, specifically Carfilzomib,
ML162, or Thiostrepton, following two days of Docetaxel expo-
sure. After treatment, we stained spheroids with 4 μM of Calcein
AM, 4 μM of Ethidium homodimer-1, and 20 μM of Hoechst
33342 for 1 h, followed by fluorescence microscopy imaging. The
viability was determined based on the intensity of green fluor-
escence of Live staining.

Single-cell RNA-Seq. We utilized flow cytometry to separate
PGCCs and non-PGCCs from three breast cancer cell lines:
SUM159, MDA-MB-231, and Vari068. Subsequently, we visually
confirmed the accurate identification of the flow-sorted PGCCs
and non-PGCCs under a microscope. Then, we performed high-
throughput single-cell barcoding transcriptome sequencing for
each cell population43–45. Cells and beads were paired in
microwells following our prior works46,47, so the mRNA from
lysed cells can hybridize onto the barcoded beads. After barcoded
beads captured cellular mRNA, we performed RT (Thermofisher
Maxima RT kit), PCR (Kapa HiFi Hotstart PCR Readymix), and
library preparation (Illumina Nextera XT Library Prep Kit). The
cDNA samples were then quantified and pooled by the UPMC
Cancer Genome Core for sequencing using the Illumina NextSeq.
We obtained approximately 10 million paired-end reads (Read 1:
30 base pairs for the barcode and Read 2: 110 base pairs for
mRNA read alignment) for each population. Reads were aligned
using STAR with GRCh38.p13 Human reference genome and
processed by the standard Dropseq 2.5.1 pipeline. Then, we used
the open-source SEURAT 4.0 (http://satijalab.org/seurat/) to
analyze single-cell sequencing data48. Cells with more than 800
genes detected were considered successfully sequenced, and the
cells having more than 5% mitochondrial gene expression were
discarded for their poor viability. After a quality check, we got
709 control untreated SUM159 cells, 511 docetaxel-treated
SUM159 non-PGCCs, 415 docetaxel-treated SUM159 PGCCs,
549 control untreated MDA-MB-231 cells, 196 docetaxel-treated
MDA-MB-231 non-PGCCs, 114 docetaxel-treated MDA-MB-231
PGCCs, 200 control untreated Vari068 non-PGCCs, 126 control
untreated Vari068 PGCCs, 291 Docetaxel-treated Vari068 non-
PGCCs, and 103 docetaxel-treated Vari068 PGCCs in the
experiments.

mRNA real-time PCR. Total RNA for real-time PCR was
extracted and purified using the Purelink RNA Mini Kit (Thermo

Fisher). Reverse transcription reactions were performed with
M-MLV reverse transcriptase (Life Technology), following the
standard protocol using random hexamers (NEB). Real-time PCR
was performed with PowerUpTM SYBRTM Green Master Mix
labeling in 7500 Fast Real-Time PCR System (Thermo Fisher).
PCR conditions were 50 °C for 2 min, 95 °C for 10 min, and 43
cycles of 95 °C for 15 s and 60 °C for 1 min. mRNA expression
was normalized against β-actin, allowing comparison of mRNA
levels.

Statistics and reproducibility. Statistical analyses were con-
ducted using R (version 4.1), GraphPad Prism 9, and MATLAB.
GraphPad Prism 9 software determined half-maximal inhibitory
concentrations (IC50s). Two-tailed Student’s t-test compared two
groups, while paired 2-way ANOVA and Fisher’s Least Sig-
nificant Difference (LSD) test compared multiple groups, con-
sidering cell line and treatment conditions as variables. Statistical
setups varied based on variable types and analysis nature. Within
each cell line, treated versus untreated conditions were con-
sistently paired for comparisons, with significance set at P < 0.05
(*P < 0.05, **P < 0.01, ***P < 0.001). Standard error of the mean
(SEM) represented error bars; sample/group details were specified
in Figure Captions. For data with high variability (e.g., gene
expression levels), comparisons were made on a log scale.
SEURAT in R facilitated single-cell transcriptome sequencing
analysis, including outlier detection, hierarchical clustering,
principal component analysis (PCA), and Uniform Manifold
Approximation and Projection (UMAP). Wilcoxon rank sum test
calculated adjusted P-values, adjusted via Bonferroni correction
using all dataset features. Identifying altered genes involved a
logarithmic fold-change of 0.25 and a minimum expression in
10% of cells for pathway analysis. Pathway analysis utilized
Enrichr (http://amp.pharm.mssm.edu/Enrichr/) with KEGG 2021
Human and NCI-Nature databases, generating P-values via
Fisher exact tests.

Declaration of generative AI in scientific writing. During the
preparation of this work, the authors used ChatGPT-3 in order to
improve readability and language. After using it, the authors
reviewed and edited the content as needed and took full
responsibility for the content of the publication.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Quantifying PGCCs and non-PGCCs using a single-cell mor-
phological analysis. To rapidly quantify the number of PGCCs
and non-PGCCs, we developed a single-cell morphological

