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Tumor microenvironment remodeling plus
immunotherapy could be used in mesenchymal-like
tumor with high tumor residual and drug
resistant rate
Shuai Shen 1,4, Xing Liu1,4, Qing Guo1,4, Qingyu Liang2, Jianqi Wu1, Gefei Guan2, Cunyi Zou2, Chen Zhu2,

Zihao Yan2, Tianqi Liu1, Ling Chen3, Peng Cheng 2✉, Wen Cheng 1✉ & Anhua Wu 1✉

Epithelial-mesenchymal transition (EMT) is a common process during tumor progression and

is always related to residual tumor, drug resistance and immune suppression. However,

considering the heterogeneity in EMT process, there is still a need to establish robust EMT

classification system with reasonable molecular, biological and clinical implications to

investigate whether these unfavorable survival factors are common or unique in different

individuals. In our work, we classify tumors with four EMT status, that is, EMTlow, EMTmid,

EMThigh-NOS (Not Otherwise Specified), and EMThigh-AKT (AKT pathway overactivation)

subtypes. We find that EMThigh-NOS subtype is driven by intrinsic somatic alterations.

While, EMThigh-AKT subtype is maintained by extrinsic cellular interplay between tumor cells

and macrophages in an AKT-dependent manner. EMThigh-AKT subtype is both unresectable

and drug resistant while EMThigh-NOS subtype can be treated with cell cycle related drugs.

Importantly, AKT activation in EMThigh-AKT not only enhances EMT process, but also

contributes to the immunosuppressive microenvironment. By remodeling tumor immune-

microenvironment by AKT inhibition, EMThigh-AKT can be treated by immune checkpoint

blockade therapies. Meanwhile, we develop TumorMT website (http://tumormt.

neuroscience.org.cn/) to apply this EMT classification and provide reasonable therapeutic

guidance.
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Drug resistance and tumor reside continue to be the prin-
cipal limiting factors for patient’s survival1,2. Clinically,
tumor residue and treatment resistance are always related

to epithelial-mesenchymal transition (EMT)3–5. Unfortunately,
most tumors undergo EMT during tumor development3–5. Fol-
lowing EMT, tumors exhibit high invasive ability3 and unlimited
proliferation6 which is responsible for treatment resistance
and high residual rate. For now, somatic alteration has been
regarded as primary EMT driving mechanism and gives tumor
cells aggressive phenotype3,5,7,8. For example, E-cadherin muta-
tion could directly trigger EMT process3,5. Besides, copy number
variation (CNV) loss like BRCA1 could downregulate the
expression of E-cadherin7. Also, over-activated oncogenic path-
way like FOXD1 could promote EMT in glioma cells8. These
somatic alterations are called intrinsic driving force of EMT.
Recently, the tumor microenvironment (TME) factor has been
recognized as an alternative EMT driving force. The interplay
between tumor cells and non-tumor cells facilitates the EMT
process of tumor cells and EMT-ed tumor cells shape TME into
immunosuppressive subsequently9,10. Considering the hetero-
geneity of the driving force (genomic alteration or TME factor) in
triggering EMT process, high EMT subtypes need to be estab-
lished to investigate whether EMT-ed tumors process homo-
geneous or heterogeneous biological characteristics like overall
survival time.

In this study, the heterogeneity of EMT status was firstly clas-
sified at the pan-cancer level through machine learning-based
method. Four EMT subtypes (EMTlow, EMTmid, EMThigh-NOS,
and EMThigh-AKT) were recognized with distinct molecular, bio-
logical, and clinical features. We noticed that although with similar
EMT enhancement, two mesenchymal like subtypes (EMThigh-
NOS and EMThigh-AKT) were driven by intrinsic genomic
alteration or extrinsic microenvironment interaction, respectively.
EMThigh-NOS was characterized with extensive genetic alteration
and could be treated by cell cycle targeting drugs. As for EMThigh-
AKT subtype, EMT was driven by the interplay between tumor cell
and macrophages through AKT pathway which is drug resistant
and unresectable. Importantly, this interplay not only enhance
EMT status, but also lead to the dysfunction of anti-tumor T cells
which could be reverted by AKT inhibition. By remodeling tumor
immune-microenvironment by AKT pathway inhibition, EMThigh-
AKT could be treated by immune checkpoint blockade (ICB)
therapies. Moreover, we introduced TumorMT (http://tumormt.
neuroscience.org.cn) to conduct tumor EMT classification and
provide reasonable therapeutic options for patients. Taken toge-
ther, we established a novel EMT classification system, which
would help us clarify the EMT driving mechanisms and provide
valuable treatment guidance.

Results
Epithelial Mesenchymal Transition Core Gene (EMTCG) sig-
nature construction. To summarize the core genes associated with
EMT process, we collected three well-established EMT related Gene
Ontology (GO) gene sets from GSEA website (http://www.gsea-
msigdb.org/gsea/index.jsp). Among these, one gene set (Go_Epithe-
lial_to_Mesenchymal_Transition GO: 0001837) was annotated in
positive correlation with EMT process, whereas the other two
sets (Go_Mesenchymal_to_Epithelial_Transition GO: 0060231 and
Go_Negative_Regulation_of_Epithelial_to_Mesenchymal_Transition
GO: 0010719) represented the negative direction (Supplementary
Data 1). By excluding genes participating in GO: 0060231 and GO:
0010719 from GO: 0001837, a total of 103 genes were filtered out as
being positively correlated with EMT. Then, we conducted protein-
protein interaction analysis using STRING website (https://www.
string-db.org) and identified 58 genes exhibiting strong protein

interactions (Supplementary Data 2). Meanwhile, co-expression
networks of the 103 genes were also depicted using COEXPEDIA
website (https://www.coexpedia.org), eliciting 50 hub genes with
substantial expression associations (Supplementary Data 2). Genes
with protein and expression relationships were intersected to obtain a
list of 35 genes, namely the EMT core genes (EMTCGs, Fig. 1a and
Supplementary Data 2).

To test our signature’s accuracy, we downloaded other 76 EMT
related signatures from EMTome11 (http://www.emtome.org).
We calculated the correlation between our signature and these 76
signatures based on ssGSEA score. We found out that our
signature was strongly positively correlated with these 76 signa-
tures (mean correlation= 0.71, Std= 0.14, Supplementary
Fig. 1a). Besides, we also calculated the correlation among each
two signatures of 76 signatures and we found that the correlation
(mean correlation= 0.71, Std= 0.14) between our signature and
other 76 signatures is better than the correlation (mean
correlation= 0.63, Std= 0.20) among each two signatures of
76 signatures (Supplementary Fig. 1b, c). Next, we compared the
ssGSEA score of our EMTCG signature between mesenchymal
and non-mesenchymal subtype tumors in four cancer types12–15.
Firstly, we found out that our signature was significantly
upregulated in mesenchymal glioma in four cohorts (Supple-
mentary Fig. 1d). Secondly, we found out that our signature was
significantly upregulated in mesenchymal colorectal cancer
(CRC) in 10 cohorts (Supplementary Fig. 1e). Thirdly, we found
out that our signature was significantly upregulated in mesench-
ymal breast cancer in two cohorts (Supplementary Fig. 1f).
Finally, we found out that our signature was significantly
upregulated in mesenchymal gastric cancer in six cohorts
(Supplementary Fig. 1g). These results demonstrated the validity
of our signature.

EMT status could be disturbed due to multi-omics mechan-
isms. Next, we tried to investigate the underlying molecular
mechanisms that could affect EMT status. Firstly, genomic
mutation frequency of the EMTCGs was compared to the base-
line mutation frequency in each cancer type. In colon adeno-
carcinoma (COAD), rectum adenocarcinoma (READ), skin
cutaneous melanoma (SKCM), and ovarian serous cystadeno-
carcinoma (OV), more EMTCGs were frequently mutant com-
pared to other cancer types (frequency >5% and fold change >1.5)
(Supplementary Fig. 2a and Supplementary Data 3). Secondly,
exploration of the effect of CNVs on the abnormal expression of
EMTCGs indicated that the upregulation of EZH2, JAG1,
SMAD2, and SMAD4 might be due to the amplified copy number
of these genes (R > 0.3, frequency >30%, false discovery rate
(FDR) < 0.0001) (Supplementary Fig. 2b and Supplementary
Data 4). Finally, we found that reduced DNA methylation levels
likely contributed to the upregulation of ACVR1, BAMBI, ENG,
S100A4, and TGFB3 (R < −0.3, FDR < 0.0001) (Supplementary
Fig. 2c and Supplementary Data 5). Overall, 23.3% (196/840)
cases were affected by genomic mechanisms, in which 5.6% (11/
196) were mediated by multiple mechanisms (Fig. 1b). Taken
together, these results offered a quantitative view of how different
multi-omics mechanisms might disturb mesenchymal transition
in tumor samples.

