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Stochastic biological system-of-systems modelling
for iPSC culture
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Large-scale manufacturing of induced pluripotent stem cells (iPSCs) is essential for cell

therapies and regenerative medicines. Yet, iPSCs form large cell aggregates in suspension

bioreactors, resulting in insufficient nutrient supply and extra metabolic waste build-up for

the cells located at the core. Since subtle changes in micro-environment can lead to a

heterogeneous cell population, a novel Biological System-of-Systems (Bio-SoS) framework is

proposed to model cell-to-cell interactions, spatial and metabolic heterogeneity, and cell

response to micro-environmental variation. Building on stochastic metabolic reaction net-

work, aggregation kinetics, and reaction-diffusion mechanisms, the Bio-SoS model char-

acterizes causal interdependencies at individual cell, aggregate, and cell population levels. It

has a modular design that enables data integration and improves predictions for different

monolayer and aggregate culture processes. In addition, a variance decomposition analysis is

derived to quantify the impact of factors (i.e., aggregate size) on cell product health and

quality heterogeneity.
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S ince induced pluripotent stem cells (iPSCs) have the
potential to differentiate into any cell type in the body, the
discovery and availability of iPSCs have created numerous

opportunities in the fields of regenerative medicines, cell thera-
pies, drug discovery, and tissue engineering1,2. Large-scale man-
ufacturing of iPSCs will be essential to support these clinical and
research applications, not currently met to date. While iPSCs can
be grown in small colonies in adherent monolayers (such as in
petri-dish), this culture method is not ideal for large-scale man-
ufacturing. Thus, stirred suspension cultures are recommended
for manufacturing purposes3,4. Due to strong cell-to-cell inter-
actions, one challenge that confronts large-scale iPSC cultures is
the tendency of iPSCs to self-aggregate, which can lead to large
aggregates in suspension bioreactors. Further, stirred suspension
cultures can experience complex hydrodynamics conditions that
can affect cell behaviors, including aggregation, metabolism,
apoptosis, expansion, and differentiation5.

As stem cells are highly sensitive to environmental conditions,
a critical concern for iPSC aggregate cultures is spatial hetero-
geneity. Basically, nutrients and differentiation factors can
become unevenly distributed in iPSC aggregates. These variable
conditions across an aggregate can result in heterogeneous cell
populations and cell death6–8. Therefore, understanding spatial
heterogeneity and controlling aggregate size is crucial for pre-
dictable and consistent results in iPSC cultures.

Metabolic kinetic modeling is valuable to advance the scientific
understanding of stem cell cultures, predict cell growth and
functional behaviors, and guide feeding and agitation strategies.
While several models have been developed to describe different
aspects of iPSC cultures, a comprehensive mechanistic model that
captures the multi-scale and heterogeneous nature of iPSC
aggregate cultures is still lacking. For example, the Monod-type
unstructured-unsegregated culture model developed by Galva-
nauskas et al.9 assumes homogeneity of the entire iPSC popula-
tion and does not account for intracellular variability. The
population balance model (PBM) proposed by Bartolini et al.10

focuses on the temporal evolution of the size distribution of
embryonic stem cell (ESC) aggregates, while Van Winkle et al.6

modeled a single human ESC (hESC) spherical aggregate, yet
neglected the dynamics of the cell population. Recently, Oden-
welder et al.11 applied a metabolic flux analysis (MFA)12,13 to
describe the effects of glucose and lactate concentrations on
monolayer iPSCs. Wu et al.14 developed a mechanistic model that
described cell aggregation and considered oxygen transport for
iPSC aggregate cultures, however, it neglected metabolite diffu-
sion, intracellular metabolism, and cell metabolic heterogeneity.

Existing mechanistic models for mammalian cell cultures often
assume the cell population is homogenous. Thus, these metabolic
models overlook the stochastic nature of living cells. For cultures
such as Chinese hamster ovary (CHO) cells and yeast, the
assumption of spatial homogeneity may be sufficient in well-
stirred systems where cell aggregates are non-existent or only
involve a few cells. In these cases, unsegregated models, such as
dynamic flux balance analyses12,15 and cell culture kinetic
models16 have been demonstrated to predict culture performance.
But unlike single-cell suspension cultures, aggregate cultures,
common to iPSCs, are not homogenous. As the aggregate size
increases, spatial heterogeneity likely increases cell-to-cell varia-
tion and increases metabolic heterogeneity. While stochastic
chemical kinetics17,18 and queueing network models19,20 have
been developed to describe the dynamics and inherent stochas-
ticity of chemically reacting systems and metabolic networks,
these approaches do not account for the effect of cell aggregation
on metabolite variations and potential cell heterogeneity common
to iPSC cultures. Additionally, spatial variance component ana-
lysis (SVCA) was introduced to study spatial heterogeneity

contributed by cell-to-cell interactions, intrinsic effect, and
environmental effect21. However, this study is built on the ran-
dom effect model and it is challenging to faithfully characterize
the underlying complex interaction mechanisms and causal
interdependencies from molecular to cellular to macroscopic
levels.

In a broader scope, several multiscale bioprocess models have
been developed for studying aggregate structures in clinical stu-
dies, such as cancer tissues22,23, and biofilms24. Notable examples
include software packages like PhysiCell25, Chaste26,
ChemChaste27, BMX28, and Morpheus29. These tools fall under
the category of agent-based models, which integrate cell-based
metabolic reactions, reaction-diffusion processes, and individual
cell growth dynamics. Furthermore, these models have the
potential to include specialized stochastic cell models, allowing
them to represent regulatory structures and account for
mechanical and chemical interactions. While these methods
could be effective for modeling small aggregate systems, these
models become computationally prohibitive when applied to
large-scale iPSC manufacturing processes.

