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Characterizing immune variation and diagnostic
indicators of preeclampsia by single-cell RNA
sequencing and machine learning
Wenwen Zhou1,2,10, Yixuan Chen 3,10, Yuhui Zheng 1,4,10, Yong Bai 1,10, Jianhua Yin1,10, Xiao-Xia Wu3,

Mei Hong2,5, Langchao Liang4,6, Jing Zhang3, Ya Gao1, Ning Sun3, Jiankang Li1, Yiwei Zhang3, Linlin Wu 7✉,

Xin Jin 1,8,9✉ & Jianmin Niu 3✉

Preeclampsia is a multifactorial and heterogeneous complication of pregnancy. Here, we

utilize single-cell RNA sequencing to dissect the involvement of circulating immune cells in

preeclampsia. Our findings reveal downregulation of immune response in lymphocyte subsets

in preeclampsia, such as reduction in natural killer cells and cytotoxic genes expression, and

expansion of regulatory T cells. But the activation of naïve T cell and monocyte subsets, as

well as increased MHC-II-mediated pathway in antigen-presenting cells were still observed in

preeclampsia. Notably, we identified key monocyte subsets in preeclampsia, with significantly

increased expression of angiogenesis pathways and pro-inflammatory S100 family genes in

VCAN+ monocytes and IFN+ non-classical monocytes. Furthermore, four cell-type-specific

machine-learning models have been developed to identify potential diagnostic indicators of

preeclampsia. Collectively, our study demonstrates transcriptomic alternations of circulating

immune cells and identifies immune components that could be involved in pathophysiology of

preeclampsia.

https://doi.org/10.1038/s42003-023-05669-2 OPEN

1 BGI Research, Shenzhen 518103, China. 2 College of Life Sciences, South China Agricultural University, Guangzhou 510642, China. 3 Department of
Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen 518028, China.
4 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. 5 Guangdong Provincial Key Laboratory of Protein Function and
Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China. 6 BGI Research, Qingdao 266555, China. 7 Department
of Obstetrics, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China. 8 School of Medicine, South China University of Technology,
Guangzhou 510006, China. 9 Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China. 10These authors contributed
equally: Wenwen Zhou, Yixuan Chen, Yuhui Zheng, Yong Bai, Jianhua Yin. ✉email: lin.lin.wu@163.com; jinxin@genomics.cn; njianmin@163.com

COMMUNICATIONS BIOLOGY |            (2024) 7:32 | https://doi.org/10.1038/s42003-023-05669-2 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05669-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05669-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05669-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05669-2&domain=pdf
http://orcid.org/0000-0001-5772-3734
http://orcid.org/0000-0001-5772-3734
http://orcid.org/0000-0001-5772-3734
http://orcid.org/0000-0001-5772-3734
http://orcid.org/0000-0001-5772-3734
http://orcid.org/0000-0001-5760-0048
http://orcid.org/0000-0001-5760-0048
http://orcid.org/0000-0001-5760-0048
http://orcid.org/0000-0001-5760-0048
http://orcid.org/0000-0001-5760-0048
http://orcid.org/0000-0001-5960-8000
http://orcid.org/0000-0001-5960-8000
http://orcid.org/0000-0001-5960-8000
http://orcid.org/0000-0001-5960-8000
http://orcid.org/0000-0001-5960-8000
http://orcid.org/0000-0002-7236-6787
http://orcid.org/0000-0002-7236-6787
http://orcid.org/0000-0002-7236-6787
http://orcid.org/0000-0002-7236-6787
http://orcid.org/0000-0002-7236-6787
http://orcid.org/0000-0001-7554-4975
http://orcid.org/0000-0001-7554-4975
http://orcid.org/0000-0001-7554-4975
http://orcid.org/0000-0001-7554-4975
http://orcid.org/0000-0001-7554-4975
http://orcid.org/0000-0002-1182-5994
http://orcid.org/0000-0002-1182-5994
http://orcid.org/0000-0002-1182-5994
http://orcid.org/0000-0002-1182-5994
http://orcid.org/0000-0002-1182-5994
mailto:lin.lin.wu@163.com
mailto:jinxin@genomics.cn
mailto:njianmin@163.com
www.nature.com/commsbio
www.nature.com/commsbio


Preeclampsia, a hypertensive disorder of pregnancy, with an
incidence of about 2–5%, is one of the important causes of
maternal and perinatal mortality1. The main clinical man-

ifestations of preeclampsia are hypertension and proteinuria, with
or without systemic organ dysfunction, and delivery of the fetal-
placental unit is the only definitive intervention currently2.
Therefore, more studies are needed to elucidate the pathophy-
siology of preeclampsia to improve treatment strategies and
pregnancy outcomes.

As a syndrome with heterogeneous clinical manifestations and
prognosis3, the common pathological of preeclampsia include
endothelial dysfunction, immune abnormalities, syncytiotropho-
blast stress4. Unscheduled alterations of temporal events of
inflammation (implantation), anti-inflammation (gestation), and
inflammation (parturition) in normal pregnancy may lead to
pathologic consequences, which is reported that dysregulated
systemic immunity contribute to impaired angiogenesis and onset
of preeclampsia5. Decidual immune cells are important con-
tributors to the pathogenesis of preeclampsia, where researchers
observed that innate immune cells such as monocytes and neu-
trophils were activated, CD4+ T cells differentiation were
imbalanced and B cells were stimulated by autoantigen6. Aberrant
placental immunity may lead to changes in circulating immune
cells. Several investigations reported the more abundance of IL-
17-producing of peripheral lymphocytes7, abnormal STAT5ab
signaling in CD4+ T cells and impaired regulatory T cells (Treg)
signaling8, together with the decreasing expression of Tim-3
pathway in CD8+ T cells in patients with preeclampsia9. Such
alternations may be associated with the imbalance of the
maternal-fetal immune interface. Therefore, supplementing
knowledge of immune cells in peripheral blood allows us to better
understand the immune status of preeclampsia.

Transcriptome analysis is a powerful tool to study abnormal
gene expression in diseases. Using RNA sequencing or microarray
technology, previous studies have reported preeclampsia-
associated genes in whole blood or peripheral blood mono-
nuclear cells (PBMCs)10–12. By applying higher-resolution tech-
niques, such as single-cell RNA sequencing (scRNA-seq), changes
in gene expression can be pinpointed to a single cell, which can
partially explain the heterogeneous immune response of diseases.
For instance, two studies conducted scRNA-seq on preeclamptic
placenta and determine the role of trophoblast cell subsets in
placental immunity13,14, while to the best of our knowledge,
systematic changes of PBMCs in preeclampsia has not been well
characterized by scRNA-seq.

In this study, we explored the transcriptomic characteristics of
PBMCs in preeclampsia and normal pregnancies through
scRNA-seq, revealing the abnormal expression of functional
genes and pathways in circulating immune cells. Moreover, four
cell-type-specific machine-learning models were constructed to
distinguish preeclampsia from normal pregnancy, and provide
insights of potential biomarkers for diagnosis at single-cell level.
These works all deepen our understanding of preeclampsia.