EMT represents robust clinically relevant patterns and serves
as an aggressive factor. Subsequently we assessed prognostic
implications of EMT based on EMTCG score (Supplementary
Data 6). By univariate COX model, we found a significant
negative correlation (hazard ratio (HR): 1.014–1.114, p= 0.0118)
between the mesenchymal transition and OS times when
9415 samples were considered as a whole. Next, we conducted the
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Cox regression analysis within each cancer type. Notably, in
bladder urothelial carcinoma (BLCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC), kidney
renal papillary cell carcinoma (KIRP), brain lower grade glioma
(LGG), and pancreatic adenocarcinoma (PAAD), a significant
negative correlation remained between mesenchymal transition
and OS time (Fig. 1c and Supplementary Data 7). Furthermore,
we also grouped patients based on the median EMTCG score.
Higher mesenchymal transition status conferred poor prognosis
at a pan-cancer scale (p < 0.0001), as did in BLCA, LGG, liver
hepatocellular carcinoma (LIHC), and uterine corpus endometrial
carcinoma (UCEC) (Supplementary Fig. 3). Among all the cancer
types surveyed, the EMTCG score showed the most significant
survival value in LGG (HR= 1.787, p= 0.00035).

As high EMT status could reduce patients’ survival, we next
investigated whether mesenchymal transition was consistently
enhanced in tumors (Supplementary Fig. 4). First, the EMTCG
score was compared between tumor samples and their paired
normal samples. Although the EMT activity was enhanced in
most tumor compartments, the mesenchymal transition activity
was inhibited compared to paired normal samples in some tumor
compartments. For example, in head and neck squamous cell
carcinoma (HNSC), the mesenchymal transition activity levels of
81.4% (35/43) of the tumor samples were significantly enhanced,

whereas the levels were inhibited compared to normal tissues in
18.6% (8/43) of the samples. Next, we calculated the coefficient of
variance (CV) of EMT activity within each cancer type to explore
the fluctuation status. UCEC, READ, and COAD were found to
exhibit high mesenchymal transition activity fluctuation (CV >
50%), whereas HNSC, lung squamous cell carcinoma (LUSC),
and PAAD showed low mesenchymal transition activity fluctua-
tion (CV < 20%). Besides, we also found a strong negative
correlation (R=−0.682, p= 0.0002) between the mean activity
and the CV, which indicated that in the case of general low
mesenchymal transition tumor types, individuals with high
mesenchymal transition activity could also be observed (Fig. 1d
and Supplementary Data 8). Together, these findings indicated
that the malignant mesenchymal transition was heterogeneous
between tumor samples, highlighting the need for further studies
to define different mesenchymal-like groups.

EMT clustering system based on EMTCG. To discriminate
tumor samples according to mesenchymal transition status,
unsupervised consensus cluster was used to classify 9415 samples
across 24 cancer types based on transcriptomic expression of
35 genes consisting EMTCG. Following evaluation of cumulative
distribution function, Delta area, and consensus cluster data, four

Fig. 1 The landscape of EMTCG signature. a Flowchart of construction of EMTCG signature. Left panel: Venn diagram shown that 103 genes involving only
in the positive direction of mesenchymal transition were summarized. Right panel: Identification of 35 EMTCGs by protein-protein interaction network
analysis and co-expression analysis. b Multi-omics regulation mechanism including somatic mutation, copy number variation (CNV) or DNA methylation
of EMTCGs. Significant correlation (p < 0.0001) was represented on the heat-map. c Univariate Cox regression analysis access Hazard Ratio and
prognostic significance of mesenchymal transition activity based on ssGSEA across different cancer types. d Boxplots of mesenchymal transition activity
across 24 cancer types, as inferred using ssGSEA based on EMTCGs signature.
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EMT clusters were established (Fig. 2a and Supplementary
Fig. 5a–d). PCA analysis revealed that before clustering the dis-
tribution of 24 cancer types were in chaos (Supplementary
Fig. 5e) while consensus cluster could clearly classify tumor
samples into four cluster (Supplementary Fig. 5f). Comparison of
the EMTCG score among the four clusters indicated that Cluster I
was characterized by an attenuated mesenchymal transition ten-
dency (EMTlow), Cluster II by moderate mesenchymal transition
activation (EMTmid), Cluster III and IV exhibited enhanced
mesenchymal transition profiles (EMThigh) (Fig. 2b). Since the
sample number in each cancer type varied dramatically (for
example, whereas 1102 cases of breast invasive carcinoma
(BRCA) were available, only 120 cases were available for thy-
moma (THYM)), we sampled 10 patients of each cancer in each
cluster and merged them together to eliminate the bias due to

cancer type specificity for 100 times16. For 100% (100/100)
iterations, Cluster III and IV exhibited enhanced mesenchymal
transition profiles (Supplementary Fig. 6a).

The clinical relevance of this mesenchymal transition classifi-
cation was also investigated. Specifically, squamous carcinoma
including HNSC, LUSC, CESC, and esophageal carcinoma
(ESCA) tended to be enriched in Cluster III, whereas adeno-
carcinomas including thyroid carcinoma (THCA), PAAD, lung
adenocarcinoma (LUAD), BRCA, and stomach adenocarcinoma
(STAD) tended to be enriched in Cluster IV (Fig. 2c). Besides, the
survival time was also compared, showing that Cluster III had the
shortest survival (median survival= 48.6 months), whereas
Cluster I, Cluster II, and Cluster IV exhibited relatively long
survival (medial survival for Cluster I= 115.7 months, medial
survival for Cluster II= 101.4 months, medial survival for Cluster

Fig. 2 Epithelial origin tumors exhibit four EMT subtypes. a Unsupervised consensus cluster of 9415 samples across 24 cancer-types based on 35
EMTCGs classified tumors into four subtypes. b Comparison of mesenchymal transition activity among four clusters. The mesenchymal transition activity
was significantly up-regulated in Cluster III and IV; the Student’s t test was used to analyze statistical significance; Cluster I, n= 1864; Cluster II, n= 3094;
Cluster III, n= 1532; Cluster IV, n= 2925. c Distribution of individual cancer samples among four different EMT clusters. d Kaplan-Meier curve of overall
survival of patients with different EMT subtypes for TCGA datasets; Cluster I, n= 1864; Cluster II, n= 3094; Cluster III, n= 1532; Cluster IV, n= 2925;
Cluster III was statistically associated with unfavorable survival outcome. e Summarization of biological features among four EMT clusters.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05667-4

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1281 | https://doi.org/10.1038/s42003-023-05667-4 | www.nature.com/commsbio

www.nature.com/commsbio


IV= 108.6 months) (Fig. 2d). To eliminate the bias due to cancer
type specificity, we also introduced sampling strategy mentioned
above. After sampling analysis, in 96% (96/100) iterations, Cluster
III still had the shortest survival (Supplementary Fig. 6b). These
analysis indicated two EMThigh subtype might exist which urged
us to investigate the heterogeneity between different EMT state
tumors.

Intrinsic and extrinsic features in EMTlow and
EMTmid tumors. To explore potential mechanisms driving
mesenchymal transition process, both intrinsic somatic alteration
and extrinsic TME factor were explored for this purpose. The
somatic mutation data (299 genes, which were considered as
tumor driver mutations), somatic CNV data (84 loci, which were
considered as tumor driver CNVs)17,18, and tumor purity were
analyzed among different EMT subtypes. In this part, all results
were acquired with sampling analysis for 100 iterations.

In EMTlow subtype (Fig. 2e), no characteristic mutation
(Supplementary Data 9) or CNVs (Supplementary Data 10) were
detected. From the extrinsic viewpoint (Supplementary Fig. 7a–c),
these tumors had the lowest level of non-tumor cell infiltration
for 100% (100/100) iterations.

In EMTmid subtype (Fig. 2e), no characteristic mutation
(Supplementary Data 9) or CNVs (Supplementary Data 10) were
detected. From the extrinsic perspective (Supplementary
Fig. 7a–c), the EMTmid subtype exhibited a low fraction of
non-tumor cells infiltration in 100% (100/100) iterations.