To overcome the limitations of existing methods, this paper
presents a novel biological systems-of-system (Bio-SoS) model
with modular design to characterize the mechanisms in iPSC
aggregate cultures and describe the spatial-temporal causal
interdependencies from individual cells to cell aggregates and to
cell populations. It is built on mechanistic modules, including (1)
a stochastic metabolic network (SMN) model describing cell
metabolic response to environmental variation; (2) a PBM
describing the iPSC proliferation, collision, and aggregation
process due to cell-to-cell interactions; and (3) a
reaction–diffusion model (RDM) characterizing spatial hetero-
geneity of micro-environmental conditions which accounts for
the different diffusion rates of nutrient and metabolite molecules
through cell aggregates. The modular design allows us to orga-
nically assemble individual mechanistic modules to construct a
Bio-SoS model for iPSC aggregate cultures, which facilitates the
integration of data and information collected from different cell
culture processes with different dynamics and spatial hetero-
geneous micro-environmental conditions. This Bio-SoS modeling
philosophy for multi-scale bioprocess is extendable and applic-
able to general biological ecosystems, accounting for complex
interactions and inherent stochasticity.

The proposed Bio-SoS framework represents a novel in-silico
process analytical technology (PAT) for iPSC aggregate cultures,
offering valuable insights into individual cell responses to micro-
environmental changes and metabolic information across distinct
aggregate locations. The key contributions are threefold. First, the
proposed multi-scale Bio-SoS model has a modular design that
facilitates the integration of data from different culture conditions
(such as 2D monolayer cultures used in the lab and aggregate
cultures recommended for industrial manufacturing). This
modular design will accelerate iPSC’s large-scale manufacturing
process development without conducting extensive experiments.
It can provide a valuable tool for yield optimization and cell
product quality consistency control. Second, since the objective
for iPSC cultures is undifferentiated biomass, i.e., the cells are the
product, the proposed variance decomposition analysis on the
Bio-SoS mechanistic model enhances our systematic under-
standing of iPSC culture spatial heterogeneity, predicts the impact
of critical factors (i.e., aggregate size) on metabolic heterogeneity,
and enables us to avoid unwanted cell death or heterogeneous cell
populations during expansion. It can identify the root causes of
cell-to-cell variation, analyze intracellular metabolism at different
positions within an aggregate, and determine the optimal aggre-
gate size range across different bioreactor conditions. Third, the
proposed Bio-SoS simulation provides a comprehensive and
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efficient way to account for the complex and stochastic nature of
iPSC aggregate and monolayer cultures. In contrast to existing
agent-based simulation tools22–29, the Bio-SoS model is a spe-
cialized simulation tool tailored for iPSC cultures. It can improve
simulation efficiency through (1) modeling iPSC aggregation
using population balance equations to ensure a more efficient
representation of cellular dynamics during aggregation; (2) con-
structing a coarse-grained approach that divides each aggregate
into small spherical shells and assumes cellular metabolisms and
micro-environment are homogeneous in each spherical shell; and
(3) utilizing a single-cell SMN model to predict the cell metabolic
response to environmental variation.

Results
Bio-SoS model for multi-scale iPSC cultures. Within (3-
dimensional or 3D) aggregate cultures, cells proliferate and interact
with each other at three levels: intracellular metabolic reactions,
metabolites and nutrients diffusion through the cell aggregates, and
aggregate interactions within bulk culture fluid. Each individual cell
within the culture is a complex system with potentially stochastic
behavior. As these cells cluster together, a larger system of systems is
formed with micro-environmental conditions shaped by cell inter-
actions. Taken together, aggregates comprise the entire iPSC
population in the bioreactor interacting with the bulk media.

The proposed Bio-SoS model characterizes the complex interac-
tions and regulatory reaction network mechanisms from molecular-
to cellular-, and to macro-kinetics; see Fig. 1. Based on the causal
interdependencies between these biological systems, the Bio-SoS
model was constructed incorporating three interconnected

mechanistic modules summarized below (see “Methods” section
for details). The intracellular regulatory metabolic reaction network
is connected to the aggregate via the transport of metabolites across
the cellular membrane, while cells within an aggregate are linked
through the diffusion of intra-aggregate metabolites and nutrient
supplies. This Bio-SoS reaction network mechanism for iPSC
aggregate culture is characterized through the integration of an
RDM and single-cell SMNs, quantifying the metabolic heterogeneity.
The aggregation process of the cell population is effectively
characterized using PBM. The Bio-SoS model can both sample
and computationally efficiently characterize the spatial heterogeneity
in micro-environmental conditions and the variability in cell-to-cell
metabolism.

1. PBM. A PBM is used to describe the aggregation process
accounting for cell proliferation and coalescence/collisions
of iPSC aggregates.

2. RDM. It is constructed to describe cell-to-cell interactions
and the intra-aggregate fluid dynamics, which is a
fundamental process involving the transport of reacting
nutrients and metabolites through iPSC aggregates. This
movement is influenced by the metabolite production/
consumption and a diffusive flux that is proportional to the
local concentration gradient. By considering the complex
interplay between individual cell metabolic reactions and
their micro-environment, this model can estimate how long
cells might experience a particular condition. The diffusion
coefficients used in this study are listed in Supplementary
Table 4.