Fig. 2 Comprehensive analysis of compound efficacy by quantifying PGCCs and non-PGCCs. aWorkflow of the compound screening experiments. Day 0:
cell loading; Day 1: compounds treatment; Day 3: Live/Dead/Hoechst staining and imaging for single-cell morphological analysis. The diagram was generated
with elements from the Biorender. b Representative images of SUM159 treated with DMSO control, 1 μM Docetaxel, Carfilzomib, and ML162. Cells were
stained with Live (green), Dead (red) and Hoechst (blue) staining reagents. PGCCs are marked with red arrows. (Scale bar: 100 μm) c Screening the effects of
159 compounds using Vari068, MDA-MB-231, SUM149 and SUM159 breast cancer cells. The x-axis represents the number of PGCCs after treatment, and the
y-axis represents the number of non-PGCCs. Each dot represents the treatment of a compound. Different colors are used to indicate different classes of
compounds. Statistical analysis is provided in Supplementary Data 2 and 3. d Treatments of selected compounds (Alisertib, Carfilzomib, and ML162) on
SUM159 cells. The x-axis represents the concentration of the compound. The left y-axis (black) represents the number of non-PGCCs, and the right y-axis (red)
represents the number of PGCCs. The black curve indicates the number of non-PGCCs, and the red curve indicates the number of PGCCs. Error bars indicate
the standard error of the mean (SEM), n= 3. eDynamics of cell status. SUM159 cells treated with Alisertib, Carfilzomib, andML162 were imaged every 30min
for 2 days. The x-axis represents time (hours), the left y-axis (black) represents the number of non-PGCCs, and the right y-axis (red) represents the number of
PGCCs. The black curve indicates the number of non-PGCCs, and the red curve indicates the number of PGCCs. (n= 4).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05674-5

6 COMMUNICATIONS BIOLOGY |          (2023) 6:1301 | https://doi.org/10.1038/s42003-023-05674-5 | www.nature.com/commsbio

http://satijalab.org/seurat/
http://amp.pharm.mssm.edu/Enrichr/
www.nature.com/commsbio


analysis pipeline by (1) identifying cell nuclei with Hoechst
staining, (2) excluding dead cells with Live/Dead staining, and (3)
distinguishing PGCCs and non-PGCCs based on the size of cell
nuclei (Fig. 1a). Detailed image processing and representative
PGCC, non-PGCC, and dead cell images are presented in Fig. 1,
Supplementary Figs. 1 and 2. The threshold to distinguish non-
PGCCs and PGCCs was validated using multiple breast cancer

cell lines by flow cytometry as well as visual confirmation (Sup-
plementary Fig. 3). Without treatment, SUM159 triple-negative
breast cancer (TNBC) cells have less than 0.1% of PGCCs as
measured by both single-cell morphological analysis and flow
cytometry (Fig. 1b, e and Supplementary Fig. 3). Upon treatment
with the conventional chemotherapeutic drug, Docetaxel, there
was a decrease in the number of non-PGCCs and an increase in
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PGCCs. While the increase in PGCCs might be attributed to the
selective survival of pre-existing PGCCs, it’s improbable for such
expansion to occur within merely 2 days. To substantiate this,
time-lapsed single-cell tracking was conducted, confirming the
transition from non-PGCCs to PGCCs (Supplementary Movie 1).
Based on our observations and existing literature49, we posit that
the majority of PGCCs following treatment were induced from
non-PGCCs. To closely link this research with human breast
cancer biology, we included a low-passage TNBC patient-derived
cancer cell line (Vari068) in this study. Interestingly, Vari068
carried a large population of PGCCs before treatment, and
treatment with Docetaxel further boosted the portion of PGCCs
(Fig. 1e and Supplementary Fig. 3). Furthermore, we tested var-
ious Hoechst staining concentrations and microscope exposure
times to verify that the morphological analysis is insensitive to
experimental conditions (Supplementary Fig. 4). Our fluorescence
microscope takes 9 min to image a 96-well plate (<6 s per well),
including auto-focusing and movement of microscope motorized
stage, and an image can be processed within 1 s using our custom
MATLAB code. For each experimental condition, we can recog-
nize up to 10,000 cells and quantify the number of PGCCs and
non-PGCCs (Fig. 1b). Using the established pipeline, we mon-
itored the development of SUM159 cells with and without Doc-
etaxel treatment (Fig. 1f). Without treatment, SUM159 cells kept
growing exponentially and remained non-PGCCs. With Doc-
etaxel treatment, while some cancer cells were killed, a good
portion of cells developed into PGCCs. The single-cell morpho-
logical analysis pipeline enables high-throughput screening to
identify compounds that induce or inhibit PGCC and char-
acterize the dynamics of PGCC development.

Analyzing compound efficacy comprehensively by counting
PGCCs and non-PGCCs. Using the innovative single-cell mor-
phological analysis, we characterized the changes in cell composi-
tion when treated with a library of 172 compounds, including
conventional chemotherapeutics, ferroptosis inducers, and inhibi-
tors of Mitogen-activated protein kinase (MAPK), Bromodomain
and extra-terminal motif (BET), Histone deacetylase (HDAC), Poly
(ADP-ribose) polymerase (PARP), Proteasome, Hypoxia-inducible
factor (HIF), Aldehyde dehydrogenase (ALDH), Autophagy,
Transforming growth factor-beta (TGF-β), CDK4/6, Epidermal
growth factor receptor (EGFR), Nuclear factor-kappa B (NF-κB),
CXCR1, CXCR4, IL8, Rho-associated protein kinase (ROCK),
Colony-stimulating factor-1 receptor (CSF1R), Proto-oncogene
tyrosine-protein kinase Src, p21-activated kinase (PAK), Rac, Rho,
CDC42, Focal Adhesion Kinase (FAK), Wnt, Aurora, and reg-
ulators of key cellular components, including mitochondria,
microtubule, integrin, kinesin, and myosin with multiple breast
cancer cell lines (Supplementary Data 1). One day after cell loading,