Two EMThigh subtypes are driven by distinct mechanisms.
Here, we established two mesenchymal like (EMThigh) subtypes
with similar high EMT status. It should be important to explore
the clinical, molecular and biological features between these two
mesenchymal like subtypes. The clinical features between these
two EMThigh subtype was firstly investigated. Since the sample
number in each clinical aspect varied drastically (for example,
whereas 1102 cases of BRCA were available, only 120 cases were
available for THYM), we made normalization of sample number
to make sure our analysis does not be skewed by sample sizes as
shown in Supplementary Data 1116. For example, in histological
type part, the sample number of each cancer type was adjusted
into 100 to calculate the sample number of every cancer type in
each cluster. Firstly, we compared the difference of tumor com-
position fraction (Fig. 3a–c and Supplementary Fig. 8a, b). Cluster
III was mainly composited of squamous carcinoma, including
HNSC (24.3%), LUSC(20.8%), CESC (15.8%) and ESCA (13.7%).
In total, these four cancer types composited 74.7% of Cluster III
samples. As for Cluster IV type, top composition cancer types are
all adenocarcinoma, including kidney renal clear cell carcinoma
(KIRC, 13.3%), PAAD (12.4%) and THCA (10.55%). Secondly,
we found that Cluster III was mainly composed of recurrent or
primary samples while the portion distribution was relatively
even in Cluster IV. Thirdly, we discovered that with histological
grade progression, high EMT tumor samples tended to enrich in
Cluster IV type (from Grade I to Grade IV: 15.4%, 18.5%, 17.7%,
and 48.4%) instead of Cluster III type (from Grade I to Grade IV:
33.6%, 36.0%, 21.3%, and 9.1%). Lastly, age and gender dis-
tribution patterns were relatively similar between these two
mesenchymal like subtypes. These results demonstrated there are
substantial histopathological differences between Cluster III and
IV with similar enhanced mesenchymal transition status.

Next, we tried to identify over-activated pathway in two
EMThigh subtypes. To do this, we first mapped the 35 genes in
EMTCG to highlight their enrichment pathways using KEGG
analysis. A total of 9 pathways were acquired (Supplementary
Data 12), including well established pathway facilitating EMT

process, including TGF-β (norm p= 1.5 × 10−8), YAP (norm
p= 4.645 × 10−12), and AKT (norm p= 0.032)19,20. Compared to
Cluster I or Cluster II, all 9 pathways were over-activated in two
EMThigh subtypes. When pathway activity was compared
between two mesenchymal like subtypes, we found that AKT
pathway was over-activated in Cluster IV in 100% (100/100)
iterations (Fig. 3d and Supplementary Fig. 9i). However, we didn’t
find specific over-activated pathway in Cluster III (Supplementary
Fig. 9). Besides, we also classified cell lines (n= 629) from CCLE
dataset into four EMT clusters (Supplementary Fig. 10a and
Supplementary Data 13). Consistently, the AKT pathway were
significantly enriched in Cluster IV (Supplementary Fig. 10b). To
further demonstrate Cluster IV is specified with AKT pathway
over-activation, a cohort of glioma samples were used for IHC
analysis. The result indicated the phosphorylation level of AKT
pathway was significantly upregulated in Cluster IV (Supple-
mentary Fig. 11). Therefore, Cluster III was thus termed as the
EMThigh-NOS (Not Otherwise Specified) subtype, whereas
Cluster IV was termed as the EMThigh-AKT subtype.

Next, we attempted to further distinguish these two mesench-
ymal like subtypes to investigate the difference and similarity
between them. To do this, we firstly performed different
expression gene analysis between two EMThigh subtypes using
Limma R package and found out 548 genes were significantly
upregulated in EMThigh-NOS subtype while 558 genes were
significantly upregulated in EMThigh-AKT subtype (fold change
>2, adjusted p < 0.05, Supplementary Data 14). Then, we
performed GO analysis using genes upregulated in each
mesenchymal like subtype separately. Genes in EMThigh-NOS
subtype were mainly enriched in GO terms related to cell cycle
(Fig. 3e and Supplementary Data 15). Genes in EMThigh-AKT
subtype were mainly enriched in GO terms related to multi-
cellular crosstalk (Fig. 3e and Supplementary Data 15).

Finally, we tried to explored the differential mesenchymal
transition driving mechanisms between EMThigh-NOS and -AKT
subtype. In EMThigh-NOS subtype, TP53 was a recurrent
mutation event in 86% (86/100) iterations (median OR= 2.20,
1.50–3.26). Compare to 27.52% mutation rate in EMThigh-AKT
subtype, TP53 mutation rate is as high as 65.78% in EMThigh-
NOS subtype (Fig. 3f). Besides, recurrent deletion of 3p14.2 (in
86% (86/100) iterations, median OR= 1.65), and amplification of
3q26.2 (in 98% (98/100) iterations, median OR= 1.73) and
amplification of 11q13.3 (in 97% (97/100) iterations, median
OR= 1.85) are representative CNVs in EMThigh-NOS subtype.
TP53 mutation21 and 11q13.3 amplification22 explain why
EMThigh-NOS subtype is featured with abnormal cell cycle. In
EMThigh-AKT subtype, no characteristic mutation or CNV was
identified. From extrinsic view, EMThigh-AKT subtype had the
highest non-tumor cell infiltration in 100% (100/100) iterations.
Besides, we found out that tumor purity negatively correlated
with AKT pathway activation in EMThigh-AKT subtype, indicat-
ing the role of non-tumor cells in promoting EMT of this subtype
(Supplementary Fig. 7a–d).

Taken together, we demonstrated that two mesenchymal like
subtypes might be viewed as distinct EMThigh subtypes in future
clinical practice.

Only EMThigh-AKT subtype but not EMThigh-NOS was resis-
tant to targeting drugs and shown high residual tumor rate.
EMT was always related with drug resistance20. Thus, we tried to
investigate drug responsiveness between four EMT subtypes using
GDSC database23. After comparing the IC50 of different drugs
among these clusters, we discovered that EMThigh-NOS was
actually sensitive to targeting drugs (Supplementary Fig. 12a).
Among 445 drugs compared, 129 drugs (29%) were sensitive,
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while only 6 (1%) were resistant in this subtype. Among 129
EMThigh-NOS sensitive drugs, 50 (39%) drugs were related to cell
proliferation, consistent with the abnormal cell cycle character-
istic of EMThigh-NOS subtype (Supplementary Fig. 12b). There-
fore, although EMThigh-NOS subtype had the worst survival
status (Fig. 2d), it might be treated by targeting drugs in the
future.

Next, although EMThigh-AKT subtype had similar survival
status to EMTlow and EMTmid subtype, we compared the residual
tumor rate to see whether EMThigh-AKT subtype needed more
non-surgical strategies compare to these low mesenchymal
transition subtypes. The EMThigh-AKT subtype had the highest
residual tumor rate (19%, Supplementary Fig. 12c). Since EMThigh-
AKT subtype was characterized as AKT over-activation, we firstly

Fig. 3 Multi-scale comparison between EMThigh-NOS subtype and EMThigh-AKT subtype. a Histological type composition of EMThigh-NOS subtype and
EMThigh-AKT subtype. EMThigh-NOS subtype was mainly composited of squamous carcinoma while EMThigh-AKT subtype was mainly composited of
adenocarcinoma. b Sample portion composition of EMThigh-NOS subtype and EMThigh-AKT subtype. EMThigh-NOS subtype was mainly composed of
recurrent or primary samples while the portion distribution was relatively even in EMThigh-AKT subtype. c WHO grade composition of EMThigh-NOS
subtype and EMThigh-AKT subtype. With histological grade progression, mesenchymal transition tumor samples tended to enrich in EMThigh-AKT subtype.
d AKT pathway activity was significantly upregulated in EMThigh-AKT subtype. e Gene ontology analysis of EMThigh-NOS subtype and EMThigh-AKT
subtype. f Compared to EMThigh-AKT subtype, the mutation rate of TP53 is significantly higher in EMThigh-NOS subtype.
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compared overall survival in this subtype between low AKT
activation and high AKT activation samples. The survival status
didn’t alter between high AKT group and low AKT group in
EMThigh-AKT subtype, indicating only inhibition of AKT pathway
couldn’t prolong survival in EMThigh-AKT subtype (Supplemen-
tary Fig. 12d). Besides, we also found that the IC50 of relative
resistant drugs in EMThigh-AKT subtype were not correlated with
AKT pathway activity, indicating targeting drugs couldn’t be
sensitized by AKT inhibition (Supplementary Fig. 12e, f). Taken
together, these results indicating that EMThigh-AKT subtype was
resistant to targeting drugs and other strategies should be
developed.

Only EMThigh-AKT subtypes is associated with immunosup-
pressive microenvironment. EMT is consistently associated with
impaired anti-tumor immunity24. We next assessed the immune
reaction among the four subtypes. The IFNG signature was
adopted as adaptive anti-tumor immunity marker25, whereas the
TNF signature as innate pro-inflammatory indicator26. Compared
to EMTlow subtype, both IFNG activity and TNF activity were
upregulated in the two EMThigh subtypes. However, when com-
pared to EMTmid subtype, the IFNG activity is similar between
EMThigh-AKT subtype and EMTmid subtype in 54% (54/100)
iterations, whereas the IFNG activity is higher in EMThigh-NOS
subtype than in EMTmid subtype in 100% (100/100) iterations
(Supplementary Fig. 13a). As for pro-inflammatory status,
EMThigh-AKT subtype exhibits the highest TNF activity in 100%
(100/100) iterations (Supplementary Fig. 13b). The unparallel
innate and adoptive anti-tumor immunity in EMThigh-AKT
subtype suggested that adaptive anti-tumor immunity might be
inhibited in EMThigh-AKT subtype. To verify whether anti-tumor
immunity was suppressed in the EMThigh-AKT subtype, we used
gene set enrichment analysis (GSEA) to profile four immuno-
suppressive gene signatures. We found that these signatures were
all enriched in the EMThigh-AKT subtype compared to non
EMThigh-AKT subtype patients (Supplementary Fig. 13c).