Fig. 1 An illustration of the proposed Bio-SoS for iPSC aggregate culture (Created with BioRender.com). a The sizes of cell aggregates grow over culture
time. The PBM was used to describe the dynamics of the cell aggregation process and predict the aggregate size distribution. b Cell aggregates are spatially
decomposed into equally sized small spherical shells. In each shell, the metabolic concentrations are assumed to be homogenous. RDM was used to
characterize the intra-aggregate diffusion dynamics of nutrient and metabolite concentrations, showing that the nutrient concentrations increased as the
distance from the center increased, while the metabolic waste concentrations decreased from the center. c The SMN is built to describe the intracellular
reactions to microenvironmental perturbations. Suppose cells residing in each spherical shell are homogeneous. The metabolic heterogeneity is
characterized by the difference in fluxes between exterior cells and inner cells located at different positions in aggregates.
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3. SMN for single cells. The metabolic molecular reaction
network is constructed from the curated biochemical
interactions based on experimental data11. These interac-
tions characterize intracellular metabolisms and cellular
responses to environmental perturbations. By following the
studies on stochastic molecular reaction models19,20, a
Poisson process is utilized to model molecular enzymatic
reaction occurrence within the SMN to capture the random
nature of enzyme-substrate collisions and subsequent
reactions. The expected metabolic reaction rates for
homogeneous cell population were derived from Wang
et al.30 and calibrated using 2D monolayer culture
experimental data of extracellular metabolites and intracel-
lular isotopic measurements from Odenwelder et al.11. The
iPSC SMN (composed of 32 metabolites and 38 reactions)
mainly focuses on central carbon metabolism and contains
the major reactions for glucose consumption, the TCA
cycle, anaplerosis, pentose phosphate pathway (PPP), and
amino acid metabolism. The reactions, metabolites, and
enzymes that are used in this study are listed in
Supplementary Tables 1–3.

Built on the Bio-SoS model characterizing the causal
interdependencies of iPSC aggregate culture, a spatial variance
analysis approach is derived to study the root cause of cell
metabolic heterogeneity (see “Methods” section for details),
which can be used to guide the control of iPSC cultures,
including aggregate size. Because the system comprises aggregates
of multiple sizes, cell aggregates were numerically classified into L
groups. To further consider the spatial heterogeneity in each
aggregate with radius, say Rl for l ¼ 1; 2; ¼ ; L, the aggregates
were divided into spherical shells; see the illustration of cells
located in the nth spherical shell ½Rn�1

l ;Rn
l� in Fig. 1b. The

proposed Bio-SoS variance analysis approach can assess the
contribution of spatial heterogeneity from aggregates with
different sizes to the cell product metabolic variation and
quantify the metabolic heterogeneity through studying the
relative changes of metabolic fluxes for cells residing at different
locations and time within an aggregate.

Model validation for Bio-SoS framework. The three individual
model modules (i.e., PBM, RDM, and SMN) were validated with
experimental data from literature7,11,14; then the integrated Bio-
SoS model was validated based on both monolayer culture data
from Odenwelder et al.11 and aggregate culture data from Kwok
et al.7.

First, the PBM was validated using cell proliferation and
aggregation dynamics data from Wu et al.14. The experimental
and model-predicted aggregate growth profiles are shown in
Fig. 2a and the time-varying aggregate size distribution is
illustrated in Fig. 2b. Overall, the PBM captured the aggregation
dynamics. The model-based prediction is obtained by solving the
PBM numerically and by using finite differences over equally
spaced intervals (i.e., 1 µm) in the radius domain of an aggregate
and 0.1 h in the time domain31.

Second, the RDM was validated by using stirred-tank
suspension bioreactor data from Wu et al.14. The transport of
metabolites and nutrients through 3D aggregates is crucial for the
effectiveness of cultivation systems. This is especially significant
in stem cell cultures, as cell metabolism determines iPSC product
functional quality attributes, and it plays an important role in
determining pluripotency and lineage specification32. Given the
stem cell aggregate property (i.e., porosity and tortuosity)
estimated based on the measures in Wu et al.14, the RDM was
solved analytically by applying a local quasi-steady-state approx-
imation, i.e., aggregates are spatially decomposed into equally

sized small spherical shells and the metabolic concentrations are
assumed to be homogenous within each shell. Then, the model
predicted profiles of heterogeneous metabolite concentrations
under steady-state conditions, which are shown in Fig. 2c and
Supplementary Fig. 2. It should be noted that these results were
obtained from the single representative aggregate simulation.
Clearly, the diffusion of nutrients (i.e., glucose, glutamine, and
serine) becomes limited as the aggregate radius increases, leading
to reduced nutrient levels for cells residing closer to the core. For
large aggregates, the cells in the inner area are starving due to a
shortage of glucose, glutamine, and serine. This finding is
consistent with the glucose transport limitation in human
mesenchymal stem cells reported by Zhong et al.33. Also, limited
diffusion resulted in higher concentration of metabolite wastes
and inhibitors (i.e., lactate, ammonium, and glutamate) in the
aggregates as the size increases. Future investigations of nutrient
and metabolic waste levels within aggregates using imaging
techniques could provide more evidence.

Third, the SRN was used to characterize single-cell metabolism
with the backbone mean metabolic reaction rate for a
homogeneous cell population characterized by the deterministic
mechanistic model30. To support the prediction of iPSC response
to micro-environmental perturbations occurring during the
aggregate culture process, the SRN model was estimated and
validated by using the time-course data of K3 iPSCs cultured in
monolayer under high/low nutrient and metabolic waste
concentrations as described in Odenwelder et al.11. Since induced
pluripotent stem (iPS) cells cultured in petri-dish 2D monolayer
are homogeneous, the deterministic mechanistic model was
derived to characterize the expected metabolic flux rate response
for cell population in Wang et al.30. Then, to simulate a
monolayer culture, the radii of cell aggregates were set to a
uniform 7.5 µm, which corresponds to the single cell radius14. In
Fig. 3, the bulk metabolite concentrations predicted from the Bio-
SoS for homogeneous iPS cell population align with both the
measured values under a representative high glucose and low
lactate experimental condition. As we expected, the simulation
results of Bio-SoS closely resemble those of the traditional MFA
and deterministic mechanistic models when no aggregation and
homogeneous cell population are considered.