Results
Clinical characteristics of subjects and profiling total PBMCs
in preeclampsia and normal pregnancy. In this study, we
recruited 8 pregnant women diagnosed with preeclampsia (PE
group, included one early-onset PE and seven late-onset PE) and
15 normal pregnant women (NP group) matched by propensity
score matching to eliminate the effect of confounding factors
(Table 1 and Supplementary Data 1). Blood samples were taken
from individuals once they were diagnosed with preeclampsia.
The gestational ages at sampling were all in third trimester, range
from 31+2 to 40+3 weeks (Fig. 1a). All pregnant women enrolled

in the observation were singleton pregnancies and first preg-
nancies. The ages of pregnant subjects ranged from 24 to 34, and
there was no bias of fetal gender and gestational age at sampling,
while the gestation ages at delivery were significantly earlier in PE
compared with the matched controls (37.3 vs. 39.6 weeks,
P < 0.01), so were the fetal weights (2730.0 vs. 3221.3 g, P= 0.03).
Subjects with preeclampsia had a significantly higher risk of
cesarean section (50% vs. 7%, P= 0.03), higher diastolic blood
pressure (79.6 vs. 68.1 mmHg, P= 0.01) and body mass index
(27.7 vs. 25.5 kg/m2, P= 0.03), some of which have been reported
as the clinical presentation or risk factors (Table 1). Peripheral
blood samples were collected from the 23 subjects and PBMCs
were isolated, on which scRNA-seq was conducted and the
transcriptomic features were then analyzed in the two groups
(Fig. 1a). After data processing, we obtained 28,774 PBMCs from
subjects in PE and NP (Supplementary Fig. 1a).

Dimensionality reduction clustering was performed on total
PBMCs and projected onto 2D via UMAP. Based on the
expression of canonical marker genes, we manually annotated
five major cell types in the first clustering: T cells
(CD3D+CD3E+), natural killer cells (NK, CD3D-KLRD1+), B
cells (CD19+CD79A+), myeloid cells (AIF1+CD14+ or FCGR3A+

or CD1C+) and Platelet (PPBP+PF4+) (Fig. 1b–d, Supplementary
Fig. 1b). The relative proportions of each major cell type have not
changed in statistics (Fig. 1c), with exception of a significant
decrease observed in total NK cells in PE (Fig. 1e). To further
investigate the differences in cellular components and functions
between PE and NP, we subclustered the T and NK cells, B cells
and myeloid cells respectively and obtained 33 subsets of total
PBMCs (Fig. 1b, c).

Overall downregulation of B-cell-mediated immune responses
and partial enhancement of MHC-II pathways in preeclampsia.
B cells mediate humoral immune response, and abnormal pla-
cental substance release to circulation may affect B cell activity.

Table 1 The clinical characteristics of PE and NP groups
enrolled in this study, related to Fig. 1.

Factors NP PE P-value

n 15 8
Maternal age (years),
median (IQR)

29.0 (28.0,
31.0)

29.0 (28.0,
31.5)

0.87

BMI (kg/m2), mean (SD) 25.5 (2.2) 27.7 (1.8) 0.03*
SBP (mmHg), mean (SD) 114.0 (10.0) 125.8 (20.2) 0.07
DBP (mmHg), mean
(SD)

68.1 (7.0) 79.6 (13.7) 0.01*

Cesarean Section 1 (7%) 4 (50%) 0.03*
Preterm birth 0 (0%) 2 (25%) 0.11
Fetal gender 1
-Girl 8 (53%) 4 (50%)
-Boy 7 (47%) 4 (50%)

Fetal weight (g), mean
(SD)

3,221.3
(312.4)

2,730.0
(682.1)

0.03*

Gestational age at
sampling (weeks),
median (IQR)

36.0 (31.9,
37.1)

37.2 (36.2,
38.4)

0.08

Gestational age at
delivery (weeks), median
(IQR)

39.6 (39.0,
40.7)

37.3 (36.9,
38.7)

<0.01*

Continuous variables were expressed as the mean with standard deviation (SD) and were tested
for normality distribution with the Kolmogorov–Smirnov test. Independent t-tests were
performed for normally distributed variables, and Mann–Whitney U-tests were performed
otherwise. Categorical variables are presented as frequencies with percentages and were
analyzed by the chi-square test or Fisher’s exact test, as appropriate.
NP Normal Pregnancy, PE Preeclampsia, BMI Body Mass Index, SBP Systolic Blood Pressure, DBP
Diastolic Blood Pressure, IQR Interquartile Range, SD Standard Deviation.
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Fig. 1 Study design and cellular composition of normal and preeclampsia pregnancy reveal by scRNA-seq. a Schematic outline of the study design.
Peripheral blood samples were collected from 8 preeclampsia women (PE) and 15 normal pregnant women (NP). b UMAP plot shows the overview of 33
clusters of PBMC subsets after clustering and subclustering and cell type annotation. Bars in different colors indicate the five major cell types. c Relative
abundance of 33 subsets in NP and PE. Bars in different colors indicate the five major cell types. d Dot plot shows the expression of canonical markers
which were used to identify the five major cell types. e Box plot shows the percentage of total NK cells in PBMCs of NP and PE, Student’s t-test.
***P < 0.001. See also Table 1, Supplementary Fig. 1 and Supplementary Data 1–3.
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According to the expression of IGHD and CD27, the B cells can
be identified in two stages: naïve or memory15. We subclustered
the total B cells and annotated three subsets of naïve B cells
(Naïve B 1, Naïve B 2, and Naïve B 3, IGHD+CD27-), one subset

of unswitched memory B cells (Unswitched Memory B,
IGHD+CD27+), two subsets of switched memory B cells (Swit-
ched Memory B 1 and Switched Memory B 2, IGHD-CD27+), and
Plasma cells (XBP1+MZB1+) (Fig. 2a, b). The relative
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Fig. 2 Sub-clustering and analyzing the function of B cell subsets. a UMAP plot shows seven clusters of B cells after subclustering and annotation.
b UMAP plots show the expression of canonical markers of B cell subsets in NP and PE. c Relative abundance of the seven clusters of B cell subsets in NP
and PE. d UMAP plots show the developmental trajectories of B cell subsets in NP (left panel) and PE (right panel), revealed by RNA velocity analysis.
e Volcano plot illustrates the significantly downregulated (blue dots) and significantly upregulated (red dots) DEGs in total B cells when comparing PE to
NP, Wilcoxon rank-sum test. f Go enrichment analysis of downregulated DEGs of PE and bar plot shows the enrichment scores of immune-related
pathways in total B cells. g Box plots show the expression of MHC-I and MHC-II-related pathways in B cell subsets, Student’s t-test. Violin plot shows the
expression of HLA-DRB1 in Switched Memory B 1, Wilcoxon rank-sum test. *adjust P < 0.05, ***adjust P < 0.001. h Box plots show the expression of
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proportions of B cell subsets have not changed in PE (Fig. 2c).
RNA velocity was used to infer the developmental trajectories of
B cell subsets, the differentiated direction from naïve B cells to
unswitched memory B cells, and finally to switched memory B
cells (Fig. 2d), was in line with our annotation.