Next, we further explored the immunosuppressive features in
EMThigh-AKT patients. A lymphocyte signature27 was applied to
profile the CD8+ T cell fraction in the TME. Compared to other
subtypes, the EMThigh-AKT subtype exhibited similar CD8+ T
cell infiltration level in 97% (97/100) iterations (Supplementary
Fig. 13d). The T cell dysfunction signature25 was then adapted to
evaluate the T cell function, which revealed that the EMThigh-
AKT subtype presented the highest dysfunction score level in
100% (100/100) iterations (Supplementary Fig. 13e). As the major
immune regulatory cells contributing to T cell dysfunction, the
proportions of regulatory T cells (Tregs) and tumor associated
macrophages (TAMs) were profiled among EMT subtypes. We
found that TAM abundance and immunosuppressive M2-TAMs
were significantly enriched in the EMThigh-AKT subtype
compared to other EMT subtypes in 100% (100/100) iterations
(Supplementary Fig. 13f), suggesting the important role of TAMs
in facilitating immunosuppression in EMThigh-AKT subtype. As
for Tregs, the abundance in EMThigh-AKT type was not
significantly enhanced compared to that in EMTmid or
EMThigh-NOS subtype in 98% (98/100) iterations, suggesting
Tregs might not participate in shaping immunosuppression in
EMThigh-AKT subtype (Supplementary Fig. 13g).

AKT activation dependent tumor-TAM feedback is important
for shaping immunosuppression only in EMThigh-AKT sub-
type. EMT related immunosuppression is always related with
TAMs9,28. We next tried to investigate the role of AKT pathway
in regulating the crosstalk between mesenchymal transition and
TAM manipulation in different EMT subtypes. Breast cancer cell

lines and melanoma cell lines were used for this purpose, since
breast cancer had the largest sample number (n= 1102) in TCGA
cohort while melanoma is the first cancer type approved by FDA
to use immune checkpoint blockade (ICB) therapy29. Four breast
cancer cell lines (T-47D: EMTlow subtype, Luminal A; MDA-MB-
468: EMTmid subtype, basal like; HCC38: EMThigh-NOS subtype,
claudin-low; MDA-MB-231: EMThigh-AKT subtype, claudin-low)
and four melanoma cancer cell lines (MeWo: EMTlow subtype; A-
375: EMTmid subtype; SK-MEL-3: EMThigh-NOS subtype; WM-
115 EMThigh-AKT subtype) were used for this purpose.

We firstly tested the mesenchymal transition status of tumor
cells after being co-cultured with macrophages. Two mesenchy-
mal markers, N-cadherin (N-cad) and Vimentin (VIM) were
tested. N-cad and VIM were consistently upregulated in MDA-
MB-231 cell after macrophage co-culturing. To test the role of the
AKT pathway in this phenomenon, tumor cells were pre-treated
with an AKT inhibitor (MK2206). MK2206 could only inhibited
the facilitating mesenchymal transition promoting effects of
TAMs on MDA-MB-231 cell line (Fig. 4a–d). These results
indicated a specific mesenchymal transition facilitating role of
TAMs on EMThigh-AKT subtype mediated by AKT pathway.

Next, we detected the role of different EMT subtypes on TAM
infiltration alteration. Following co-culture with different sub-
types of breast cancer cell lines, we detected the infiltration ability
of macrophages. Although MDA-MB-468 (fold change 3.7) and
HCC38 (fold change 2) also enhanced the infiltration of
macrophages, MDA-MB-231 dramatically increased the infiltra-
tion (fold change 21.9). Besides, MK2206 could only abolish
TAM promoting effect in the MDA-MB-231 cell line (Fig. 4a–d).

Furthermore, PD-L1, as major effector leading to the
dysfunction of T cell, was analyzed on both tumor cells and
macrophages. Using breast cancer cell line, we found THP-1
could only up-regulate expression of PD-L1 in MDA-MB-231 but
not in other EMT subtype breast cancer cell through AKT
pathway (Fig. 4e–h, upper panel). Additionally, MDA-MB-231
cells could up-regulate the PD-L1 expression of THP-1 more
intensively than other EMT subtype breast cancer cell through
AKT pathway (Fig. 4e–h, lower panel).

By using melanoma cell lines, similar tumor-TAM feedback
loop was also observed in WM-115 cell line (EMThigh-AKT
subtype, Supplementary Fig. 14). These results suggested that the
AKT pathway was the specific hub mediating immunosuppres-
sion in EMThigh-AKT subtype by regulating the crosstalk between
mesenchymal transition and TAM manipulation.

AKT inhibition recover the immunosuppressive micro-
environment of EMThigh-AKT tumor in vivo. Next, we tried to
test whether AKT signaling was responsible for immunosup-
pression of EMThigh-AKT subtype in vivo. To do this, we first
conducted RNA-seq in three mouse cancer cell lines including
mGSC (glioma), 4T1 (breast cancer) and B16-F10 (melanoma) to
identify mouse EMThigh-AKT subtype tumor. Using three
machine learning methods, all these three cell lines were classified
into EMThigh-AKT subtype (Fig. 5a). Since mGSC was a spon-
taneous primary cancer cell line, which intimates more to pri-
mary human cancer than established cancer cell lines, mGSC was
used for CyTOF analysis.

As indicated in Fig. 5b, an intracranial xenograft glioma model
was established using mGSC cell line to harvest single-cell
suspension for the CyTOF analysis with 37 antibodies (Supple-
mentary Data 16). Firstly, we found that by inhibiting AKT
signaling pathway, the immune cell infiltration tends to increase
(Fig. 5c). Next, we gated into CD45+ immune cells and acquired 20
cell populations for further analysis (Fig. 5d). We observed a
tendency of fewmacrophage infiltration inMK2206 group (Fig. 5e).
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Fig. 4 AKT pathway is important for mediating mesenchymal transition and immunosuppression only in EMThigh-AKT subtype. a Left panel:
Immunoblotting analysis of N-Cadherin and Vimentin indicated that macrophage could not promote mesenchymal transition of T-47D. Right panel:
Transwell analysis indicated T-47D could not enhance infiltration ability of macrophages. b Left panel: Immunoblotting analysis of N-Cadherin and
Vimentin indicated that macrophage could not promote mesenchymal transition of MDA-MB-468. Right panel: Transwell analysis indicated MDA-MB-468
enhanced infiltration ability of macrophages mildly and could not be inhibited by AKT inhibition. c Left panel: Immunoblotting analysis of N-Cadherin and
Vimentin indicated that macrophage could partially enhance mesenchymal transition of HCC38 (Vimentin) and could not be inhibited by AKT inhibition.
Right panel: Transwell analysis indicated HCC38 enhanced infiltration ability of macrophages mildly and could not be inhibited by AKT inhibition. d Left
panel: Immunoblotting analysis of N-Cadherin and Vimentin indicated that macrophage could enhance mesenchymal transition of MDA-MB-231 which
could be inhibited by AKT inhibition. Right panel: Transwell analysis indicated MDA-MB-231 enhanced infiltration ability of macrophages dramatically and
could be inhibited by AKT inhibition. e PD-L1 expression did not up-regulate in co-cultured T-47D and macrophages. f PD-L1 expression did not up-regulate
in co-cultured MDA-MB-468 and macrophages. g PD-L1 expression did not up-regulate in co-cultured HCC38 and macrophages. h PD-L1 expression up-
regulated in co-cultured MDA-MB-231 and macrophages which could be inhibited by AKT inhibition. For all transwell images in this figure, scale
bar= 50 μm.
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Importantly, macrophage distribution pattern (illustrated by circles
in Fig. 5e) was different between NC and MK2206 groups,
indicating macrophage function might differ between these two
groups. IA_IE (M1), CD163 (M2), and PDL1 were used to evaluate
macrophage functional phenotype. The expression of IA_IE was

upregulated in the MK2206 group, while CD163 and PDL1 were
downregulated in MK2206 group (Fig. 5f–h).