cells were treated for two days and then imaged to quantify non-
PGCCs and PGCCs (Fig. 2a). Enlarged microscopy images of
control and treated cells are illustrated in Fig. 2b, Supplementary
Fig. 5. While many compounds killed cancer cells, a significant
number of compounds (e.g., Taxanes) induced PGCCs, which
could lead to treatment resistance and tumor relapse (Fig. 2c). As
reported in literature, Aurora inhibitors (Alisertib and Tozasertib)
also significantly boosted the portion of breast cancer PGCCs in
our experiments50. Among the compounds tested, proteasome
inhibitors and ferroptosis inducers effectively inhibited non-
PGCCs without inducing PGCCs. Overall, the same trend was
observed for 4 TNBC cell types (Fig. 2c, Supplementary Data 2 and
3). In addition to single-dose treatments, 5 concentrations of
selected compounds were tested (Fig. 2d and Supplementary
Fig. 6). With the increase in concentration, Alisertib killed some
non-PGCCs but induced PGCCs. In comparison, Carfilzomib
(proteasome inhibitor) and ML162 (ferroptosis inducer) killed
both populations as shown by the eradication of the natural PGCC
population in Vari068 (Supplementary Fig. 6). We further mon-
itored the dynamics of cell development (Fig. 2e). Under Alisertib
treatment, nuclear size kept increasing over 2 days to generate a
large population of PGCCs. ML162 killed cells rapidly within 12 h,
and Carfilzomib killed cells without inducing PGCCs. The dynamic
monitoring provides comprehensive information about the reg-
ulation of PGCCs.

Discovering PGCC inhibitors with screening experiments. As
most breast cancer cell lines do not naturally have many PGCCs
(<1%), Docetaxel was used to induce PGCCs for discovering anti-
PGCC compounds in a library (Fig. 3a and Supplementary
Data 1). Enlarged microscopy images of control and treated cells
are illustrated in Fig. 3b, Supplementary Fig. 7. As expected, once
drug-resistant PGCCs were generated, most therapeutic com-
pounds were no longer effective (Fig. 3c; Supplementary Data 4
and 5). Among the 172 tested compounds, 10 compounds only
significantly inhibited PGCCs but not non-PGCCs, and 13
compounds inhibited both PGCCs and non-PGCCs. Previous
research has demonstrated that PGCCs are correlated with HIF
and EMT, so we tested 11 HIF inhibitors and 5 TGFβ regulators.
Unfortunately, only Digoxin, which suppresses the HIF pathway,
significantly killed PGCCs. Due to the association between
PGCCs and tumor-initiating cells/CSCs, we applied 4 ALDH
inhibitors, 2 WNT inhibitors, and 2 CXCR4 inhibitors. While
Disulfiram (ALDH inhibitor) could kill PGCCs, all other relevant
compounds were ineffective (Fig. 3c; Supplementary Data 4 and
5)5,21–25. It was reported that PGCCs have an elevated level of
ROS, yet 5 compounds boosting ROS and 5 compounds reducing
ROS did not significantly alter PGCC populations at the tested
concentration27,51,52. Recent studies demonstrated autophagy

Fig. 3 Discover anti-PGCC compounds by screening experiments. a Workflow to discover anti-PGCC compounds. Day 0: cell loading; Day 1: induction of
PGCCs by 1 μM Docetaxel treatment; Day 3: removal of supernatant and screening of a library of 172 compounds; Day 5: staining and imaging cells for
single-cell morphological analysis. The diagram was generated with elements from the Biorender. b Representative images of SUM159 treated with DMSO
control, 1 μM Docetaxel, Carfilzomib, and ML162. Cells were stained with Live (green), Dead (red), and Hoechst (blue) staining reagents. PGCCs are
marked with red arrows. (Scale bar: 100 μm). c Screening the effects of 172 compounds using Vari068, MDA-MB-231, SUM149, and SUM159 breast
cancer cells. The x-axis represents the number of PGCCs after treatment, and the y-axis represents the number of non-PGCCs. Each dot represents the
treatment of a compound. Different colors are used to indicate different classes of compounds. Statistical analysis is provided in Supplementary Data 4, 5.
d Treatments of selected compounds (Docetaxel, ML162, Carfilzomib, and Actinomycin D) at 5 concentrations (10 μM, 1 μM, 0.1 μM, 0,01 μM, and
0.001 μM) on SUM159 cells. The x-axis represents the concentration of the selected compound. The left y-axis (black) represents the number of non-
PGCCs, and the right y-axis (red) represents the number of PGCCs. The black curve indicates the number of non-PGCCs, and the red curve indicates the
number of PGCCs. Error bars indicate the standard error of the mean (SEM), n= 3. e Dynamics of cell status. SUM159 cells pre-treated with Docetaxel for
2 days to induce PGCCs were treated with Docetaxel, ML162, Carfilzomib, and Actinomycin D and imaged every 30min for 3 days. The x-axis represents
time (hours), the left y-axis (black) represents the number of non-PGCCs, and the right y-axis (red) represents the number of PGCCs. The black curve
indicates the number of non-PGCCs, and the red curve indicates the number of PGCCs. (n= 4).
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facilitates cell repair to reduce drug sensitivity, yet 5 tested
autophagy inhibitors could not kill PGCCs53–55. Among all tested
compounds, proteasome inhibitors and ferroptosis inducers are
two groups of compounds that were especially effective. All 5
proteasome inhibitors (Bortezomib, MG-132, Carfilzomib, Ixa-
zomib, and Ixazomib Citrate) and 5 ferroptosis inducers (Imi-
dazole ketone erastin (IKE), RSL3, FINO2, ML162, and ML210)
significantly inhibited PGCCs (Fig. 3c; Supplementary Data 4 and
5). Additionally, 3 out of 5 HDAC inhibitors (Vorinostat
(SAHA), Romidepsin, and Panobinostat) preferably inhibited
PGCCs over non-PGCCs. Interestingly, Fulvestrant, which has
been used to treat hormone receptor (HR) positive metastatic
breast cancer, significantly inhibited PGCCs but not non-PGCCs
for TNBC56. We also found other regulators of Bcl-2 (ABT-263
and ABT-737), Survivin (YM155), Wee1 (PD0166285 and MK-
1775), and NF-κB (Bardoxolone Methyl), and conventional che-
motherapeutic drugs, Actinomycin D and SN-38 (active meta-
bolite of irinotecan) significantly killed PGCCs (Supplementary
Fig. 7). In addition to single-dose treatment, 5 concentrations of
selected compounds were tested to validate the screening
experiment (Fig. 3d and Supplementary Fig. 8). We also per-
formed time-lapse monitoring of compound treatment (Fig. 3e).
Treatment with Docetaxel killed a good portion of non-PGCCs
but not PGCCs. Actinomycin D selectively killed PGCCs but not
non-PGCCs, and Carfilzomib and ML162 inhibited both PGCCs
and non-PGCCs. The experiments successfully demonstrate our
unique capability to distinguish compounds that have different
effects on PGCCs and non-PGCCs.