We analyzed the differentially expressed genes (DEGs) in total
B cells, and there were more downregulated DEGs in PE (Fig. 2e).
We then performed enrichment analysis on these DEGs and
uncovered the downregulation of immune processes in total B
cells, including response to interferon-gamma and antigen
receptor-mediated immune response (Fig. 2f). To further dissect
the immune responses mediated by B cell subsets, gene set
enrichment analysis was performed. Significantly decreased
expression of antigen processing and presentation of peptide
antigen via MHC-I pathway were observed in Naïve B 1,
Unswitched Memory B and Switched Memory B 2, while the
upregulation of MHC-II antigen presentation was discovered in
Switched Memory B 1, together with the upregulation of MHC-II
molecule HLA-DRB1 in PE (Fig. 2g). The increased expression of
MHC-II molecule HLA-DRB1 was also observed in the placenta
of patients with late-onset preeclampsia16. Moreover, interferon
type I signaling pathway was significantly reduced in three naïve
B cell subsets (Fig. 2h) and decreased expression of interferon-
gamma response was observed in Naïve B 1 (Supplementary
Fig. 2a), which were consistent with the GO enrichment results of
overall downregulated immune response in total B cells (Fig. 2f).
In addition, downregulation of platelet activation was observed in
Switched Memory B 1 (Supplementary Fig. 2b) and the
immunological memory formation process pathway was upregu-
lated in Naïve B 3 (Supplementary Fig. 2c). Moreover, we
observed that expression of NFKBIA and BTG1 were upregulated
and CCL5 was downregulated in PE (Fig. 2i, Supplementary
Fig. 2d). NFKBIA encodes the inhibitor of the NF-κB pathway,
and CCL5 is the targeted gene of NF-κB activity17, which indicate
the abnormal NF-κB signature in PE. BTG1 was reported to
suppress cell proliferative activity and maintain T cell
quiescence18, indicating the waning immune response mediated
by B cells in PE, which were similar to the enrichment results of
cell-free RNA (cfRNA) gene in the previous study19.

Taken together, we observed an overall downregulation of
immune response in total B cells and the enhancement of MHC-
II pathways in Switched Memory B 1 of PE.

Expansion of Treg and decreased expression of cytotoxic genes
in T and NK cells of preeclampsia. T and NK cells are the most
abundant cell types in human PBMCs and our subclustering
identified 16 subsets (Fig. 3a, b). According to the expression
of canonical marker genes, we defined three NK cell
subsets: XCL1+ NK cells (NCAM1+XCL1+), CD160+ NK cells
(CD160+FCGR3A+NCR1+) and CD16+ NK cells (CD160-

FCGR3A+NCR1+), and 13 T cell subsets: 4 subsets of naïve
T cells (CD4+ Tn 1, CD4+ Tn 2, CD8+ Tn 1 and CD8+ Tn 2,
CCR7+SELL+), 3 subsets of differentiated CD4+ T cells: CD4+

central memory T cells (CD4+ Tcm, CCR7+CD44+), CD4+

memory T cells (CD4+ Tm, CCR7-CD44+), CD4+ regulatory
T cells(Treg, FOXP3+IL2RA+) and 4 subsets of differentiated
CD8+ T cells: CD8+ mucosal-associated invariant T cells (MAIT,
SLC4A10+KLRB1+), CD8+ cytotoxic lymphocytes (CD8+ CTL,
NKG7+GZMA+), CD8+ effector memory T cells (CD8+ Tem,
CCR7-GZMK+) and CD8+ NK-like cells (CD3D+NCR1+), one
subset of cycling T cells (Cycling T, CD3D+MKI67+) and one
subset of γδT cells (CD3D+TRDV2+TRGV9+) (Fig. 3c, Supple-
mentary Fig. 3a).

The broad immunosuppression functions of Treg are reported,
including suppressing immune cell proliferation and

cytotoxicity20. We observed the increasing Treg in PE, along
with a significant decreased in CD8+ NK-like cells, CD160+ NK
cells, and XCL1+ NK cells within the total T and NK cells
(Fig. 3d). Given the cytotoxic function mediated by NK cells, we
measured the expression of cytotoxic genes and revealed the
lower expression levels of the cytotoxic genes in T and NK cells of
PE (Fig. 3e). Similar to B cells, we observed the number of
downregulated DEGs in total T and NK cells was more
pronounced in PE (Fig. 3f). Compared with NP, there were
lower expression levels of the lymphocyte activation pathway and
interferon alpha beta signaling pathway in most T and NK cell
subsets (Supplementary Fig. 3b). These dysfunctional states may
link to the upregulation of suppressive BTG118 and the down-
regulation of some functional genes in total T and NK cells such
as CCL5 and ITGAL21. Additionally, the AP-1 transcription
factor subunit genes (FOS, FOSB and JUN), which could
modulate the activity of the immune system22, were also
downregulated in PE (Fig. 3f).

However, partial activations of T cell subsets were still
identified. CD4+ Tn 2 was activated in PE, showing upregulation
of unfolded protein response, response to interferon-alpha,
oxidative phosphorylation, and DNA repair pathways (Fig. 3g).
Increased expression of oxidative phosphorylation, DNA repair,
regulation of T cell receptor signaling, and positive regulation of
interferon-gamma production pathways were also observed
CD8+ Tn 2 (Fig. 3h). Furthermore, IFITM2 which may be
correlated with pregnancy pathologies23, and GIMAP7, one of the
GIMAP family genes that are involved in apoptosis of peripheral
lymphocytes and T helper cell differentiation24, were upregulated
in these two naïve T cell subsets (Fig. 3g, Supplementary Fig. 3c,
d). In addition, EST1 was reported to suppress the differentiation
towards T helper 2 cells25, upregulation of which in CD4+ Tn 2
may relate to the predominance of T helper 1 cells in
preeclampsia26. And we observed increased expression of IFI16
which plays an important role in preeclampsia27, and another
GIMAP family gene GIMAP424 were also identified in CD4+ Tn
2 of PE (Fig. 3g, Supplementary Fig. 3c). Similarly, the expression
of MYC, PDCD4 and TMSB4X reported to regulate the
inflammatory response28–30, were showed to increase in CD8+

Tn 2 (Supplementary Fig. 3d). All these functional DEGs and
pathways suggested the preeclampsia-related activation of CD4+

Tn 2 and CD8+ Tn 2 in PE.
In addition, CD16-positive NK (CD16+ NK and CD160+ NK

in our study) was in a more mature state than CD16-negative NK
(XCL+ NK in our study)31. Then we investigated the change of
the developmental trajectories of three NK subsets, which
revealed a disparate differentiated direction of NP and PE
(Fig. 3i), which suggests that the developmental trajectory of NK
cells at disease state altered.