To further explore the functional status of TAMs, mRNA
expression level of TAM’s proinflammatory (M1) or anti-
inflammatory (M2) markers were also detected using RT-qPCR

Fig. 5 AKT inhibition could reverse the immune-suppressive phenotype of the EMThigh-AKT subtype in vivo. a EMT classification of mGSC, 4T1 and
B16-F10 cell line using machine learning method. b Flowchart of CyTOF Analysis. c Comparison of CD45+ immune cell’s percentage between NC group
and MK2206 group. d 20 clusters were acquired in CD45+ immune cells. e TAM’s infiltration has a tendency to decrease in MK2206 group compared to
NC group. f IA_IE expression is upregulated in TAM’s of MK2206 group. g CD163 expression is downregulated in TAM’s of MK2206 group. h PDL1
expression is downregulated in TAM’s of MK2206 group. i T cell’s infiltration increased in MK2206 group compared to NC group. j Expression heatmap of
T cell’s function markers. k T cell’s dysfunction status was reversed by MK2206 without increase of memory T cells. l Mesenchymal transition status did
not alter after MK2206 inhibition. Error bars indicate SD; the Student’s t test was used to analyze statistical significance between 2 groups; In NC group,
n= 3 biological replicates; In MK2206 group, n= 4 biological replicates.
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test. As shown in Supplementary Fig. 15, M1 markers including
Ifng (Supplementary Fig. 15a), Tnfa (Supplementary Fig. 15b)
and Cd86 (Supplementary Fig. 15c) didn’t alter while M2 markers
including Cd206 (Supplementary Fig. 15d), Arg1 (Supplementary
Fig. 15e) and Trem2 (Supplementary Fig. 15f) downregulated in
mGSC xenograft model after MK2206 administration. These
results indicated that AKT pathway inhibition could block M2
transformation of macrophages.

Next, we investigated whether inhibiting AKT pathway was
helpful for antitumor effects. Compared to the NC group, more
T cells infiltrated into tumor tissue in MK2206 group (Fig. 5i).
The cytotoxic ability (GB) of T cell was increased in the MK2206
group (Fig. 5j, k). T cell exhaustion markers (PD_1, TIM3, and
LAG3) were downregulated in the MK2206 group (Fig. 5j, k).
These results indicated that T cell dysfunction was reversed by
AKT inhibition. Meanwhile, the proportion of peripheral
macrophages, microglia, dendritic cells, NK cells, and MDSCs
were also investigated. More dendritic cells were infiltrated into
the MK2206 group (Supplementary Fig. 16a–d).

To rule out the possibility that AKT inhibition induced cancer
cell differentiating into a more epithelial state to recover
immunosuppressive microenvironment, mGSC xenograft tissues
were sequenced. The result shown MK2206 didn’t alter the
mesenchymal status of cancer cell (Fig. 5l). Taken together, these
findings demonstrated that AKT signaling inhibition could
reverse the immunosuppressive phenotype of the EMThigh-AKT
subtype in vivo.

Immune checkpoint blockade plus TME remodeling by AKT
inhibition could prolong survival in EMThigh-AKT subtype.
Considering the immunosuppression in EMThigh-AKT subtype,
we tried to test whether ICB therapy would work for these
patients. Firstly, we investigated whether single ICB would pro-
long survival in this subtype. Four ICB clinical trial cohorts were
used to do this. In Imvigor210 dataset30, one-way ANOVA
analysis revealed EMThigh-AKT subtype exhibiting the lowest
response fraction (17%, p= 0.0053, Fig. 6a). Besides, t test
revealed that, ICB response rate in EMThigh-AKT subtype was
dependent on AKT pathway activity (Fig. 6b). In GSE7822031,
although patients were not classified into all 4 EMT subtypes due
to limited sample numbers, we found that response rate was also
dependent on AKT pathway activity (Fig. 6c). Next, two anti-
CTLA4 trials (phs00045232 and SRP06758633) were combined
together to test the response rate of anti-CTLA4 therapy. Con-
sistently, EMThigh-AKT subtype exhibited the lowest response
fraction (26%, p= 0.0056, Fig. 6d). Besides these trials, we applied
the TIDE algorithm25 to evaluate the immunotherapeutic
response and compared the response rate between the four EMT
subtypes in TCGA dataset. Similarly, the EMThigh-AKT subtype
exhibited the lowest fraction of response (22%) dependent on
AKT pathway activity (Fig. 6e, f). Then, we applied 4T1, B16-F10
and mGSC xenograft model to test the ICB therapy response.
Single ICB administration could not reduce tumor burden in 4T1,
B16-F10 and mGSC cell lines and could not prolong survival in
B16-F10 and mGSC cell lines (Fig. 6g–o). For 4T1, no death due
to tumor was recorded under the observation period. These
findings suggested that EMThigh-AKT subtype was resistance to
singe administration of immunotherapy.

Since the immunosuppressive microenvironment of EMThigh-
AKT subtype was shape by AKT pathway, we next investigated
whether AKT inhibition could enhance the treatment value of
ICB therapy in EMThigh-AKT subtype cell lines. The drug
administration strategy was illustrated in Supplementary Fig. 17.
Combination of ICBs (including anti-PD-L1, anti-PD-1 and
anti-CTLA-4) and MK2206 significantly inhibited tumor growth

in 4T1, B16-F10 and mGSC cell lines and prolonged survival in
B16-F10 and mGSC cell lines (Fig. 6g–o). For 4T1, no death due
to tumor was recorded under the observation period. Besides,
MK2206 did not cause apparent structural alteration or toxicity in
liver or kidney (Supplementary Fig. 18). Therefore, AKT
inhibition relieved the immunosuppression and therapeutic
resistance to ICB treatment in EMThigh-AKT subtype.

TumorMT: A comprehensive resource for exploring tumor
mesenchymal transition status. Our results highlighted the
necessity for precisely identifying mesenchymal transition status
among patient samples (Supplementary Fig. 19). Therefore, we
developed the TumorMT website (http://tumormt.neuroscience.
org.cn) (Supplementary Fig. 20a–e). The in-house glioma dataset,
Chinese Glioma Genome Atlas (CGGA), was used as a paradigm
and validation of the EMT subtype assignment accuracy and
practicability of the website. The website classified the 388 Glio-
blastoma Multiforme (GBM) samples of CGGA into four EMT
clusters (Supplementary Fig. 21a–c). Consistent with the TCGA
cohort, EMThigh-AKT subtype GBM samples in the CGGA
cohort exhibited the lowest tumor purity level and the highest
level of non-tumor compartment infiltration (Supplementary
Fig. 21d–f). Moreover, anti-tumor immunity was impaired in this
subtype owing to high M2-TAM infiltration, which led to T cell
dysfunction (Supplementary Fig. 21g, h). These results demon-
strated the accuracy of our findings and the practicability of the
TumorMT website.

Discussion
For now, several studies have established reasonable clustering
system for pan-cancer patients in the field of epithelial
mesenchymal transition34,35. However, how to discern EMT
driving force from intrinsic and extrinsic perspectives remains
challenging and raised questions regarding the true role of EMT
in tumor biology36. In this study, we generated an EMTCG sig-
nature that robustly classified tumors into four EMT subtypes.
Especially, two EMThigh subtypes were found to be driven by
either genomic alteration or TAM crosstalk which spurred us to
explore the heterogeneity in high EMT status separately. The
unresectable, drug resistant EMThigh-AKT subtype was immu-
nosuppressive and could be treated by combination of blocking
ATK pathway and immune checkpoint blockade.

Routinely, two approaches have been applied to evaluate tumor
EMT status5,6,8,10,34,35. The first approach incorporates experi-
mental methods to detect the expression of individual mesench-
ymal markers8,10. The second approach utilizes score-based
bioinformatic approaches to detect the overall enrichment of
EMT genes34,35. However, these methods have intrinsic limita-
tions. On one hand, as EMT is a multi-mechanism hybrid pro-
cess, using a single experimental marker might introduce
selection bias into the evaluation. On the other hand, score-based
bioinformatic approaches evaluate EMT activity by comparing
the score within the same cohort and might lose efficacy when
applied toward independent clinical patient. Our work solved
these problems to some degree. Firstly, our EMTCG signature
was constructed by using co-expression analysis and protein-
protein-interaction analysis to include all key genes in EMT
process and thus avoid marker selection bias. Secondly, by using
unsupervised consensus cluster, the characteristic cluster center of
the four EMT subtypes could be acquired. By calculating the
similarity distances to the cluster centers of the four EMT sub-
types, individual clinical patient could also get categorical infor-
mation regarding to our classification. Moreover, we developed
TumorMT website, which may provide precise classification and
treatment information based on our findings.
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Although a lot of tumors have been featured by enhanced
mesenchymal phenotypes, we still have few knowledge about the
heterogeneity among these patients36. Especially, although both
genetic alteration and TME could promote mesenchymal tran-
sition, existing methods are not be able to identify dominant
driving mechanism in individual mesenchymal-like samples
which hinders in choosing the most proper EMT targeting

treatment strategy36. Our work established two mesenchymal like
subtypes (EMThigh-NOS and EMThigh-AKT), which were found
to have distinct biological and clinical features. Compared to
EMThigh-NOS subtype, EMThigh-AKT is drug resistant, and
unresectable. Importantly, our findings suggested that the
EMThigh-NOS subtype was driven by intrinsic somatic alterations
which could be treated by cell cycle targeting strategies, whereas
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the EMThigh-AKT subtype was driven by the crosstalk between
tumor and TME which could be treated by ICB combined with
TME remodeling. In the EMThigh-NOS subtype, somatic altera-
tions occurred in cell cycle-related factors such as TP53 and
Cyclin D1. Their abnormality might cause tumor cells to undergo
devastating cellular mitosis. In the EMThigh-AKT subtype, M2-
TAMs comprised the representative compartments in TME and
promoted mesenchymal transition. In EMThigh-AKT subtype,
microenvironment factors, especially TAMs, weighs more in
shaping mesenchymal transition than genetic variation factors.
Therefore, intrinsic and extrinsic mesenchymal transition
enhancing mechanisms might lead to distinct biological and
clinical outcome, which need to be managed differently.