Validating anti-PGCC compounds. To validate whether the
identified compounds only inhibited PGCCs induced by Doc-
etaxel, we tested untreated PGCCs and PGCCs induced by other
compounds. In addition to TNBCs, we expanded the study to
include HR-positive (T47D and BT474) and human epidermal
growth factor receptor 2 (HER2) positive (SKBR3) breast cancer
cell lines. As Vari068 naturally has a significant portion of
PGCCs, we sorted out untreated PGCCs by flow cytometry and
evaluated their treatment responses (Fig. 4a). The untreated
PGCCs were more resistant to Docetaxel but responded to
Actinomycin D, HDAC inhibitors, proteasome inhibitors, and
ferroptosis inducers. The PGCCs induced by other compounds,
including chemotherapeutics and aurora inhibitors, were also
significantly inhibited by proteasome inhibitors and ferroptosis
inducers among 9 breast cancer cell lines (Fig. 4b; Supplementary
Figs. 9–14 and Supplementary Tables 2–11). HDAC inhibitors
also inhibited PGCCs of TNBC regardless of the induction
method (Supplementary Fig. 15 and Supplementary
Tables 12–21). In addition to 2D cell culture, we further tested the
efficacy of anti-PGCC compounds using a 3D cancer spheroid
model (Fig. 4c). Breast cancer cells were loaded into non-adherent
microwells to form cancer spheroids. Breast cancer spheroids
were treated with DMSO control, 4-day Docetaxel, and 2-day
anti-PGCC compounds of Carfilzomib, ML162, or Thiostrepton
after 2-day Docetaxel. While Docetaxel treatment killed cancer
cells in conventional 2D culture, it was ineffective in inhibiting
3D cancer spheroids. Treatment of anti-PGCC compounds after
Docetaxel successfully eradicated treatment-resistant cells
induced by Docetaxel. Comprehensive experiments of various
methods verified the identified anti-PGCC compounds. More
importantly, the identified proteasome inhibitors and ferroptosis
inducers are not only effective for TNBCs but also for HR-
positive and HER2-positive breast cancer cells.

Revealing the unique molecular characteristics of PGCCs by
scRNA-Seq. To better understand why PGCCs are sensitive to the

selected compounds, we performed scRNA-Seq to investigate
their unique molecular features. Untreated and Docetaxel-treated
PGCCs and non-PGCCs were separated from three breast cancer
cell lines (SUM159, MDA-MB-231, and Vari068) using flow
cytometry for scRNA-Seq. However, due to the low percentage of
PGCCs without treatment (Fig. 1e), insufficient PGCCs were
obtained from untreated SUM159 and MDA-MB-231 cell lines,
precluding reliable scRNA-Seq analysis for these two cell popu-
lations. Microscopic examination confirmed the accurate identi-
fication of sorted cells (Supplementary Fig. 16). To further
validate the identity of sorted cells, karyotype analysis was per-
formed on the sorted non-PGCCs and PGCCs (Supplementary
Fig. 17). The scRNA-Seq results indicate that cell segregation is
primarily driven by cell lines and treatment conditions, given the
inherent similarities between PGCC and non-PGCC sub-popu-
lations within a cell line. However, PGCCs and non-PGCCs of the
same cell line are still segregated (Fig. 5a and Supplementary
Fig. 18). We identified the marker genes that distinguish PGCCs
from non-PGCCs and performed pathway analysis using indivi-
dual cell lines as well as the overlapping markers between three
cell lines (Fig. 5b, c and Supplementary Tables 22–25). Using the
KEGG 2021 Human Pathway database, the pathways of “Cell
cycle,” “Oxidative phosphorylation,” “Ribosome,” and “Ferrop-
tosis” were highlighted. Using the NCI-Nature pathway database,
the pathways of “PLK1 signaling,” “FOXM1 transcription factor,”
“Aurora signaling,” and “HDAC signaling” were highlighted. We
also specifically identified the top-ranked altered genes related to
polyploidy and aneuploidy (polo-like kinase 1 (PLK1), cell divi-
sion cycle protein 20 (CDC20), and Cyclin B1 (CCNB1)), cell
cycle and anaphase-promoting complex (APC) (Cyclin Depen-
dent Kinase Inhibitor 3 (CDKN3), Ubiquitin Conjugating
Enzyme E2C (UBE2C), and Pituitary tumor transforming gene 1
(PTTG1)), ferroptosis (Ferritin Light Chain (FTL), Ferritin Heavy
Chain 1 (FTH1), and Solute Carrier Family 3 Member 2
(SLC3A2)), and ROS generation (Reactive Oxygen Species
Modulator 1 (ROMO1)) (Fig. 5d). The expression levels of other
genes relevant to EMT, CSC, cell cycle, metabolism, ribosome,
and ferroptosis are plotted in Supplementary Figs. 19–22. We
validated 3 genes (CCNB1, CDC20, and FTH1) with qRT-PCR,
and the altered gene expression matched well with the scRNA-
Seq data (Supplementary Fig. 23 and Supplementary Table 26).
Based on the transcriptome analysis, we tested a FOXM1 inhi-
bitor, Thiostrepton. When treating cells without Docetaxel pre-
treatment, it killed non-PGCCs without inducing PGCCs. When
treating cells pre-treated with Docetaxel, it selectively inhibited
PGCCs but not non-PGCCs (Fig. 5e). The scRNA-Seq experi-
ments successfully revealed the unique molecular profile of
PGCCs for guiding therapeutic strategies.