Activation of VCAN+ Mono and IFN+ Non-classical Mono in
preeclampsia. Myeloid cells always function as antigen present-
ing cells (APCs) and mediated innate immune response and the
monocytes were reported to relate to the inflammatory response
of preeclampsia32. We identified four subsets of monocytes:
VCAN+ monocytes (VCAN+ Mono, VCAN+FCN1+), classical
monocytes (Classical Mono, CD14+FCN1+), IFN- non-classical
monocytes (IFN- Non-classical Mono, CD16+FCN1+IFNTM3-)
and IFN+ non-classical monocytes (IFN+ Non-classical Mono,
CD16+IFITM3+FCN1+). Conventional dendritic cells (cDC,
C1DC+), plasmacytoid dendritic cells (pDC, ILIRA4+GZMB+),
Mast cells (CPA3+KIT+), MMP8+ neutrophils (MMP8+ Neu,
MMP8+S100A8+S100A9+), CSF3R+ neutrophils (CSF3R+ Neu,
CSF3R+IRF1+) were also annotated in our data (Fig. 4a–c, Sup-
plementary Fig. 4a). The expansion of Classical Mono and
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reduction of IFN- Non-classical Mono were observed in PE
(Fig. 4d), while the percentage of VCAN+ Mono and IFN+ Non-
classical Mono of PE did not differ in NP (Fig. 4b), which sug-
gests monocyte subsets playing distinctive roles in immune
response of preeclampsia pregnancy. Additionally, the propor-
tions of pDC and Mast cells also decreased in PE (Fig. 4d).

In line with the pathways analysis results of lymphocyte
subpopulations, the downregulation of MHC-I and type I IFN
response in several myeloid cell subsets were also identified in PE
(Supplementary Fig. 4b). Both B cells and monocytes are
important APCs. Consistent with the result in Switched Memory
B 1, the MHC-II antigen presentation pathway was also
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upregulated in three monocyte subsets (VCAN+ Mono, Classical
Mono and IFN- Non-classical Mono) (Fig. 4e). In addition, the
complement pathway is also upregulated in monocyte subsets
(Fig. 4e), further indicating that monocyte-mediated immune
responses were activated and contribute to the inflammatory
response to preeclampsia33.

Interestingly, we noted that VCAN+ Mono and IFN+ Non-
classical Mono were activated with significantly higher expression
levels of some key pathways, such as macrophage activation and
interferon receptor activity in both two subsets (Fig. 4f,
Supplementary Fig. 4c). Moreover, the upregulations of angio-
genesis pathway in both two subsets and coagulation pathway in
VCAN+ Mono were observed in PE (Fig. 4f, Supplementary
Fig. 4c), these pathways were known to be of great importance to
the occurrence and development of preeclampsia. Analysis of
significantly upregulated and downregulated DEGs in VCAN+

Mono and IFN+ Non-classical Mono revealed some functional
genes in PE, we found the decreased expression of chemokine
CCL5 and significant upregulation of IFI30 and S100 family genes
such as S100A4, S100A6, S100A8 and S100A10 in total myeloid
cells of PE (Fig. 4g, h, Supplementary Fig. 4d, e). S100 family
genes were reported to contribute to the inflammation of
preeclampsia34, and S100A10 was one of the predictive gene of
preeclampsia in previous study10. Additionally, there was no
obvious difference in the developmental trajectories of the four
monocyte subsets between the two groups (Fig. 4i).

Collectively, we uncovered monocyte subsets of VCAN+ Mono
and IFN+ Non-classical Mono contributed to the inflammatory
responses in PE and may be vital to the pathological process of
preeclampsia.

Imbalance of cellular interactions between circulating immune
cell subsets in preeclampsia. Dysregulation of the immune sys-
tem is one of the characteristics of preeclampsia. To further
explore alterations of cell-cell communication among circulating
immune cell subsets in PE, we generate interaction networks
among 33 PBMC subsets and found that the number of overall
ligand–receptor pairs was reduced in PE, although the interac-
tions of MMP8+ Neu with other cell types were significantly
enhanced in PE (Fig. 5a), which may link to the activation of
neutrophils in preeclampsia35. Then, we further analyzed the
ligand-receptor pairs among these subsets in detail.

We first identified the significantly weakened cellular interac-
tions in PE, which may suggest the lacking immune regulation in
disease states. In NP, CD8+ Tem and CD8+ CTL were co-
stimulated by APCs through CD28_CD86 and were co-inhibited
through CTLA4_CD86 axis, CD8+ NK-like cells and CD160+

NK cells were suppressed through HLA-E_KLRC1 axis and
activated through HLA-E_KLRC2 axis. Such stimulatory and
inhibitory interactions of immune cell subsets were not
pronounced in PE (Fig. 5b), which suggests that the imbalance
of active and suppressive interactions may lead to an abnormal
pregnant state. Then the stimulatory CD40_CD40LG,

TNFRSF13B_TNFSF13 and TNFRSF13B_TNFSF13B between B
cell subsets with other immune cell subsets were weaker in PE
(Fig. 5c). Moreover, CD4+ Tcm interacted with Classical Mono
through CCL5_CCR1 axis in NP, CD16+ NK and CD8+ NK-like
were interacted with Classical Mono through CCL3_CCR1 axis in
NP but through CCL5_CCR1 axis in PE (Fig. 5d), which suggest
different interactions preference. The platelet could be activated
through SELP_SELPLG axis, the lower expression of this pair
were observed in PE (Fig. 5d), which was consistent with the
report of less activated platelet in preeclampsia36. Furthermore,
almost all subsets stimulated pDC and cDC to produce pDC
through FLT3_FLT3LG axis in NP, while little expression of this
pair was observed in PE (Fig. 5d), which may be related to the
decreased proportion of pDC in PE.

Of note, CD4+ T cell subsets were co-stimulated by APCs
through CD28_CD80 and CD28_CD86 and co-inhibited by
CTLA4_CD80 and CTLA4_CD86 in PE (Fig. 5e). Given that the
higher affinity of CTLA4 to CD80/CD86, the inhibitory signals
may be prominent in PE, which may explain the downregulation
of the overall immune response of T cells. However, the
inhibitory pairs (CTLA4_CD80/CD86) were not enhanced in
CD4+Tn 2 and CD8+ Tn 2 with APCs (Fig. 5e), which may be
associated with the partial activation of CD4+ Tn 2 and CD8+ Tn
2 in PE. In addition, lower expression of cytotoxic genes in PE
should be associated with the intensification of TGFB1_TGFBR3,
TGFB1_TGFbeta R1 and CD94:NKG2A_HLA-E (Fig. 5f). More-
over, enhancement of stimulatory pairs CD27_CD70,
CD40LG_CD40 and TNFRSF13B_TNFSF13B were also observed
in the interactions between Switched Memory B 1 and other four
cell subsets (Fig. 5g), which may partially account for the
upregulation of MHC-II pathway in Switched Memory B 1 of PE.

Overall, our results may explain the overall downregulated and
partially upregulated immune responses in PE to some extent,
emphasizing that the abnormal regulation and imbalance of
stimulatory and inhibitory interactions may be associated with
preeclampsia.