Increasing evidences have suggested that there are complex
interactions between tumor mesenchymal transition and immu-
nosuppressive phenotype. Here, we observed a specific AKT
pathway depending tumor cell and TAM interaction facilitating
both mesenchymal transition and immunosuppression in
EMThigh-AKT subtype tumors. Marks et al.37 also demonstrated
AKT inhibition was related with favorable immune profile, which
was consistent with our CyTOF detection results. However, as
was in Fig. 6g–o, AKT inhibition could not prolong overall sur-
vival of tumor patients. Our CyTOF analysis answered why AKT
inhibition could not prolong overall survival to some extent.
Although AKT inhibition reverted immunosuppressive status of
TAMs and increased cytotoxic ability of T cells, AKT inhibition
also tended to decrease the ration of memory T cells. On the other
hand, ICBs have been demonstrated to increase the number
ration of memory T cells38. However, ICBs didn’t work in
EMThigh-AKT subtype, since the substantial tumor-TAM inter-
action significantly upregulated the expression of immune
checkpoints in EMThigh-AKT subtype (Fig. 4e–h). Previous stu-
dies have demonstrated that ICBs only work to the status that
overexpression of immune checkpoints were due to T cell
cytotoxicity39,40. Blocking non-CD8+ T cell origin-induced PD-
L1 expression could help to enhance response rate of ICB
therapy41. As shown in Fig. 4e–h, AKT inhibition could decrease
non-CD8+ T cell origin-induced PD-L1 expression which indi-
cated to increase ICB response rates. Here, by using three cell
models and three ICB regimens, we demonstrated the universe
feasibility of ICB treatment plus AKT inhibition. In this strategy,
AKT inhibition was used to block PD-L1 overexpression and to
revert immune suppressive microenvironment while ICBs were
used to increase the ration of memory T cells.

Our findings highlighted the distinct molecular, biological and
clinical features among patients with enhanced mesenchymal
transition, indicating that different treatment strategies should be
applied.

Methods
Data acquisition. TCGA multi-omics data (clinical information
‘2018-09-13 version’, CNV profile ‘2016-08-16 version’, gene
mutation profile ‘2016-12-29 version’, DNA methylation profile
‘Methylation450K 2016-12-29 version’, transcriptomic expression
profile ‘2016-12-29 version, RNA-seq’, and reverse-phase protein
array profile ‘2016-08-16 version’) were downloaded from the
Xena Website (https://xenabrowser.net/). The cancer cell line
transcriptomic expression profile ‘20180929 version, RNA seq’
was downloaded from Cancer Cell Line Encyclopedia (CCLE)
Website (https://portals.broadinstitute.org/ccle/). Colorectal can-
cer datasets (KFSYSCC cohort, FRENCH cohort, GSE2109
cohort, GSE37892 cohort, GSE35896 cohort, GSE23878 cohort,
GSE20916 cohort, GSE17536 cohort, and GSE13067 cohort;
Transcriptome) were downloaded as the authors indicated13.
Breast cancer dataset (FUSCCTNBC cohort; Transcriptome) was
downloaded as the authors indicated14. Gastric cancer datasets
(ACRG cohort, KUCM cohort, KUGH cohort, MDACC cohort
and SMC cohort; Transcriptome) were downloaded as the author
indicated15. IMvigor210CoreBiologies data (RNA seq) were
downloaded using the R package (version 1.0.0) provided by the
following website (http://research-pub.gene.com/IMvigor210Core
Biologies/packageVersions/). GSE78220 (RNA-seq) data was
downloaded from GEO website; Anti-CTLA4 clinical trial
data (RNA seq) was acquired from dbGaP: phs000452 (https://
github.com/vanallenlab/VanAllen_CTLA4_Science_RNASeq_
TPM/ commit/3d1793629716cc1fd8e7334ea3bf593a20e6fe07)32

and SRA: SRP067586 cohort33. We used pre-processed data
provided by these authors. The details of the sample information
included in this work are summarized in Supplementary Data 17.

CGGA patient samples. A total of 388 GBM samples were
included in our study42,43. These samples were acquired by
CGGA. Each sample was diagnosed and independently confirmed
by two neuropathologists based on the 2007 WHO classification
guidelines44. Only samples consisting of > 80% tumor cells were
selected for transcriptomic profiling (RNA-seq). The details of the
sample information included in this work are summarized in
Supplementary Data 17. The CGGA cohort data could be
obtained from the CGGA database (http://www.cgga.org.cn).

Wu lab glioma samples. Glioma tissue samples from patients
were acquired from our institution with the assistance of neu-
ronavigation between October 10, 2020 and August 18, 2022.
Samples were sent for RNA-seq and classified into four EMT
subtypes according to transcriptomic profile. 19 samples with
sufficient tissue block were sent for immunohistochemistry

Fig. 6 ICB plus AKT inhibition could prolong survival in EMThigh-AKT subtype. a Comparison of anti-PD-L1 therapy response rate among the four EMT
clusters in IMvigor210 cohort; Complete response (CR), Partial response (PR), Stable disease (SD), Progressive disease (PD). b Comparison of AKT
pathway activity in EMThigh-AKT subtype patients with different immunotherapy responses in IMvigor210 cohort; CR/PR group, n= 19; SD/PD group,
n= 95. c Comparison of AKT pathway activity with different immunotherapy responses using anti-PD-1 in GSE78220 cohort; CR/PR group, n= 15; PD
group, n= 13. d Comparison of anti-CTLA-4 therapy response rate among the four EMT clusters in Van_allen+SRP067586 cohort; Response (R),
Nonresponse (NR). e Comparison of ICB therapy response rate among the four EMT clusters in TCGA cohort. Response (R) and non-response (NR).
f Comparison of AKT pathway activity in EMThigh-AKT subtype patients with different immunotherapy responses in TCGA cohort; R group, n= 646; NR
group, n= 2278. g MK2206 could overcome anti-PD-L1 resistance in 4T1 xenograft tumors; n= 5 biological replicates. h MK2206 could overcome anti-
PD-1 resistance in 4T1 xenograft tumors; n= 5 biological replicates. i MK2206 could overcome anti-CTLA-4 resistance in 4T1 xenograft tumors; n= 5
biological replicates. j MK2206 could overcome anti-PD-L1 resistance in B16-F10 xenograft tumors; n= 4 biological replicates for tumor burden assay;
n= 5 biological replicates for survival assay. k MK2206 could overcome anti-PD-1 resistance in B16-F10 xenograft tumors; n= 5 biological replicates.
l MK2206 could overcome anti-CTLA-4 resistance in B16-F10 xenograft tumors; n= 5 biological replicates. m MK2206 could overcome anti-PD-L1
resistance in mGSC intracranial xenograft tumors; n= 6 biological replicates. n MK2206 could overcome anti-PD-1 resistance in mGSC intracranial
xenograft tumors; n= 6 biological replicates. o MK2206 could overcome anti-CTLA-4 resistance in mGSC intracranial xenograft tumors; n= 6 biological
replicates. Error bars indicate SD; the Student’s t test or Kaplan-Meier analysis was used to analyze statistical significance between 2 groups; For (m–o),
scale bar= 200 μm.
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staining. The sample information of Wu lab could be found in
Supplementary Data 17.

Antibodies and reagents. Detailed information on the antibodies
and reagents used in this study is listed in Supplementary
Data 18.

PPI analysis. PPI was performed using String Website (https://
string-db.org/). Gene ID was used as input data. The interaction
network using combined score was then imported into Cytoscape
‘version 3.6.1’ (https://cytoscape.org) for network analysis. The
genes that had a degree (K) within the top two-thirds of all genes
were considered node genes.

Co-expression analysis. Co-expression analysis was performed
using the Coexpedia Website (http://www.coexpedia.org/). Gene
ID was used as input data. The genes with a score within the top
two-thirds of all genes were considered co-expression genes.