In addition to being able to model the monolayer culture
behavior, we sought to further validate the Bio-SoS model on
aggregate cultures. As mentioned earlier, the Bio-SoS model was
developed and trained by utilizing monolayer culture data from
K3 iPSCs11 and cell aggregation profiles from hESCs14. To test its
extrapolation prediction performance, we used a collection of
aggregate culture data of FSiPS (short for FS hiPSC clone 2)
collected from stirred suspension bioreactor from Kwok et al.7

and followed the same culture protocol implemented in Kwok
et al.7. To visually compare the measured and predicted glucose
consumption and lactate production, we rescaled the vertical axes
while keeping the values unchanged and presented the results in
Fig. 4. The Bio-SoS model demonstrates good prediction
performance on both glucose and lactate concentrations (repre-
sented by the red line) as the predictions are within the 95%
confidence intervals of the measured values (represented by the
blue error bars). Therefore, the model’s prediction using the
bioreactor data from FSiPS provides additional confidence in the
reliability of the proposed Bio-SoS model. This also suggests its
potential for use with other cell lines.

Despite the differences between the cell line and culture
conditions between the monolayer training dataset and aggregate
cultures, the Bio-SoS model provided meaningful insights into
metabolic behaviors. The reliability of extrapolated predictions
using the Bio-SoS model is based on key insights included in the
model design. First, the underlying metabolic pathways and
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cellular processes remain relatively consistent across different cell
lines and cell types. These simulation results provide clear
evidence that the fundamental principles governing cellular
metabolism and nutrient utilization persist, even when cells are
cultivated under different conditions. By incorporating this
fundamental metabolic information into the model, it can
capture the core metabolic behaviors and predict metabolic
outcomes across different micro-environmental conditions.
Second, the model considers the diffusion of metabolites and
accounts for the spatial distribution of nutrients within the
culture system. This incorporation allows for a more realistic
representation of nutrient availability and metabolic interactions
within the aggregates.

In-silico study of iPSC aggregate health conditions. Aggregate
size influences the transport of nutrients, oxygen, metabolites,
and growth factors due to the diffusion of each species, which is
related to molecular size and charge. Cells inside large aggregates
potentially experience hypoxic conditions and poor nutrient
supply due to the limited diffusion of oxygen and nutrients from
the bulk media to the center. As a result, the cell growth is
reduced. It has already been reported that oxygen concentration
in the center region of larger embryoid bodies (400 µm in dia-
meter) is 50% lower compared to in medium embryoid bodies
(200 μm in diameter), which caused apoptosis at the core due to
low oxygen diffusion6,33,34. Further, low diffusion can limit the
removal of waste metabolites, such as lactate and ammonia, and
increase cell necrosis in the center region as these species reach
critical levels.

Previous studies have shown that high lactate concentration
can have negative effects on stem cell pluripotency. For example,
murine ESC (mESCs) and iPSCs proliferated and maintained
pluripotency in lactate concentrations up to 40 mM35, while
hESCs exhibited decreased pluripotency through Tra-1–60
expression after continuous passaging in 22 mM lactate-
containing media36. Ouyang et al.37 showed that mESCs are
extremely sensitive to the presence of lactate in media. They

inferred that the growth of mESC was inhibited at lactate greater
than 16 mM and that high lactate affected the cell pluripotency.
Glucose has also been observed to affect the embryoid body
formation potential of mESC when the concentration is less than
2.5 mM35. Therefore, in this study, we define cells as being
unhealthy if glucose is less than 2.5 mM or lactate is greater
than 40 mM.

The Bio-SoS model was used to predict the fraction of
unhealthy cells using glucose and lactate concentration criteria
(glucose < 2.5 mM or lactate > 40 mM) for aggregates of radius
ranging from 30 to 600 µm. Figure 5a shows the percentages of
unhealthy cells within an aggregate with a particular radius with
varying bulk glucose concentration and a fixed lactate concentra-
tion of 0 mM. Notably, all aggregates, regardless of size, exhibited
100% of cells being classified as unhealthy when the bulk glucose
concentration fell below 2.5 mM. In contrast, aggregates of radii
less than 150 µm had higher fractions of healthy cells for bulk
glucose concentrations greater than 5 mM. Figure 5b shows the
percentage of unhealthy cells within an aggregate with a
particular radius with varying bulk lactate concentration and a
fixed glucose concentration of 20 mM. A different pattern was
observed for cell health when the bulk lactate concentration
changed. The fraction of unhealthy cells increases with the
increased aggregate size, and it appears that cells are more
sensitive to higher lactate concentrations compared to lower
glucose concentrations.

In-silico study of cell-to-cell metabolic heterogeneity. It is well
accepted that culture conditions need to remain uniform for
optimal iPSC metabolic function and pluripotency maintenance.
The formation of large aggregates increases the risk of hetero-
geneity due to the limited diffusion of nutrients and growth
factors and the removal of waste metabolites. In order to describe
the expected metabolic flux rate response of a homogeneous cell
population to environmental change, the metabolic regulatory
networks were adapted from a companion work by Wang et al. 30.
Supplementary Fig. 1 shows this metabolic regulatory network,

a 24 Hours 48 Hours 72 Hoursb

c

Fig. 2 PBM and RDM models to predict iPSC aggregation process in stirred suspension bioreactor cultures. Panel a shows the experimental and the
predicted aggregate size; Panels b shows representative experimental data and PBM predictions of size (radius) distribution for cell aggregates, denoted by
ϕRðR; tÞ, at 24, 48 and 72 h (see “Methods” section for details). The dotted orange lines represent the experimental data from Wu et al.14, while the blue
lines show the PBM size distributions. c Steady-state concentration profiles of Glucose, Lactate, and Alanine for iPSC aggregates with radii ranging from 60
to 600 µm, each with identical values for diffusion coefficients Da