Development of machine-learning models in the important
subsets to diagnose preeclampsia. Transcriptomic analysis of
peripheral blood components uncovered a series of genes that
could be used to diagnose or predict preeclampsia, or genes
associated with preeclamptic pathophysiology. Several elegant
studies have identified some predictive genes of cfRNA, which
could predict the onset of preeclampsia before the clinical
presentation19,37,38. As far as we know, there has been a lack of
machine-learning models that specifically target circulating
immune cells in patients with preeclampsia. Thus, we sought to
develop cell-type-specific random forest (RF)-based classifiers for
total Mono (VCAN+ Mono, Classical Mono, IFN- Non-classical
Mono and IFN+ Non-classical Mono), CD4+ Tn 2, CD8+ Tn 2
and Treg to diagnose preeclampsia based on our scRNA-seq data
and the results of the expression analysis above (Fig. 6a). Briefly,
for each cell type, we first generated pseudo-cells from single cells

Fig. 3 Subclustering and analyzing the function of T and NK cell subsets. a UMAP plot shows 16 clusters of T and NK cell subsets of NP and PE.
b Relative abundance of the sixteen clusters of T and NK cell subsets in NP and PE. Significance of percentage change was evaluated with the Student’s
t-test. *P < 0.05, **P < 0.01. c Dot plot shows the expression of canonical markers which were used to identify T and NK cell subsets. d Box plots show the
significantly changed percentages of T and NK cell subsets in total T and NK cells, Student t-test. *P < 0.05, **P < 0.01. e Dot plot shows the expression of
cytotoxic genes of total T and NK cells in NP and PE. f Volcano plot illustrates the significantly downregulated (blue dots) and significantly upregulated (red
dots) DEGs in total T and NK cells when comparing PE to NP, Wilcoxon rank-sum test. g Line and dot plot shows the expression of functional pathways in
CD4+ Tn 2, Student’s t-test. Violin plots show the expression of functional genes in CD4+ Tn 2, Wilcoxon rank-sum test. *adjust P < 0.05, **adjust
P < 0.01, ***adjust P < 0.001. h Line and dot plot shows the expression of functional pathways in CD8+ Tn 2, Wilcoxon rank-sum test. *adjust P < 0.05,
**adjust P < 0.01, ***adjust P < 0.001. i UMAP plots show the developmental trajectories of three NK cell subsets in NP (left panel) and PE (right panel), the
arrows indicate the different directions. See also Supplementary Fig. 3 and Supplementary Data 3.
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per individual after single-cell data processing, where each
pseudo-cell was labeled as either positive or negative according to
the status of the individual (PE or NP). The random stratified
sampling was then applied on the pseudo-cell dataset to create a
training set and an independent test set for ensuring the same
ratio of positive and negative samples in the two sets

(Supplementary Table 1). Upon the training set after data nor-
malization and feature selection, each cell-type-specific classifier
was trained using the 5-fold cross-validation (CV) scheme (80%
of random stratified samples used for training while 20% for
internal validation). This procedure was repeated 100 times and
the optimal hyperparameter values were determined based on the
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highest AUROC (area under ROC curve) values (Fig. 6b, Sup-
plementary Table 2). Due to the imbalanced data in this study
(positive samples much less than negative ones), we additionally
calculated weight F1 scores and confusion matrix to fairly
quantify the classification performance. To do this, we utilized the
Youden’s J statistic to determine the optimal cutoff threshold for
each classifier (Fig. 6b), leading to high values of the weight
F1 scores (between 0.843 and 0.932) and confusion matrix results
(Supplementary Fig. 5a, b). These results demonstrated an
expressive performance of each cell-type-specific classifier for
preeclampsia diagnosis during the training phase. The final cell-
type-specific classifiers were built by re-training the existing ones
with the optimal hyperparameters using the whole training sets.

Next, we used the independent test sets to evaluate the
preeclampsia diagnosis capabilities of the four classifiers. To
assess the stability of each classifier, we employed a bootstrapping
approach by randomly sampling the same size of data from the
independent test set with replacement 100 times. As a result, the
large AUROC values of 0.986 ± 0.011(mean ± SD) in total Mono,
0.893 ± 0.040 in CD4+ Tn 2, 0.988 ± 0.007 in CD8+ Tn 2, and
0.867 ± 0.051 in Treg were reached, respectively (Fig. 6c). Using
the optimal cutoff threshold, we additionally calculated the
sensitivity (SEN, mean value ranging from 0.821 to 0.936),
specificity (SPE, from 0.828 to 1.000), negative predictive value
(NPV, from 0.927 to 0.981), and positive predictive value (PPV,
from 0.587 to 1.000) of these four models (Fig. 6c), as well as the
weighted F1 scores (from 0.839 to 0.942) and confusion matrix
results for these four classifiers (Supplementary Fig. 5c, d).
Collectively, these results suggest that our models are well-
performing to distinguish preeclampsia in both training set and
independent test set.

The four sets of gene features that were identified by our
feature selection method effectively discriminated between NP
and PE. Some of the gene features were commonly identified
across all four classifiers, while others were specifically found in
total Mono, CD4+ Tn 2 cells, CD8+ Tn 2 cells, or Treg (Fig. 6d),
which implied the necessity for developing models at the subset
level. We prioritized and ranked the gene features in each of the
four sets according to the mean absolute SHapley Additive
exPlanation (SHAP39) values that were computed across all
samples in the corresponding independent test set. A SHAP value
(also called feature importance) represented the contribution of a
gene feature towards distinguishing PE from NP. We then
evaluated the performance of top 20 gene features and visualized
them for each of the four classifiers. After normalization, we
noted that the 23 samples were accurately divided into NP and PE
groups (Fig. 6e–h). Notably, DUSP1 and FOS were identified by
all classifiers with high feature importance, while NFKBIA was
selected by three classifiers that were associated with T cell subsets
(Fig. 6e–h). The protein level of DUSP1 was reported to decrease
in severe preeclampsia and was consistent with our results40.
Additionally, FOS was downregulated in PE and NFKBIA was
upregulated in most immune cell subsets in above functional
analysis results. Furthermore, in the classifier of Treg, we

observed a decreased expression level of SPON2, NFKBIA, and
the MHC-I molecule HLA-C in PE (Fig. 6e), which were in line
with the downregulation of immune response in PE. SPON2,
encoding extracellular matrix protein mindin, is essential for the
recruitment activities of inflammatory cells as an integrin
ligand41. Similarly, GIMAP7, which was one of the upregulated
DEGs in CD4+ Tn 2, was also selected in the classifier of CD4+

Tn 2 (Fig. 6f). Cytotoxic genes such as GNLY, NKG7, GZMA,
GZMH were selected in the classifier of CD8+ Tn 2 (Fig. 6g),
which were tied well with the lower expression of these genes in
total T and NK cells of PE (Fig. 3e). In the classifier of total Mono,
the functional genes of monocytes including S100 family genes
S100A8 and S100A9, monocyte-specific markers LYZ, MS4A6A
which reported to regulate during myelomonocytic
differentiation42 and CD36 which involved in angiogenesis and
inflammation43 were also identified (Fig. 6h). These results
indicated that our machine-learning models, after feature
selection and model training, have found similar discoveries to
the functional analysis results and have also determined genes
that may be related to disease pathophysiology.