The elevated ROS level of PGCCs causes vulnerability to fer-
roptosis. Based on the transcriptome analysis and literature57, we
hypothesized the altered metabolism and ferroptosis regulators of
PGCCs are the cause of ferroptosis sensitivity. To test this
hypothesis, we first incorporated a deep red cellular ROS mea-
surement dye in the single-cell morphological analysis (Fig. 6a).
In this 4-color experiment, the ROS level of each cell can be
quantified, and PGCCs were found to have a significantly higher
ROS level with and without the treatment of Docetaxel (Fig. 6b).
The finding was validated with flow cytometry (Supplementary
Fig. 24). The elevated ROS can induce lipid peroxidation and
sensitize ferroptosis, which is a promising strategy to inhibit
PGCCs58. To further test the relationship between ROS and
ferroptosis, we applied Rotenone and GSK2795039 to boost and
reduce ROS respectively (Supplementary Fig. 25). Without Doc-
etaxel treatment, the ROS reduction successfully rescued cells
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from ferroptosis, and the boost further sensitized cells to fer-
roptosis (Fig. 6c, Supplementary Fig. 26 and Supplementary
Table 27). We also tested the effects on PGCCs induced by
Docetaxel and Alisertib, and ROS reduction still rescued cells
from ferroptosis (Fig. 6d; Supplementary Fig. 26 and Supple-
mentary Tables 28 and 29). However, as the cellular ROS level
was already boosted by Docetaxel, Rotenone could not further
boost ROS to sensitize ferroptosis. The relationship holds true for
4 cell lines among TNBCs, HR-positive, and HER2-positive breast
cancer. The preliminary mechanistic investigation highlights the
unique metabolic characteristics of PGCCs and ferroptosis as a
strategy to kill treatment-resistant PGCCs utilizing this feature.

Discussion
While the importance of PGCCs in cancer treatment resistance
has been widely acknowledged, there is no effective way to era-
dicate them. The investigation is hindered by the lack of an
effective screening method to quantify PGCCs. Although con-
ventional drug screening assays (e.g., MTT, XTT, or ATP) rapidly
measure the overall inhibition of cancer cells, the assays are
unable to tell whether a small number of PGCCs were eradicated.
The compounds selected in this manner might leave or induce
treatment-resistant PGCCs, eventually causing relapse. As such,
the missing single-cell resolution can be detrimental to cancer
drug discovery. Currently, flow cytometry is the gold standard in
quantifying PGCCs by their elevated fluorescent intensity of

Hoechst/DAPI. While flow cytometry offers the theoretical cap-
ability to analyze tens of thousands of cells per second, practical
constraints arise when transitioning (washing and cleaning steps)
between multiple samples, particularly when conducting high-
throughput compound screening. High-throughput flow cyto-
metry machines like the ZE5 Cell Analyzer take a minimum of
15 min to characterize a plate. In contrast, our single-cell mor-
phological method excels in speed, requiring less than 6 s to
image a condition and less than 1 s to analyze the image. A single
image can recognize and classify up to 10,000 cells as PGCCs,
non-PGCCs, or dead cells. As it stands, our method is already
significantly faster than flow cytometry. More importantly,
advancements in microscopy imaging technology and the com-
putational capabilities of integrated circuits (ICs) continue to
progress. Historically, IC power has doubled approximately every
18 to 24 months. This trend indicates that scientific cameras will
offer even greater throughput and improved imaging quality in
the future. Concurrently, improvements in computational
resources and algorithms enhance the pace of cellular image
analysis. In contrast, flow cytometry throughput remains con-
strained by the physical washing and cleaning steps involved.
Additionally, flow cytometry relies on the absolute fluorescent
intensity of DAPI/Hoechst for PGCC determination, which can
be significantly impacted by staining conditions, necessitating
meticulous calibration with controls. Single-cell morphological
analysis is capable of measuring both nuclear morphology and