i , porosity ε ¼ 0:27 and tortuosity τ ¼ 1:5 and initial intracellular metabolite
concentrations.
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which includes the major metabolic pathways such as glycolysis,
TCA cycle, anaplerosis, PPP, and amino acid metabolism. The
reactions of PPP were simplified to two reactions (i.e., Nos. 9 and
10 reactions in Supplementary Table 1) representing the oxidative
phase/branch and non-oxidative phase/branch, respectively. The
descriptions of metabolites and enzymes are organized according
to the Enzyme Commission Numbers (EC-No.) and are listed in
Supplementary Tables 2 and 3, respectively. By following the
recent studies on stochastic molecular reaction network19,20, we
construct an SMN for single cells that can characterize the sto-
chastic reaction network for individual cells and cell metabolic
response to environmental change.

To understand how cell metabolism is affected by the aggregate
size and micro-environmental changes, the metabolic reaction
intracellular flux rates that are sensitive to the aggregate size are
shown in Fig. 6a. Further, the key extracellular metabolite
concentrations are shown in Fig. 6b. The flux rates and metabolite
concentrations were standardized by subtracting the mean and
dividing by the standard deviation calculated over all aggregates
(see “Method” section). The expected flux rates of the (forward)
reactions (e.g., GLNSf and HK) decreased gradually as the
aggregate sizes increased, and the flux rate of the reverse reaction

(e.g., GLNSr) increased as the aggregate sizes increased. The
biomass flux was observed to be relatively high for small
aggregates, suggesting such aggregates provide favorable meta-
bolic conditions for biomass production. The reversible reactions
such as GLNS, LacT, GLDH, and ASTA were affected by the
extracellular metabolite concentrations. For example, the flux of
LacTr increases in large aggregates due to the high extracellular
lactate levels while the fluxes of GLNSr and GLDHr increase due
to low-glutamine levels inside large aggregates (Fig. 6b). In
summary, these results confirm the importance of maintaining
aggregate size for optimal biomass production. It has been
observed previously that aggregates exceeding a diameter of
300 µm experience hypoxia and low core nutrient concentrations,
resulting in cell necrosis and loss of pluripotency38.

We further investigated the metabolic heterogeneity between
inner and outer cells within aggregates of radii ranging from 60 to
360 µm (Fig. 7). The blue dashed line depicts the flux rate at the
outer cell, while the colored dots represent the relative flux rate of
inner cells at various locations. This ratio was calculated as the
flux rate of the inner cell relative to the outer cell. Figure 7 shows
the metabolic heterogeneity of the inner cells compared to outer
cells for aggregates of various sizes. The greater deviation of larger

Fig. 3 Comparison of the prediction obtained by using both deterministic mechanistic model30 and the Bio-SoS model on the mean response for
monolayer cultures of homogeneous K3 iPS cell population. Monolayer experimental data are shown for bulk metabolites (mean ± SD). The green lines
represent the predicted metabolite concentrations of the mechanistic model from Wang et al.30; the red lines represent the predicted metabolite
concentrations of the Bio-SoS model. Blue circles with error bars represent experimental data. The description of metabolite abbreviations is in
Supplementary Table 2.
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aggregates (represented by purple dots) highlights that they
experience greater heterogeneity, while the smaller aggregates
(represented by orange dots) have more consistent metabolism.

The results in Fig. 7 also show a significant increase in
metabolic heterogeneity from 24 to 48 h, as greater flux deviations
were observed in the latter period. This can be attributed to the
relative shortage of intracellular metabolites after 48 h. For
example, the 48-h serine consumption flux (SAL) becomes more
diverse due to low serine, while the poor nutrient supply affected
biomass production leading to heterogeneous biomass fluxes (see
Supplementary Fig. 1). To quantitatively assess the overall
metabolic heterogeneity of each aggregate, the difference between
flux rates of the inner and outer cells was calculated (Supple-
mentary Tables 5 and 6). Based on the simulation results, the
metabolic heterogeneity of a 240-μm aggregate was found to be
approximately 14 times greater than that of a 60-μm aggregate.
After 48 h, both aggregate sizes had doubled in metabolic
heterogeneity. These simulations demonstrate that metabolic
heterogeneity increases with both aggregate size and culture
duration.

It is also worth noting that the TCA (tricarboxylic acid) cycle
has been observed to maintain a stable flux in cell aggregates of
different sizes, as shown in Fig. 7 (see the reactions highlighted in
blue). This observation supports the widely accepted under-
standing that the TCA cycle is a fundamental housekeeping
metabolic pathway (i.e., the flux rate maintains relatively stable in
different conditions)39 and that it is tightly regulated40.

Optimal aggregate size. An important factor that needs to be
strictly controlled in bioreactors is the aggregate size. If iPSC aggre-
gates become too large, uneven diffusion of nutrients and growth
factors can occur, causing cell death or heterogeneous cell popula-
tions. The optimal aggregate size can be determined by considering
the balance between metabolic heterogeneity and biomass yield.