Discussion
The immunological status of pregnancy is dynamic and
heterogeneous44. Disruption or dysregulation of immune
mechanisms may lead to pregnancy complications45, including
preeclampsia46. Using scRNA-seq, we profiled 28,774 PBMCs
from 8 preeclampsia patients and 15 matched controls to inves-
tigate immunological variations in preeclampsia in the third tri-
mester. Our findings fit well with the accepted knowledge that
specific monocyte subsets as potential contributors to the
inflammatory response in preeclampsia. However, we also
noticed that the immune cells in preeclampsia did not be acti-
vated all the time, as we observed downregulation of immune
activities in several PBMC subsets.

Previous studies have reported a descended proportion of Treg
cells in both peripheral blood and decidual immune cells of
preeclampsia8,47,48. However, the use of different technologies,
definitions49, and gestational ages may contribute to the diverse
changes of Treg cells. For instance, recent research has reported
the expansion of decidual Treg cells in preeclampsia patients50.
Uterine Treg with inflammatory characteristics could be ampli-
fied by triggers in pregnant mice which then led to pregnancy
demise or preeclampsia-like features51, which were in contrast
with prior observations. In our investigation, we found an ele-
vated proportion of Treg in total T and NK cells of preeclampsia,
then identified the corresponding alternations of suppressive
immune response:

Firstly, the downregulation of chemokine CCL5 in most
immune cell subsets indicates the migration activity mediated by
CCL5 may be impaired in preeclampsia17, together with the
upregulation of BTG1 and NFKBIA, which have suppressive
functions or can inhibit the NK-κB pathways, respectively. In PE,
we observed downregulation of lymphocyte activation and
lymphocyte-mediated immunity pathways, which were also

Fig. 4 Sub-clustering and analyzing the function of myeloid cell subsets. a UMAP plot shows nine clusters of myeloid cell subsets of NP and PE.
b Relative abundance of the nine clusters of myeloid cells in NP and PE. c Dot plot shows the expression of canonical markers which were used to identify
myeloid cell subsets. d Box plots show the significantly changed percentages of myeloid cell subsets in total myeloid cells, Student’s t-test. *adjust P < 0.05,
**adjust P < 0.01. e Box plots show the expression level of functional pathways in all myeloid cell subsets, Student’s t-test. **adjust P < 0.01, ***adjust
P < 0.001. f Line and dot plot shows the expression of functional pathways in VCAN+ Mono, Student’s t-test. **adjust P < 0.01, ***adjust P < 0.001.
g Volcano plot illustrates the significantly downregulated (blue dots) and significantly upregulated (red dots) DEGs in VACN+ Mono when comparing PE
to NP, Wilcoxon rank-sum test. h Violin plots show the expression of functional genes in total myeloid cells, Wilcoxon rank-sum test. ***adjust P < 0.001.
i UMAP plots show the developmental trajectories of all monocyte subsets in NP (left panel) and PE (right panel), the arrows indicate the differentiate
directions. See also Supplementary Fig. 4 and Supplementary Data 3.
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uncovered in the gene set enrichment analysis of circulating
cfRNA and peripheral blood, including the T-cell receptor com-
plex, B-cell receptor signaling pathway, and humoral immune
response19,52. In addition, we observed a reduction in the
expression of antigen processing and presentation via MHC-I and
interferon type I signaling pathway in preeclampsia like prior

reports19,52. Above all, the downregulation of circulating immune
responses may be a sign of preeclampsia pregnancy. Secondly, the
proportion of NK cells in total T and NK cells together with
expression of cytotoxic genes decreased in PE. Preceding studies
demonstrated diverse changes in proportions of NK cell subsets
in preeclampsia, such as the reduction of vascular endothelial
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growth factor-expressing NK cells53 and significantly decreased
percentage of CD56+/NKp46+ cells and CD56bright/NKp46+

cells in peripheral blood of PE54, while the expansion of CD69+/
CD56Dim/CD16+ cytotoxic NK cells was observed at delivery55,
which indicate that the changes of NK cells varied from different
cell subtypes and gestational ages. Decreased expression of
cytotoxic genes was also discovered in a subset of trophoblast
cells13. And Sargent et al. have suggested that inadequate sti-
mulation of decidual NK cells, which are involved in the synthesis
of immunoregulatory cytokines and angiogenic factors, may lead
to poor trophoblast invasion56. Similarly, it was suggested that the
reduced cytotoxicity of decidual NK in PE may be due to the
expansion of Treg and elevated expression of TGFb1 in
decidual50, which were in line with our findings in the peripheral
blood of PE.

Despite the downregulation of the immune response in PE, we
still found essential activated subsets, such as several APCs
(Switched Memory B 1, Classical Mono, VCAN+ Mono and IFN-

Non-classical Mono) with upregulation MHC-II-mediated anti-
gen presentation pathways, indicating that APCs were still
exposed to exogenous antigens and stimulated. Moreover, partial
activations were noted in two naïve T cell subsets, represented by
the upregulation of some hallmark pathways such as oxidative
phosphorylation and IFN-related pathways.

More importantly, monocytes were reconstructed and activated
in PE, particularly the IFN+ Non-classical Mono and VCAN+

Mono. The upregulation of immune pathways (such as comple-
ment, myeloid leukocyte activation, interferon receptor activity,
and macrophage activation) was observed in these monocyte
subsets, which were aligned with the known systematic inflam-
mation of preeclampsia. Additionally, the upregulation of coa-
gulation and angiogenesis process may correlate with reported
preeclampsia pathologies of preeclampsia development. Finally,
the pro-inflammatory S100 family genes were found to be upre-
gulated these monocyte subsets, which could play roles in pre-
eclampsia by contributing to inflammation or interacting with
other factors in preeclampsia34.

A handful of studies has built machine-learning models to
classify or diagnose disease or pregnancy status using scRNA-
seq data57–59. Here, we utilized circulating immune cells in
pregnancy to construct cell-type-specific models for the diag-
nosis of preeclampsia. Apart from the accurate and effective
discrimination of preeclampsia from normal pregnancy at the
single-cell subpopulation level, these models also identified the
specific genes that may contribute to the disease’s pathological
processes. Although the lack of scRNA-seq data from PBMCs
of preeclampsia prevented us from further validating the per-
formance of our models in external datasets, the successful try
of developing the specific models that accounted for cell types
heterogeneity may enhance the accuracy of preeclampsia
diagnosis. We also provide a framework for analyzing disease
characteristics. We could identify disease-related tran-
scriptomic changes at one time and construct cell-type-specific
models for key subsets of interest, which may be used as
potential biomarkers for diagnosis or therapeutic targets to

promote understanding of disease pathophysiology and clinical
applications.

In conclusion, on the one hand, we identified activated APCs
in PE and inflammation contributors in preeclampsia, which were
consistent with the previous understanding of the enhanced
inflammatory response in preeclampsia. On the other hand, the
aberrant expansion of Treg and reduction of cytotoxic genes
expression, suggests that protective immunity was not activated
effectively. Together demonstrated the dysregulation of immunity
in preeclampsia.