Mutation analysis. The baseline mutation frequency in each
cancer type was calculated first (Baseline mutation frequency is
defined as the mutation rate of the whole genome in a certain
cancer type by calculating the ratio between positive mutation
event number and total observed event number). We then cal-
culated the ratio between mutation frequency of EMTCGs with
the baseline mutation frequency as fold change in each cancer
type. A mutation frequency >3% and fold change >1.5 was con-
sidered significant.

DNA methylation analysis. R software ‘version 3.5.1’ was used to
analyze the Pearson correlation between the expression of
EMTCGs and DNA methylation level (β-value). Three criteria
were used to identify the abnormal expression of EMTCGs
affected by DNA methylation for each cancer type: [1] the probe
with the largest average β value was taken into account; [2]
Pearson correlation between expression and DNA methylation
probe < -0.3; [3] FDR < 0.05 was considered statistically sig-
nificant. FDR adjust was done using Benjamin and Hochberg’s
method45.

CNV analysis. CNV values were acquired by the Xena Website
using TCGA FIREHOSE pipeline based on GISTIC2. R software
‘version 3.5.1’ was used to analyze the Pearson correlation
between the expression of EMTCGs and CNV. Three criteria
were used to identify the abnormal expression of EMTCGs
affected by CNV for each cancer type: [1] More than 30% of the
tumor samples had the amplification or deletion of loci; [2]
Pearson correlation between expression and CNV > 0.3; [3]
FDR < 0.05 was considered statistically significant. FDR adjust
was done using Benjamin and Hochberg’s method45.

Mesenchymal transition activity evaluation. Mesenchymal
transition activity of individual samples was evaluated using the
ssGSEA method supported by GSVA R package ‘version 1.28.0’46.
The accuracy of ssGSEA to predict pathway activity has already
been validated by other work47. Transcriptomic expression profile
was used as input “expr” for the analysis and EMTCG signature
was used as input “gset.idx.list” for the analysis. Following
parameters are used: method=ssgsea, kcdf=Gaussian,
abs.ranking=FALSE.

Survival analysis. Univariate Cox regression analysis was chosen
to assess the hazard ratio of mesenchymal transition. ‘coxph’
function in ‘survival’ R package ‘version 3.1-11’ was used to do

univariate cox regression analysis. Survival time is used as time
value, survival status is used as status and ssGSEA score of
EMTCG signature is used as covariate47. HR > 1 was considered a
harm factor, while HR < 1 was considered a protective factor.
p < 0.05 was considered statistically significant.

Machine learning based cluster analysis. The Consensu-
sClusterPlus R package ‘version 1.46.0’ was used for K-Means
cluster analysis of the TCGA cohort48. The expression profile of
35 EMTCGs was first normalized using the scale function of R
software and then used as the input for cluster analysis. Machine
learning parameters were as follows: Permutations= 100, Dis-
tance= Euclidean, InnerLinkage=Average, FinalLinkage=
Average, and ClusterAlg= km.

Sample number normalization between different clusters. The
number of samples for each categorical variable (histological type,
sample portion, WHO grade, age and gender) were normalized
into 10016. We then grouped samples into each EMT subtype.

Sampling analysis. To make sure our analysis didn’t skew by
sample number variation, we sampled 10 patients of each cancer
in each cluster and merged them together to eliminate the bias
due to cancer type specificity. Sampling would be repeated for 100
times to remove false positive results.

KEGG analysis. KEGG analysis was performed using the ClueGo
plug-in unit ‘version 2.5.3’ provided by Cytoscape. Medium was
chosen as Network Specificity. Two-sided hypergeometric test
was chosen as statistical method. Bonferroni step down was
chosen for p value correction and an FDR < 0.05 was considered
statistically significant. FDR was done by Cytoscape
automatically.

Removal of batch effect. The ComBat function of the SVA R
package ‘version 3.30.1’ was used to remove the batch effect
between different data cohorts49. Cohort variable was considered
as batch variable. Covariable (mod parameter) was not considered
in this analysis. Par.prior parameter was set as true. PCA analysis
was used to test the result of removal of the batch effect.

Identification of EMT Subtypes of Non-TCGA Samples. Iden-
tification of non-TCGA samples was done with following steps.
For human samples: (1) The batch effect between external cohorts
and TCGA cohort was removed; (2) Each individual sample in
external cohort was scaled with TCGA cohort separately; (3)
Euclidian distance between individual samples and four TCGA
EMT cluster centers was calculated using the expression of 35
MTCG genes. Euclidian distance=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðnonTCGAi� TCGAiÞ2
p

,
i= 35, ε means summation; (4) Individual samples were classified
into the corresponding subtype with the shortest distance.

For mouse samples: (1) The batch effect between external
cohorts and TCGA cohort was removed; (2) three machine
learning method, K-NearestNeighbor (KNN), Linear Discrimi-
nant Analysis (LDA) and Logistic Regression (LR) were used to
identify samples into relative clusters. The sequencing data of
mGSC (mouse spontaneous glioma cell) and 4T1 were acquired
using xenograft tissue from our group and the sequencing data of
B16-F10 was acquired from GSE174724.

Identification of driver mutations. The driver mutation list was
downloaded from Bailey et al.18. The Maftools R package ‘version
1.8.10’ was used to determine driver mutations in each EMT
subtype. Mutations with adjPval <0.05 and fold change >1.5 were
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considered driver mutations. adjPval was done by Maftools R
package automatically.

Identification of driver copy number variations. The driver
CNV list was downloaded from Hoadley et al.17. The chi-square
test was used to determine driver mutations in each EMT sub-
type. CNV with FDR < 0.05 and fold change >1.5 were considered
as driver CNV. FDR adjust was done using Benjamin and
Hochberg’s method45.

Tumor purity analysis. Stromal and immune scores were cal-
culated using the ESTIMATE R package ‘version 1.0.13’ (https://
sourceforge.net/projects/estimateproject/), and tumor purity
was estimated according to this formula:purity ¼ COS
0:6049872018þ 0:0001467884 � estimatescoreð Þ28.

IFNG activity and TNFA activity calculation. IFNG activity was
acquired by calculating the geometric mean of marker genes
defined by Jiang et al.’s work25. TNFA activity was acquired using
the ssGSEA method using marker genes defined by Wei et al.’s
work26.

GSEA analysis. Gene Set Enrichment Analysis (GSEA, http://
www.broadinstitute.org/gsea/index.jsp, version 4.3.2) was per-
formed to explore whether the identified sets of genes showed
statistical differences between the two groups using default
parameters50. Expression profile was used as expression dataset
set. EMThigh-AKT group or non-EMThigh-AKT group were used
as phenotype label. Gene sets were acquired from previous pub-
lished work51. Number of permutations= 100. Collapse dataset
to gene symbols=FALSE. Permutation Type=phenotype. NES
and FDR were used to determine statistical significance.

Immune cell infiltration fraction analysis. Immune cell infil-
tration fraction analysis was performed using the ssGSEA method
based on the LM-22 immune cell marker signature27. Tran-
scriptomic expression profiles were used as the input for analysis.

TIP analysis. Tracking Tumor Immunophenotype (TIP) analysis
was performed using the website tool (http://biocc.hrbmu.edu.cn/
TIP/index.jsp)52. Transcriptomic expression profiles were used as
the input for analysis.

Immunohistochemistry. For immunohistochemistry, tissue sec-
tions were fixed in paraformaldehyde (4%), embedded in paraffin,
and cut into 4 µm sections. Streptavidin-biotin immunostaining
method was employed28.

Construction of mouse spontaneous glioma cell using sleeping
beauty transposon. Construction of spontaneous glioma cells
(mGSC) was done using sleeping beauty transposon53. In brief,
PEI/DNA complexes were prepared according to nucleic acid
delivery protocol : vivo-jetPEI= 0.08 μl, total of DNA= 0.5 μg
(PT2/C-Luc//PGK-SB13= 0.1 μg, pT/Nestin-SV40-LgT=0.2 μg,
pT/Nestin-NRASV12= 0.2 μg). Two microliters of PEI/DNA
complexes (0.5 μg/μl) were administered to neonatal mouse brain.
One month later, mGSC was cultured in DMEM/F12 (Gibco),
supplemented with 2% B27 supplement (Gibco), 20 ng/mL EGF
(Peprotech, Rocky Hill, NJ, USA), 20 ng/mL basic-FGF (Pepro-
tech), and 1% penicillin/streptomycin (Gibco) at 37 °C with 5%
CO2.