Simulations of a batch bioreactor were performed to calculate
the mean and relative standard deviation (RSD) for biomass
productivity (Fig. 8a–c) for a 72-h culture. Supplementary Fig. 3
presents additional simulation results for the mean and RSD of
biomass productivity at 6-h intervals. These results indicated a

a b

Fig. 4 Glucose and lactate concentration profiles predicted by the Bio-SoS model in comparison with the literature data collected from stirred-tank
suspension bioreactor. a Glucose b Lactate. The Bio-SoS model (red line) was trained only with the monolayer data for K3 iPSC described in Odenwelder
et al.11. The experimental data shown (blue circle, mean ± SD) are for FSiPS cultured in aggregate and described in Kwok et al.7. Note the trends predicted
by the Bio-SoS model, which was trained on monolayer data, match the observed trends of aggregate cultures.

a b

Fig. 5 Unhealthy cells as a function of aggregate radius and metabolite concentration. a Effect of the glucose concentration and aggregate radius on the
percentage of unhealthy cells at a fixed bulk lactate concentration of 0mM. b Effect of the lactate concentration and aggregate radius on the percentage of
unhealthy cells at a fixed bulk glucose concentration of 20mM. Results are averaged by 30 simulation runs.
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yield-heterogeneity trade-off, as the mean biomass productivity
consistently decreased while the RSDs consistently increased with
increased aggregate size. It was also observed that the RSDs
consistently increased with the culture time. During the initial
24 h, the majority of aggregates in the bioreactors exhibited

relatively stable biomass productivity (Fig. 8a). The aggregate size
distribution (Fig. 2b) indicated that the number of aggregates
with a radius greater than 200 μm was very low. This observation
implies that the heterogeneity within the cell population is limited
early in cultures. However, after 48 h, the culture entered a steady

a b

Fig. 6 Expected reaction flux rates and extracellular metabolite concentrations by aggregate size. a Standardized flux rate. b Standardized metabolite
concentrations. Simulations were conducted with constant bulk glucose (25mM), lactate (5mM), and alanine (0.1 mM) concentrations. To facilitate visual
comparison, all flux rates and concentrations were standardized by subtracting the mean and dividing the standard deviation calculated over all aggregates.
Aggregates range from 30 to 600 µm. Results are averaged by 30 simulation runs.

Fig. 7 Metabolic heterogeneity of aggregates of varying sizes (60, 120, 240, and 360 μm in radius) at 24 and 48 h. Specifically, the relative fluxes were
compared for cells located at the center of the aggregates of various sizes, called the inner cells. The blue dashed lines represent relative fluxes of outer
cells, which were consistent across all four aggregate sizes. The circle (purple) represents the relative flux of the inner cells for the 360 μm aggregates; the
triangle (red) represents the 240 μm aggregate; the star (green) represents the 120 μm aggregate; the square (orange) represents that for 60 μm
aggregate; normalized to the fluxes of outer cells. Results are averaged by 30 simulation runs.
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state (as reported previously11,30). Figure 8b shows increased
heterogeneity of biomass yield for larger aggregates. Notably,
there was a distinct cut-off radius of 150 μm after 48-h culture.
For a larger radius, the RSD increased significantly faster. These
findings suggest the presence of an optimal aggregate size range
that minimizes biomass productivity variability and aggregate
heterogeneity. Lastly, as Fig. 8c suggests, the biomass productivity
decreased significantly as the available nutrients were nearly
depleted around 72 h. Overall, aggregates with a radius below
150 μm had relatively high biomass productivity and a relatively
low heterogeneity for 48-h cultures. These simulation results
suggest that iPSC cultures should be maintained as uniform
aggregates around 150 μm in radius and should not be greater
than 200 μm in radius. This evidence agrees with experiment
observations in the literature6,8,38.

Discussion
The introduction of the Bio-SoS framework marks an important
step in the development of multi-scale bioprocess mechanistic
models and analytical technology for iPSC cultures. By effectively
characterizing cell-to-cell interactions and complex mechanisms
of iPSC aggregate culture, the proposed Bio-SoS not only sup-
ports data integration and enables the prediction of metabolic
dynamics at different scales but also models spatial heterogeneity
and quantifies metabolic intensities and variations across differ-
ent aggregate locations and time. The model’s versatility is shown
by its ability to study cell health in different-sized aggregates,
predict micro-environmental profile metabolite concentrations
under diverse conditions, and determine the optimal aggregate
size range and feeding strategy for maximum bioreactor effi-
ciency. Ultimately, the proposed Bio-SoS presents a promising
pathway towards low-cost and high-quality personalized cell
therapies and offers a platform for optimizing large-scale iPSC
manufacturing without extensive experiments.

The model validation study demonstrated that the proposed
Bio-SoS model has good extrapolation prediction performance.
Even though only the monolayer culture data of K3 iPSC with
various initial conditions was used, the model was able to predict
the metabolic dynamics for a different cell line (FSiPS) cultured in
aggregates. This demonstrates the potential for transferring the
learning from a monolayer culture to a stirred-suspension
aggregate culture. From the methodological perspective, this
success relies on the proposed biological system-of-systems
modeling principle that can organically assemble a single-cell
model to construct a Bio-SoS model for iPSC aggregate cultures,
characterizing cell-to-cell interactions and cell response to spatial
heterogeneous micro-environment conditions.

The versatility of the proposed framework is demonstrated by
three in-silico scenarios. First, the Bio-SoS model was employed
to simulate cell health within aggregates of varying sizes and
extracellular metabolite concentrations. These simulation results
were able to reproduce the trend observed for experimental
findings. Specifically, the model predicted that larger iPSC
aggregates would experience hypoxic conditions and poor
nutrient supply for inner cells. This stress would then lead to
reduced cell growth and increased cell necrosis at the center of the
aggregates. Second, the Bio-SoS model was used to investigate the
impact of aggregate size on both cell metabolism and micro-
environmental heterogeneities. Those simulations provided
quantitative insights into the variation of metabolic fluxes across
cells at different positions within iPSC aggregates and under
varying culture conditions. Third, the Bio-SoS model was used to
identify the optimal aggregate size range to maximize the effi-
ciency and yield of pluripotent stem cells cultured in a bioreactor.
These simulations suggested an ideal aggregate size range is
around 150 μm in radius for biomass productivity, which agreed
with published reports8,38.