Our study has some limitations, primarily due to difficulty in
sample collection. As a cross-sectional study, this study lacks a
longitudinal sampling and comparative study between early- and
late-onset preeclampsia, mild and severe preeclampsia. Further-
more, the expansion and reduction of immune cell subsets were
not validated by in vitro experiments. Finally, the limited sample
size involved in the current study may introduce bias to our
models for preeclampsia diagnosis, and therefore, further inves-
tigations were needed to validate the performance using addi-
tional scRNA-seq data. However, the results of AUROC, weight
F1 scores and other evaluation metrics obtained from the training
sets and independent test sets showed the reliability of our clas-
sification models, which can also be demonstrated by the iden-
tified preeclampsia-associated gene features that were consistent
with previous studies.

Methods
Sample collection. This study is based on the birth cohort in
Shenzhen. The cohort was collected to assess the long-term car-
diovascular risk of mothers and offspring exposed during preg-
nancy. Women with singleton pregnancies were recruited at 6 to
8 weeks of gestational age in Shenzhen Maternity and Child
Health Care Hospital. Regular antenatal examination was per-
formed. Blood samples were taken from individuals once they
were diagnosed with preeclampsia, and the pregnancy outcomes
were recorded. Preeclampsia were diagnosed according to the
Guidelines for the Diagnosis and Treatment of hypertensive
Disorders in Pregnancy (2020) of the Chinese Society of Obste-
trics and Gynecology, Chinese Medical Association60.

We then performed one-to-two propensity score matching to
match uncomplicated cohort participants as controls based on
maternal age and gestational age of blood sampling. Some of the
hemolysis samples were eliminated. Finally, a total of 8
individuals with preeclampsia and 15 normal pregnant women
were included in this study, all of whom were women aged from
20 to 34 years old and who were singleton pregnancies and first
pregnancies.

Ethics statement. All pregnant women enrolled in the study were
required to fill in the birth cohort baseline questionnaire and sign
the Shenzhen Birth Cohort informed consent form. This study
was approved by the Ethics Committee of Shenzhen Maternity
and Child Health Care Hospital (Shenzhen Maternal and Child

Fig. 5 Cellular interaction of immune cell subsets in normal pregnancy and preeclampsia. a Heatmaps show the interaction counts between 33 immune
cell subsets in NP (left panel) and PE (right panel). b Dot plot shows the interactions between cytotoxic cell subsets and other cell subsets through the
expression of stimulatory and inhibitory pairs in NP and PE. c Dot plot shows the interactions between B cell subsets with other cell subsets through the
expression of stimulatory pairs in NP and PE. d Dot plot shows the interactions among immune cell subsets through the expression of chemokine-receptor
pairs and other functional pairs in NP and PE. e Dot plot shows the interactions between T cell subsets and APCs through the expressions of co-stimulatory
and co-inhibitory pairs in NP and PE. f Dot plot shows the interactions between cytotoxic cell subsets and APCs through the expression of inhibitory pairs
in NP and PE. g Dot plot shows the interactions between Switched Memory B 1 and other cell subsets through the expression of stimulatory pairs in NP and
PE. See also Supplementary Data 3.
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Fig. 6 Develop machine-learning models to diagnose preeclampsia and evaluate the model performance. a Flowchart of developing cell-type-specific
machine-learning models based on the scRNA-seq data of PBMCs from PE and NP. b, c The results of evaluation metrics showing the performance of the
four cell-type-specific models for preeclampsia diagnosis using the training sets (b) and the independent test sets (c). AUROC: Area Under ROC Curve,
SEN: Sensitivity, SPE: Specificity, NPV: Negative Predictive Value, PPV: Positive Predictive Value. d Upset plot shows the number of features in the four
models respectively, the horizontal columns indicate the number of features in each model and the vertical columns indicate the number of cell-type-
specific features in each model. e–h Top 20 important features determined and ranked by SHAP method, the horizontal columns indicate feature
importance (right panel) and heatmaps show the average expression of selected gene features in individuals in each model, including Treg (e) CD4+ Tn 2
(f) CD8+ Tn 2 (g) and total Mono (h). See also Supplementary Fig. 5, Supplementary Table 1, 2 and Supplementary Data 3.
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Ethics Review SFYLS [2021]031). All ethical regulations relevant
to human research participants were followed.

Collection of peripheral blood samples and isolation
of PBMCs. 3 mL of peripheral venous blood was collected using a
blood collection tube with EDTAK2. The blood was then mixed
with 3 mL of sterile phosphate-buffered saline (PBS, Cat. No.
10010–031) and Histopaque-1077 (Cat. No.10771) and cen-
trifuged at 500 g for 20 min. The middle layer of mononuclear
cells was transferred into a new 15-mL conical centrifuge tube.
The middle layer of mononuclear cells was transferred to a new
tube and washed twice with PBS containing 1% bovine serum
albumin (BSA). The cells were resuspended in 2 mL of 1% BSA
(PBS) and cell viability was checked using Trypan blue (Cat. No.
C0040) staining. About 100,000 cells were extracted and cen-
trifuged at 300 g for 5 min, then resuspended with 100 μL of Cell
Resuspension Buffer (Cat. No. 1000019895). The sample pre-
paration works were conducted at room temperature.

scRNA-seq library preparation and sequencing with DNBelab
C4 system. DNBelab C4 system (BGI, v1.0) was used for library
preparation and sequencing61. In brief, the single-cell suspension
of PBMCs, together with functionalized beads and lysis buffer
were input into a pressure-driven microfluidic device and emul-
sion droplets were generated. The single cell in the droplet was
lysed and mRNA transcripts were released, which were later
captured by barcoded beads. Then the emulsion was broken and
filtered, mRNA is reverse transcribed into cDNA and then cDNA
was amplified and sheared to shorter fragments. After adapter
ligation and cyclization to single-strand circular DNA of making
sequencing library, the later amplified DNA nano balls (DNB)
were patterned on nanoarrays and sequenced on the BGISEQ-500
sequencer.

scRNA-seq data processing. Seurat object was created by the
Seurat R package (v4.3.0)62, with R (v4.1.1)63. The genes
expressed in >3 cells, and the cells with the number of genes
detected ranged from 200 to 6000, with <10% of the mitochon-
drial genome and <1% of 10 hemoglobin genes (HBA1, HBA2,
HBB, HBD, HBE1, HBG1, HBG2, HBM, HBQ1, HBZ) were
retained. For quality control, the ribosomal genes, mitochondrial
genes, pseudogene genes, and long intergenic non-coding RNAs
(lincRNAs) were excluded from further analysis.

Dimension reduction and batch effect correction. To eliminate
the influence of the batch effect, we scaled and transformed data,
and identified variable genes using the “SCTransform” function
and applied the “RunPCA” function to perform linear dimen-
sionality reduction. Then the PCA matrix was fed into the
“RunHarmony” function of harmony R package (v0.1.0)64 for
batch correction. We used the batch-correct matrix for clustering
by the “FindNeighbors” and “FindClusters” functions, the Lou-
vain algorithm. Finally, we used the first 19 principal components
(PCs) for UMAP dimensionality reduction by the “RunUMAP”
function (n.neighbors= 30 L, min.dist= 0.4) to map the clus-
tering results to 2D.