Fig. 4 Validation of anti-PGCC compounds using additional cell lines, untreated PGCCs, and different PGCC-inducing methods. a Flow cytometry sorted
untreated Vari068 PGCCs were treated by DMSO control, 1 μM Docetaxel, Actinomycin D, HDAC inhibitors (Vorinostat SAHA and Romidepsin),
proteasome inhibitors (Bortezomib and Carfilzomib), and ferroptosis inducers (RSL3 and ML162). The y-axis represents the number of PGCCs after
treatment of 2 days. Error bars indicate the standard error of the mean (SEM), n= 3. ** refers to P < 0.01, and *** refers to P < 0.001. b Inhibition of PGCCs
induced by various methods: two chemotherapeutics (1 μM Docetaxel and Paclitaxel) and two Aurora inhibitors (1 μM Alisertib and Tozasertib). Nine
breast cancer cell lines (HR-positive (T47D and BT474), HER2-positive (SKBR3), and TNBC (Vari068, SUM149, SUM159, MDA-MB-231, MDA-MB-436,
and MDA-MB-468) were tested. Color gradient represents the cell viability normalized to the control. PGCCs generated by different methods and different
cell lines were resistant to Docetaxel yet responded to proteasome inhibitors and ferroptosis inducers. Statistical analysis is provided in Supplementary
Tables 2–5. c Drug testing on 3D cancer spheroid model. The consecutive treatments of Docetaxel and then PGCC-inhibiting compounds are significantly
more effective than continuous treatment of Docetaxel and control. Error bars indicate the standard error of the mean (SEM), n= 5. ** refers to P < 0.01
and *** refers to P < 0.001.
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DAPI/Hoechst intensity, and these metrics are less sensitive to
variations in fluorescence staining and exposure protocols (Sup-
plementary Fig. 4). While our current focus centers on nuclear
size in this study, the data we have gathered on nuclear mor-
phology opens the door to more comprehensive PGCC analysis,
such as distinguishing PGCCs with a single giant nucleus from
those with multiple nuclei. Furthermore, our method enables

successful time-lapse experiments to monitor the dynamic tran-
sition of cell populations, a task not easily accomplished with flow
cytometry. In summary, our developed method offers rapid and
reliable quantification of PGCCs, surpassing existing techniques
and expediting the discovery of PGCC inhibitors.

In addition to single-cell morphological analysis, we performed
scRNA-Seq to characterize individual breast PGCCs and non-
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PGCCs. Although we stringently selected PGCCs (top 1%
Hoechst high) and non-PGCCs (bottom 5% Hoechst low), some
non-PGCCs still have similar molecular profiles as PGCCs. The
observation supports that some small non-PGCCs might be
generated through budding from large PGCCs20. The significant
cellular heterogeneity of PGCCs and non-PGCCs could not be
revealed using conventional bulk sequencing. While it was
reported that PGCCs are associated with EMT and CSC, the
relevant pathways and genes were not highly ranked to distin-
guish PGCCs with Docetaxel treatment (Supplementary
Figs. 19–22). The lack of transcriptome alteration in EMT and
CSC pathways matches our functional tests which conclude that
the inhibitors of HIF, TGFβ, ALDH, WNT, and CXCR4 could
not significantly inhibit breast PGCCs. Interestingly, the
untreated Vari068 PGCCs showed up-regulation of Vimentin and
CD44 and down-regulation of EPCAM and KRT19, which are
correlated with EMT, yet the EMT-relevant pathways are still not
top-ranked (Supplementary Fig. 21 and Supplementary
Tables 22–25). Given the variation between cell lines, the path-
ways of “Cell cycle,” “Oxidative phosphorylation,” “Ribosome,”
and “Ferroptosis” in the KEGG 2021 and “PLK1 signaling,”
“FOXM1 transcription factor,” “Aurora signaling,” and “HDAC
signaling” in the NCI-Nature pathway databases are central to the
difference between PGCCs and non-PGCCs. Based on the path-
way analysis, we successfully identified a selective PGCC inhi-
bitor, Thiostrepton, through inhibition of FOXM1 (Fig. 5e). In
addition, PLK1 was unanimously up-regulated in PGCCs among
all cell lines. PLK1 overexpression is known to increase the size
and/or number of centrosomes, which causes aneuploidy/poly-
ploidy and tumorigenesis through improper segregation of
chromosomes59. In our data, the expression levels of various
centromeres were also altered in PGCCs, supporting the role of
centrosomes in generating and maintaining PGCCs. In addition,
PLK1 was up-regulated by CoCl2 treatment, which generated
PGCCs, and PLK1 blockage sensitized glioblastoma cells to
ionizing radiation60,61. This evidence supports the critical role of
PLK1 in regulating PGCCs. Based on this observation, we tested
two PLK1 inhibitors, BI2536 and BI6727, but they did not sig-
nificantly inhibit PGCCs (Supplementary Data 4 and 5). Further
exploration might be performed in this direction. In addition to
PLK1, PGCCs up-regulated CDC20 and CCNB1, which are
associated with aneuploidy/polyploidy, adverse clinical outcomes
of breast cancer patients, and resistance to adjuvant therapy62–64.
PGCCs also up-regulated genes associated with APC, including
CDKN3, UBE2C, and PTTG1. The altered cell cycle regulators
highlight potential strategies to inhibit PGCCs. PGCCs also
transformed metabolism in ribosomes and oxidative phosphor-
ylation. The overexpression of large ribosomal subunits in breast
cancer CTCs was reported to enhance metastatic growth65. The
transformed oxidative phosphorylation contributes to high ROS
levels in PGCCs. For example, high ROMO1 induces ROS

production in mitochondria66. Interestingly, PGCCs also showed
low expression of ferroptosis regulators (FTL, FTH1, and
SLC3A2), which is a feature of ferroptosis-sensitive cells67. This
observation matches with the vulnerability of PGCCs to ferrop-
tosis inducers in the functional tests. Overall, the scRNA-Seq
experiment revealed the unique characteristics of PGCCs. While
not all targets are immediately druggable, the observations open
avenues for therapeutic strategies.