The system of modules can be (a) assembled to facilitate data
integration and improve the prediction of monolayer and aggregate
cultures, and (b) utilized to control cell product quality heterogeneity
and optimize the production process performance. Also, the modular
design of the Bio-SoS model will facilitate future extensions to
incorporate cell responses (i.e., flux rates, phenotype, and gene
expression) to both mechanical (e.g., stirred speed and hydrodynamic
force) and chemical (e.g., concentrations of nutrients/metabolites/
oxygen, and pH) environmental conditions.

Methods
Cell proliferation and aggregation dynamics modeling. The
aggregation process is characterized by the dynamic evolution of
a density profile of aggregates. Let ϕðx; tÞ denote the average
number of aggregates or clusters of size x (i.e., mass and volume)
at time t, where mass is equal to a buoyant density times volume.
Due to the fact that buoyant density of cells does not vary sig-
nificantly during the cell cycle, it was assumed the size x corre-
sponds either to the volume or mass having the relationship with
radius (denoted by R)14, i.e., x / R3. The important factors
impacting on the merge rate of cell aggregates include: (1) mass of
aggregates; (2) position or distance of aggregates; and (3) velocity.
Therefore, for any cell aggregate with mass x, the rate at which it
merges with another aggregate with mass x0 is proportional to
their densities, i.e., the average number of coalescences,
x; x0ð Þ ! x þ x0, per unit time per unit volume is
1
2 ϕ x; tð Þ ϕ x0; tð ÞK xjx0ð Þ.

a b c

Fig. 8 Biomass yield and variance decomposition analysis. In panel, we simulated the biomass production of different aggregates (ranging from 30 to
300 μm in radius) for a duration of one hour with 100 replicates. The recorded results in panels a–c correspond to 24-, 48-, and 72-h cultures, respectively.
The blue line represents the mean, and the red line represents the RSD of the biomass, i.e., RSDbiomass;l;t with l¼30;45; ¼ ; 300 (see Eq. (11) in “Methods”
section for details).
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The aggregation kernel, denoted by K xjx0ð Þ, is associated with
the average coalescence or merge rate of cell aggregates with mass
x and x0. In this work, only a purely coalescing process was
considered where the merge rate was only dependent on the size
of aggregates,

K xjx0ð Þ ¼ k � exp �k1
x þ x0

2

� �a� �
x
1
3 þ x0

1
3

� �7
3
with constants k; k1; a > 0:

ð1Þ
The exponential part in equation (1) accounts for the fact that

there is a decreasing coalescence efficiency as the aggregate size

increases14. The part x
1
3 þ x0

1
3

� �7
3 accounts for the fact that the

collisions of these aggregates and the shear induced by micro-
fluids with nonlinear velocity profile through a pore network
within each cell cluster can lead to film drainage. It involves the
draining of the film surrounding the interactive aggregates to
permit actual coalescence of aggregates with size x and x0. The
effects from other factors are lumped into the constant k of the
model. In general, except aggregate size, the merge rate should be
a function of other factors, such as agitation speed and medium
compositions. The cell-to-cell and cell-to-medium interactions
influence the aggregation process and the design of the kernel
Kð�Þ. This falls outside the scope of this paper but is a subject for
future work. The kernel parameters (k ¼ 1:26´ 10�3 h−1 µm−7/3,
k1 ¼ 1:94 ´ 10�4μm�3a, a ¼ 8:06 ´ 10�1) are adapted from Wu
et al.14.

The break-up effects of aggregates were considered negligible
and the profile ϕðx; tÞ evolves through coalescence events only. A
PBM is employed to simulate the temporal evolution of size of the
aggregates accounting for cell proliferation contributions and
collisions between particles to aggregate size growth14,41,42. The
temporal evolution of cell aggregate profile becomes,

∂ϕ x; tð Þ
∂t

¼ 1
2

Z x

x0

ϕ xC; t
� �

ϕ x0; tð ÞK xCjx0
� �

dx0

�
Z 1

x0

ϕ x; tð Þϕ x0; tð ÞK xjx0ð Þdx0 � ∂ ϕ x; tð Þ ∂x∂t
� 	

∂x
;

ð2Þ

where the density function ϕðx; tÞ is defined such that ϕðx; tÞdx is
the fraction of aggregates with sizes between x and x þ dx at time
t per unit volume of the culture. Let x0 denote the size of a single
cell. The first and second terms on the right side of equation (2)
coming from the Smoluchowski coagulation equation, accounting
for random coalescence. The first term describes the formation of
aggregates with size x0 due to the aggregation of cell clusters with
size x0>x0 and xC ¼ x � x0. The last two terms represent the
“loss” of aggregate with size x due to their merging with those of
size x0 to form larger aggregates and due to cell proliferation
∂x=∂t.

Following Wu et al.14, the rate of aggregate size was modeled
by the change ∂x=∂t due to cell proliferation by Gompertz
equation43:

∂x
∂t

¼ αG � x log M
x

� �
where M is the aggregate size reached as t ! 1 and αG is a
constant characterizing the cell proliferation. The Gompertz
equation parameters (M ¼ 9:71 ´ 106 and αG ¼ 5:72 ´ 10�3 h−1)
are adapted from Wu et al.14. Based on the iPSC culture data
utilized in this study, the shrinking of iPSC aggregates has not
been observed. If the experimental observation indicates the cell
death impact, our model can be extended to account for the
shrinking of the iPSC aggregates due to the cell death.