Major cell type annotation. The first round of clustering of all
cells using 0.3 resolution, while the “FindAllMarkers” function
was used to find marker genes for each cluster, identified six
major cell types, including T cells (CD3D, IL7R), NK cells (NKG7,
KLRD1), B cells (CD79A, MS4A1) and Plasma cells (XBP1,
MZB1), myeloid cells (LYZ, FCGR3A) and Platelet (PPBP).

Subclustering and cell type annotation. To identify cell subsets
with more granularity in the major cell types, we performed a
second round of clustering on T & NK cells, B & Plasma cells and
myeloid cells. The steps of the second round of clustering are
basically the same as those of the first round, with the resolution
of 1.2, 0.5 and 0.3 respectively. Single cells expressing classical
marker genes for both major cell types were labeled as doublet
and were excluded from downstream analysis. Overall, the five
major cell types were further identified into 33 subsets, included
three subsets of NK cells, thirteen subsets of T cells, seven subsets
of B cells, nine subsets of myeloid cells and one subset of Platelet.

Differential expressed genes (DEGs) analysis and GO enrich-
ment analysis. To identify DEGs between two groups, we used
the “FindMarkers” function in the Seurat R package. Genes with
adjust P-values < 0.05 and absolute values of average log2(Fold-
Change) > 0.15 were labeled as significant DEGs. The “enrichGO”
function (OrgDb= org.Hs.eg.db, pvalueCutoff= 0.05,
qvalueCutoff= 0.05, pAdjustMethod= “BH”) of clusterProfiler R
package (v4.2.2)65 was used to perform functional analysis of
significantly up- and downregulated genes respectively.

Cell module scores evaluating. We evaluated the module scores
by applying Hallmark and custom gene sets to each cell using the
“AddModuleScore” function of the Seurat R package. These gene
sets were collected from the Molecular Signatures Database
(MSigDB)66.

Cell-cell interaction analysis. We used CellPhoneDB (v3.1.0)67

to analyze cell-cell interactions between immune cells. The cell-
type specificity of receptor-ligand complexes was calculated from
the default database, and potential receptor-ligand interaction
networks were derived by ranking and screening highly specific
interactions between cell types according to the number of sig-
nificant receptor-ligand pairs enriched between the two cell
subsets.

RNA velocity estimation. The spliced and unspliced matrices
were obtained first by recalculating the previous aligned bam files
of scRNA-seq data using “Velocyto” (v0.17.16)68. The spliced and
unspliced matrices of the associated cell annotation information
were then basically preprocessed using the “scVelo” Python
package (v0.2.4)69, and the “scvelo.tl.recover_dynamics” and
“scvelo.tl.velocity” (mode= “dynamical”) function were used to
estimate the RNA velocity. The “scvelo.tl.paga” function was also
used to infer trajectory relationships.

Data preprocessing and splitting. We first filtered out unwanted
genes and single cells, and then normalized the expression data
over 10,000 for each single cell, followed by performing logarithm
transformation and selecting 2,000 highly variable genes (HVGs).
Due to the large number of single cells a patient possessed as well
as the inherence of sparsity and uneven RNA capture in single-
cell, it is undesirable to build a model to diagnose PE based upon
such dataset. Hence, for each annotated cell type, we computed
the mean gene expression of every 5 single cells that were ran-
domly sampled (without replacement) from the same patient,
denoted as pseudo-cells. Towards each cell-type-specific pseudo-
cell dataset, a training set and an independent test set were
constructed with the exertion of the stratified random splitting
approach in a 7:3 ratio. We further removed the mean value of
the expression from each gene and scaled to unit variance in the
training data. The mean value and variation of each gene were
preserved and then applied to the corresponding gene in the
independent test dataset.
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Feature selection. To eliminate redundant genes, we employed
two feature selection methods, the mutual information (MI)-
based algorithm and the Boruta algorithm70. The MI-based
technique is one of the filter methods that calculate feature
weights based on mutual information by considering the rela-
tionship between the features and class labels. The Boruta algo-
rithm is a widely used wrapper method to select subset features
with their importance measurements greater than the highest
feature importance obtained by permuting a copy of features
across samples to destroy the relationship between features and
class labels. Genes were only included in the diagnosis model if
they were identified by both algorithms in the training dataset.
The selected genes were then applied to the independent test
dataset to filter out any irrelevant genes.

Machine learning model training and evaluation. Using each
cell-type-specific training dataset, the random forest (RF) classi-
fication model implemented in scikit-learn (v1.0.2) was trained
with considering class weight due to the imbalanced dataset. The
optimal hyperparameters of the RF model were determined by
maximizing AUROC using the random search strategy in a 5-fold
cross validation. The independent testing dataset was then used to
evaluate the performance of the classification model.

Moreover, we applied the SHAP method (version 0.39.0)39 to
determine the importance of genes in predicting PE. Each SHAP
value measured the change in the predicted value of PE for
patient i attributed to gene j. Mean absolute SHAP values across
all patients in the dataset represented the overall importance of a
particular gene in the diagnosis of PE by the RF model. A larger
mean absolute SHAP value of a gene represented a higher
contribution towards PE prediction. Genes were initially ranked
by the mean absolute SHAP values that were calculated from the
training dataset and we selected the top 20 genes to investigate
their contributions towards PE.

Statistics and reproducibility. We conducted a single-cell RNA
sequencing study using a cohort of 23 samples, which were seg-
regated into two groups based on clinical diagnosis: 8 pre-
eclampsia cases and 15 normal pregnancy cases. None of the
same sample was measured repeatedly. Maternal age, gestational
age at blood collection, and infant gender at birth did not exhibit
any significant differences between the two groups. Statistical
analyses were conducted using R software. Boxplots and dot plots
were utilized to visualize the distribution of data for cell pro-
portions and pathway expression, and P-values were calculated
using Student’s t-test. To compare gene expression levels, we
employed violin plots and volcano plots for data visualization,
and the Wilcoxon test was used to compute P-values, with the
Bonferroni correction applied to obtain adjusted p-values. In the
figures, P-values and adjusted P-values >0.05 were considered to
be statistically non-significant and were not labeled, whereas
values less than or equal to 0.05, 0.01, and 0.001 were annotated
with *, **, and ***, respectively. The exact P-values are provided
in Supplementary Data 3. The statistical tests employed are
referred to in the respective figure legends.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The normalized gene expression matrix of scRNA-seq data that supported the results was
deposited in the CNGB Nucleotide Sequence Archive (CNSA)71 (accession code:
CNP0003201; https://db.cngb.org/search/project/CNP0003201/) of the China National
GeneBank DataBase (CNGBdb)72. Source data underlying Figueres are in Supplementary

Data 3. Other relevant data are available from the corresponding author upon reasonable
request.

Code availability
Details of publicly available software used in the study are given in the Methods. Custom
codes of machine learning are available at https://github.com/y-bai/pbmc-pe/tree/v1.0.0
and https://doi.org/10.5281/zenodo.1022366573.
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