Based on the functional screening and transcriptome analysis,
we identified 3 classes of compounds that effectively killed
PGCCs: HDAC inhibitors, proteasome inhibitors, and ferroptosis
inducers. Histone deacetylation is an important regulator of gene
expression, and overexpression of HDACs was observed in var-
ious types of solid tumors, including breast cancer68. HDAC
inhibitors are known to inhibit the proliferation of tumor cells
and suppress the self-renewal and expansion of CSCs and EMT
that might drive cancer invasion and metastasis69–71. It was
reported that HDAC inhibitors induce polyploidy in breast can-
cer cells72. However, in our experiments, HDAC inhibitors sig-
nificantly inhibited Docetaxel-induced PGCCs and also flow-
sorted Vari068 PGCCs. The difference might be caused by dif-
ferent methods to quantify PGCCs, and the prior study focused
on p21−/− or p53−/− cell populations. In clinical trials, the
efficacy of single-agent HDAC inhibitors is limited by the lack of
response and development of treatment resistance, yet the com-
bination of HDAC inhibitors with chemotherapy and radio-
therapy has demonstrated promising results in both preclinical
and clinical studies73. The combination of HDAC inhibitors with
exemestane and paclitaxel shows clinical benefits and tolerable
side effects in clinical trials of breast cancer74,75. While the
PGCCs were not investigated in the trials, the delayed tumor
relapse and clinical benefits might be attributed to the eradication
of PGCCs by HDAC inhibitors.

In addition to HDAC inhibitors, proteasome inhibitors sig-
nificantly killed PGCCs for all 9 cell lines we tested. While poly-
ploidy was reported to be associated with Bortezomib resistance in a
myeloma cell line, our observations in breast cancer cell lines are
different76. Proteasomes, which are responsible for the degradation
of proteins, are essential for the maintenance of cellular
homeostasis77. Inhibition of proteasome machinery can break the
subtle balance and induce malignant cells towards cell death. In
preclinical models, cancer cells were found to be more susceptible to
proteasome inhibitors than non-malignant cells, so proteasome
inhibition holds promise to treat cancer78. While proteasome
inhibition alters the degradation of many proteins, it was high-
lighted that proteasome inhibition benefits cancer patients by
repressing NF-κB signaling, which correlates with cancer pro-
liferation, metastasis, and avoidance of apoptosis79. In this study, we
tested 4 NF-κB regulators (Bardoxolone Methyl, TPCA-1, QNZ,
and Betulinic acid), yet only Bardoxolone Methyl significantly
inhibited PGCCs. Transcriptome analysis also did not find NF-κB

Fig. 5 Single-cell transcriptome analysis of breast cancer PGCCs and non-PGCCs. a UMAP plot of single-cell transcriptome analysis, including PGCCs
and non-PGCCs with and without Docetaxel treatment of three breast cancer cell lines (SUM159, MDA-MB-231, and Vari068). The x-axis represents
UMAP1, the y-axis represents UMAP2, and each dot represents one cell. Different colors represent different cell populations/treatment conditions.
Number of cells in each population were provided in the “Methods” section. b Comparison between altered genes in docetaxel-treated PGCCs vs. non-
PGCCs of three breast cancer cell lines. c Top-ranked pathways (the KEGG 2021 Human and the NCI-Nature pathway databases) were determined by the
altered genes of SUM159 PGCCs versus non-PGCCs. The x-axis and color represent the P-values, and the y-axis indicates the names of pathways. d Violin
plots of docetaxel-treated SUM159 PGCCs and non-PGCCs cells with statistical tests. The y-axis represents gene expression with a logarithmic scale. Each
dot represents one cell. * refers to P < 0.05. ** refers to P < 0.01, and *** refers to P < 0.001. e Treatment of Thiostrepton (FOXM1 inhibitor) at 4
concentrations (1 μM, 0.1 μM, 0,01 μM, and 0.001 μM) on SUM159 cells. The upper figure shows the treatment of cells without Docetaxel pre-treatment,
and the lower figure shows the treatment of cells after Docetaxel pre-treatment. The x-axis represents the concentration of Thiostrepton. The left y-axis
(black) represents the number of non-PGCCs, and the right y-axis (red) represents the number of PGCCs. The black curve indicates the number of non-
PGCCs, and the red curve indicates the number of PGCCs. Error bars indicate the standard error of the mean (SEM), n= 4.
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pathways altered in PGCCs. Overall, our preliminary data do not
support PGCC inhibition by proteasome inhibitors through NF-κB.
Proteasome inhibition was also reported to accumulate pro-
apoptotic Bcl-2-associated X (Bax) protein, which inhibits anti-
apoptotic Bcl-2 protein to activate the caspase cascade for
apoptosis80. Three tested Bcl-2 inhibitors all inhibited PGCCs in
our study, and the effects of two (ABT-263 and ABT-737) were
significant. The scRNA-Seq experiment also highlighted the cell

cycle pathway, which heavily interacts with Bcl-281. These pre-
liminary results support the role of Bax and Bcl-2 in killing PGCCs
by proteasome inhibition. Given the preclinical evidence, clinical
trials were conducted on various malignancies, and Bortezomib was
approved by the US FDA to treat multiple myeloma. However,
treating solid tumors with proteasome inhibitors alone has had
limited success so far. In breast cancer, Bortezomib was tested as a
single agent as well as in combination with pegylated liposomal