Cell lines and cell culture. The human breast cancer cell lines
MDA-MB-231 and MDA-MB-468 were purchased from the

Chinese Academy of Sciences cell bank (Shanghai, China). The
human breast cancer cell lines T-47D, HCC38, human melanoma
cell lines A-375 and WM-115 were purchased from iCell
(Shanghai, China). Human melanoma cell line MeWo was pur-
chased from FENGHUISHENGWU (Hunan, China). Human
melanoma cell line SK-MEL-3 was purchased from COBIER
(Jiangsu, China). The human monocyte cell line THP-1 was
purchased from the Chinese Academy of Sciences cell
bank (Shanghai, China). The mouse breast cancer cell line 4T1
and mouse melanoma cell line B16-F10 were purchased from
Procell Life Science&Technology Co.,Ltd (Wuhan, China). The
human breast cancer cell lines T-47D, MDA-MB-468 and human
melanoma cell line A-375 were maintained in Dulbecco’s Mod-
ified Eagle’s Medium (DMEM, Gibco, USA) containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin at 37 °C with
5% CO2. The human breast cancer cell line MDA-MB-231 was
maintained in Leibovitz’s L-15 medium containing 10% FBS and
1% penicillin/streptomycin at 37 °C without CO2. The human
breast cancer cell line HCC38 was cultured in RPMI-1640 med-
ium (Gibco, USA) containing 10% FBS and 1% penicillin/strep-
tomycin (Gibco) at 37 °C with 5% CO2. The human monocyte
cell line THP-1 was cultured in RPMI-1640 medium (Gibco,
USA) containing 10% FBS and 1% penicillin/streptomycin
(Gibco) at 37 °C with 5% CO2. Human melanoma cell line MeWo
and WM-115 were cultured in MEM medium (Gibco, USA)
containing 10% FBS and 1% penicillin/streptomycin (Gibco) at
37 °C with 5% CO2. Human melanoma cell line SK-MEL-3 was
cultured in McCoy’s 5a medium (Gibco, USA) containing 15%
FBS and 1% penicillin/streptomycin (Gibco) at 37 °C with 5%
CO2. The mouse breast cancer cell line 4T1 was cultured in
RPMI-1640 medium (Gibco, USA) containing 10% FBS and 1%
penicillin/streptomycin (Gibco) at 37 °C with 5% CO2. Mouse
melanoma cell line B16-F10 was cultured in RPMI-1640 medium
(Gibco, USA) containing 10% FBS and 1% penicillin/streptomy-
cin (Gibco) at 37 °C with 5% CO2.

Cell treatment. For AKT inhibition, the cells were pre-incubated
with 10 µM MK2206 (MCE, USA) for 48 h before cell co-culture
were performed.

Cell migration assay. 8 μm transwell chamber was used for cell
migration in vitro. After co-culture with tumor cells, THP-1 cells
were re-suspended as single cells in RPMI-1640 medium con-
taining 0.2% FBS and seeded into the upper chambers at a density
of 4 × 104 cells/200 μL. 800 μL RPMI-1640 medium containing
20% FBS was added into the lower chamber. After 24 h of
incubation, cells on the upper side of the membrane were
removed using cotton swab. Cells that migrated to the lower side
of the membrane were stained with 1% crystal violet solution
after methanol fixation.

Protein extraction and western blotting. Total proteins were
extracted using whole cell lysis buffer (Beyotime Biotechnology,
Beijing, China) and quantified using bicinchoninic acid (BCA)
method54. 20 µg protein was loaded, electrophoresed using 10%
SDS-PAGE and transferred to a polyvinylidene difluoride
(PVDF) membrane (0.45 μm; Millipore, Burlington, MA, USA).
After blocking with skimmed milk (5%), the PVDF membranes
were incubated with the primary antibodies overnight at 4 °C.
Then, the PVDF membranes were incubated with the secondary
antibodies at 25 °C for 1 h. Chemiluminescence ECL reagent
(Tanon, Woburn, MA, USA) was used for protein visualization.

Intracranial xenograft transplantation. Male C57BL/6 N mice
(6–8 weeks of age) were purchased from Beijing Vital River
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Laboratory Animal Technology. Mice were raised in laminar flow
cabinets under specific pathogen-free (SPF) conditions. For
orthotopic transplantations, 3 μL glioma cell suspension (mGSC
sphere: 1 × 104) was injected into the mouse brains at a depth of
3.0 mm using stereotactic devices.

Subcutaneous xenograft transplantation. Male C57BL/6 N mice
(6–8 weeks of age) were purchased from Beijing Vital River
Laboratory Animal Technology. Approximately 1 × 106 B16-F10
cells were transplanted into the right flank of the animals in
inoculation volumes of 200 µl sterile media. Female BALB/C mice
(6–8 weeks of age) were purchased from Beijing Vital River
Laboratory Animal Technology. Approximately 2 × 106 4T1 cells
were transplanted into the right flank of the animals in inocula-
tion volumes of 200 µl sterile media. The tumor mass was
weighted after tumor harvest.

In vivo inhibitor experiments. Three days after tumor xenograft
transplantation, the mice were randomly divided into control,
anti-ICBs, MK2206, and anti-ICBs+MK2206 groups. MK2206
was orally administered on days 6, 8, 10, 12, 14, 16, 18, and 20 at a
dose of 150 µg/g body weight. DMSO was orally administered as a
control for MK2206. Anti-ICBs were intraperitoneally injected on
days 7, 10, and 13 at a dose of 10 µg/g body weight. ICBs
including anti-PD-L1, anti-PD-1 or anti-CTLA-4 which were
bought from BioXcell, USA.

RNA isolation and reverse-transcription quantitative PCR
(RT-qPCR). Trizol (Invitrogen, USA) was used to extract total
RNA according to manufacture’s protocol. Total RNA was
reversely transcripted into cDNA using Prime-Script RT Master
Mix Kit (TaKaRa, Japan). RT-qPCR was performed with TB
Green Premix Ex Taq II (TaKaRa, Japan). The PCR primer
sequences were as follows:

Ifng Forward Primer: CAGCAACAGCAAGGCGAAAAAGG
Ifng Reverse Primer: TTTCCGCTTCCTGAGGCTGGAT
Tnfa Forward Primer: GGTGCCTATGTCTCAGCCTCTT
Tnfa Reverse Primer: GCCATAGAACTGATGAGAGGGAG
Cd86 Forward Primer: ACGTATTGGAAGGAGATTACAGCT
Cd86 Reverse Primer: TCTGTCAGCGTTACTATCCCGC
Cd206 Forward Primer: GTTCACCTGGAGTGATGGTTCTC
Cd206 Reverse Primer: AGGACATGCCAGGGTCACCTTT
Arg1 Forward Primer: CATTGGCTTGCGAGACGTAGAC
Arg1 Reverse Primer: GCTGAAGGTCTCTTCCATCACC
Trem2 Forward Primer: CTACCAGTGTCAGAGTCTCCGA
Trem2 Reverse Primer: CCTCGAAACTCGATGACTCCTC
Gapdh Forward Primer: CATCACTGCCACCCAGAAGACTG
Gapdh Reverse Primer: ATGCCAGTGAGCTTCCCGTTCAG

CyTOF analysis of immune cells. CyTOF analysis was per-
formed by Novogene Co., Ltd. (Beijing, China). In brief, tumor
tissue was digested by DNAase and Tyrisin to make a single-cell
suspension. Cells were enriched using Percoll density gradient
media, and red blood cells were removed by Red Blood Cell Lysis
Buffer. The types of immune cells were identified by tSNE, fol-
lowed by KNN clustering. After preliminary analysis, one sample
in NC group was obviously distinct from others and was removed
in further analysis. For the panels in Fig. 4, the t-SNE coordinates
were determined before the sample in NC group was removed.
For graphing, one sample in MK2206 group was randomly
removed to keep balance.

Construction of the tumor MT resource. The Tumor MT
website was developed in JSP using a Laravel framework and was
deployed on a Nginx Web server that ran under Ubuntu system.

All data in Tumor MT was stored and managed using MySQL.
jQuery was used to manage the result views. Tumor MT was
thoroughly tested using Google Chrome.

Statistics and reproducibility. Statistical analyses were con-
ducted using Prism 7 and R 3.5.1 unless otherwise stated. Definite
statistical methods of various statistical tests are described and
referenced in their respective sections. Otherwise, a two-tailed t
test or one-way ANOVA was used, and p < 0.05 was considered
statistically significant. FDR adjust was done using Benjamin and
Hochberg’s method45.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
RNA-seq data of mice glioma support the findings in this manuscript are available in
BioProject database at https://ngdc.cncb.ac.cn/bioproject/, with BIGD ID: PRJCA021222.
RNA- seq data of human glioma support the findings in this manuscript are available in
BioProject database at https://ngdc.cncb.ac.cn/bioproject/, with BIGD ID: PRJCA021271.
Numerical source data for graphs and charts in this manuscript could be found in
Supplementary Data 19. Uncropped and unedited blot images could be found in
Supplementary Fig. 22. All other data are available from the corresponding author upon
reasonable request.
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