Fig. 6 The elevated ROS level of PGCCs is essential to ferroptosis sensitivity. a Representative images of Vari068 PGCCs and non-PGCCs treated with
DMSO control and 1 μM Docetaxel. Cells were stained with Live (green), Dead (red), Hoechst (blue), and CellROX™ Deep Red (Purple) staining. PGCCs
are marked with red arrows. (Scale bar: 100 μm). b The ROS level of PGCC groups is significantly higher than non-PGCCs groups both for DMSO control
and 1 μM Docetaxel treatment for Vari068 (Control: n= 16,082 non-PGCCs and 89 PGCCs, Docetaxel: n= 8455 non-PGCCs and 401 PGCCs), SUM159
(Control: n= 31,705 non-PGCCs and 6 PGCCs, Docetaxel: n= 1588 non-PGCCs and 133 PGCCs), BT474 (Control: n= 9181 non-PGCCs and 585 PGCCs,
Docetaxel: n= 3885 non-PGCCs and 346 PGCCs) and SKBR3 (Control: n= 11,071 non-PGCCs and 39 PGCCs, Docetaxel: n= 3771 non-PGCCs and 18
PGCCs). The black violin plot indicates non-PGCCs, and the red violin plot indicates PGCCs. The green lines represent quartiles and the blue lines the
median of all cells. c Rescue and sensitize cells to ferroptosis by altering the ROS level. Rotenone was selected to boost and GSK2795039 to reduce the
ROS level. Compound efficacy IC50 curves of RSL3 (from 100 μM to 0.001 μM) alone (black), RSL3 with Rotenone (red), and RSL3 with GSK2795039
(blue) were tested for comparison. IC50s are provided in Supplementary Table 27. Error bars indicate the standard error of the mean (SEM), n= 3.
d Rescue and sensitize induced PGCCs to ferroptosis by altering the ROS level. Docetaxel (1 μM) was treated to induce PGCCs for Vari068 and SUM159,
and Alisertib (1 μM) was treated to induce PGCCs for BT474 and SKBR3 cell lines. Compound efficacy IC50 curves of RSL3 (from 100 μM to 0.001 μM)
alone (black), RSL3 with Rotenone (red), and RSL3 with GSK2795039 (blue) were tested for comparison. IC50s are provided in Supplementary Tables 28
and 29. Error bars indicate the standard error of the mean (SEM), n= 3.
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doxorubicin. Both clinical trials showed the treatment was well
tolerated yet provided limited clinical activity against metastatic
breast cancer82,83. The limited clinical success was caused by the
unfavorable distribution of bortezomib in solid tumors, which
might be resolved by a more precise drug delivery mechanism and/
or an elevated dose of the second-generation proteasome inhibitors
(e.g., Carfilzomib or Ixazomib), which are less toxic77. Recently,
Bortezomib was found to enhance the effectiveness of fulvestrant to
treat aromatase-inhibitor-resistant, ER-positive metastatic breast
cancer84. The clinical trials suggest that proteasome inhibitors are
not good first-line drugs for all breast cancer patients, yet they can
be effective for treatment-resistant patients. The idea of treating
resistant diseases matches our observation that proteasome inhibi-
tors are effective in killing treatment-resistant PGCCs. It would be
promising to test the efficacy of proteasome inhibitors for resistant
patients with a large population of PGCCs in future clinical trials.

Ferroptosis inducer is the other class of compounds that effec-
tively eradicated PGCCs in our study. Ferroptosis is iron-dependent
non-apoptotic cell death and features excess lipid peroxidation and
elevated ROS85,86. In our studies, PGCCs were found to under-
express ferroptosis regulators (FTL, FTH1, and SLC3A2) and up-
regulate the ROS level, which are characteristics of ferroptosis-
sensitive cells67. In addition, while PGCCs could survive Docetaxel
treatment, their ROS level was further up-regulated (Fig. 6b). The
observation matches well with literature57. This metabolic char-
acteristic makes treatment-resistant PGCCs vulnerable to ferrop-
tosis. We tested 5 ferroptosis inducers based on 2 different
mechanisms: inhibition of Glutathione Peroxidase 4 (RSL3, ML162,
FINO2, and ML210) and System Xc- (IKE)86,87. All 5 compounds
significantly killed breast PGCCs. While it was reported that fer-
roptosis inducers kill breast cancer cells, its efficacy on PGCCs was
reported in this work88,89. The capability to kill PGCCs highlights
the clinical potential of ferroptosis inducers to treat resistant dis-
eases. So far, there is no clinical trial demonstrating the value of
ferroptosis-associated agents to enhance patient outcomes67,87.
Although the application of ferroptosis agents is currently restricted
by limited water solubility of agents and toxicity on kidneys, neu-
tralizers to avoid excessive ferroptosis and novel inducers and drug
delivery methods can potentially alleviate these concerns90,91.

In summary, we have developed a single-cell morphological
analysis pipeline for the swift differentiation of compounds tar-
geting non-PGCCs, PGCCs, or both. This method allowed us to
explore numerous potential anti-PGCC strategies, unveiling
potent compounds to combat cancer treatment resistance. We
acknowledge the lack of animal experiments is a limitation, yet we
aim to promptly share our method, screening outcomes, and
scRNA-Seq results for the greater benefit of the PGCC research
community. Further mechanistic and in vivo investigations will
be performed in our future research endeavors. Overall, this
workflow holds significant applicability in diverse high-
throughput screening experiments for quantifying varied cel-
lular populations and their responses to treatments.

Data availability
The authors declare that all relevant data are included in the main text and/or
its supplementary information files. Source data will be available in Supplementary
Data 6. The single-cell RNA-Seq data have been uploaded to the gene expression
omnibus Series GSE248717.
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