The transformation of the density function from aggregate size
x to aggregate radius R can be done with the rule of

transformation of random variables. For the strictly monotone
transformation f : R7!x

1
3 and its inverse x ¼ f �1 Rð Þ ¼ R3 the

probability density function of the aggregate radius, denoted by
ϕRðR; tÞ, is given by,

ϕR R; tð Þ ¼ ϕ f�1 Rð Þ� � df �1 Rð Þ
dR





 



 ¼ 2ϕ R3; t
� �

R2:

The first moments of the cell distribution yield the total
aggregate size (accounting for the aggregate porosity ε),
M1 tð Þ ¼ ð1� εÞR1

x0
xϕ ðx; tÞdx. Since the size of each cell is x0,

the average number of cells in each aggregate is given by
zcell ¼ M1ðtÞ=x0. Let X denote the cell density and V is the
volume. We can further calculate the total number of aggregates
as ztotal ¼ XV=zcell and aggregate density (aggregate count per
unit of volume) as zdensity ¼ X=zcell.

Because the system comprises aggregates of multiple sizes, cell
aggregates were classified into L groups. The radius of each lth
group with l¼1; 2; ¼ ; L is between Rl�1 and Rl. Remember that
R0 is the radius of a single cell. Thus, the cell aggregate density in
the lth group is,

Ml tð Þ ¼ zdensity

Z Rl

Rl�1

ϕR R; tð ÞdR; l ¼ 1; 2; ¼ ; L: ð3Þ

Reaction–diffusion model. The RDM provides a means of
characterizing cell-to-cell interactions and quantifying the spatial
heterogeneity in micro-environmental conditions, by modeling
the dynamic change of spatial and temporal concentration pro-
files of crucial components such as nutrients and metabolites like
glucose and lactate. Suppose that the aggregates have cell spheres.
A cluster of cells in a liquid medium was considered and assumed
to have uniform diffusion in all directions along the radial axis.

Let s ¼ s1; ¼ ; sns

� �
denote the spatial profile of intracellular

metabolite concentrations for species i ¼ 1; 2; ¼ ; ns at time t

and located at radius r. Let c ¼ c1; ¼ ; cns

� �
denote the spatial

profile of concentration of each extracellular species i ¼
1; 2; ¼ ; nc at time t and located at radius r.

The concentration of the ith species at time t and located at
aggregate radius r, denoted by ciðr; tÞ; satisfies the set of reaction-
diffusion equations in spherical coordinate with boundary
conditions, i.e.,

∂ci
∂t

¼ Di

r2
∂

∂r
r2
∂ci
∂r

� �
þ ρi c; sð Þ ð4Þ

subject to boundary conditions : að Þ ci R; tð Þ ¼ ui tð Þ and ðbÞ
∂c 0; tð Þ
∂r

¼ 0

where Di is the effective diffusion coefficient, uiðtÞ is the extra-
aggregate environmental conditions (e.g., the bulk concentrations
of glucose and lactate in the bioreactor), and R is the aggregate
size. Here the reaction rate ρi is negative for nutrient consump-
tion and positive for inhibitor formulation. The boundary
condition (a) comes from the fact that the metabolite concentra-
tion on the surface of an aggregate equals to that measured in the
bioreactor; and (b) is produced by the condition of spherical
symmetry.

Due to the reaction and diffusion, the metabolite concentra-
tions at different locations or depth of a cell aggregate are
different. We divide each aggregate of radius Rl into Nl spherical
shells (shaped like a 3D annulus or “rings”) and assume that the
cellular metabolisms are homogeneous in each spherical shell.
The nth spherical shell of the lth aggregate is located between the
radii between Rn�1

l and Rn
l ; see the illustration in Fig. 1b. The

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05653-w

10 COMMUNICATIONS BIOLOGY |            (2024) 7:39 | https://doi.org/10.1038/s42003-023-05653-w |www.nature.com/commsbio

www.nature.com/commsbio


volume of the spherical shell is the difference between the
enclosed volume of the outer sphere and the enclosed volume of

the inner sphere: 4π3 R nð Þ
l

� �3
� 4π

3 R n�1ð Þ
l

� �3
.

Quasi-steady-state solution in radial cases of ciðr; tÞ. It is chal-
lenging to directly solve the transient reaction-diffusion equation
(4). Thus, a similar approach as that used in McMurtrey44 was
applied to account for the quasi-steady-state setting, i.e., ∂ci∂t ¼ 0. A
quasi-steady-state solution of RDM is widely used in cell aggre-
gation literature44,45 to describe the metabolite diffusion inside an
aggregate. In each nth spherical shell, the extracellular con-
centration profile or micro-environmental condition can be
solved analytically44 as the nutrient consumption or inhibitor
formulation rates ρiðc; sÞ are constant in the spherical shell spe-
cified by ½Rn�1

l ;Rn
l�:

ci r; tð Þ ¼ 1
6
ρ l;n;tð Þ
i Di R nð Þ2

l � r2
� �

þ u l;n;tð Þ
i with r 2 Rn�1

l ;Rn
l

� 	
ð5Þ

where ρðl;n;tÞi is the consumption/formulation rate of metabolite
Wi in the nth spherical shell of the lth aggregate and uðl;n;tÞi
denotes the the boundary condition of metabolite Wi in the nth
spherical shell of the lth aggregate at time t. The formulation/
consumption rate ρðl;n;tÞi depends on the intracellular metabolism
of cells located in the nth spherical shell of the lth aggregate
and its mathematical formulation will be discussed in the next
section.

Here, Di is the effective diffusion coefficient of the ith species.
Given the porosity ε and tortuosity τ; it is calculated as
Di ¼ ε

τ � Da
i , where Da

i is the diffusion coefficient of the ith
species in aqueous condition. In a 4-day culture in spinner flasks
at the agitation rate of 60 rpm, the porosity and tortuosity of
hESC aggregates were reported to be 0.270 ± 0.007 unitless and
1.551 ± 0.086 unitless, respectively14. Since the metabolites are
transported between the outer spherical shell and extra-aggregate
environment, the boundary condition for the Nlth spherical shell

is given by uðl;Nl;tÞ
i ¼ uiðtÞ. Further, metabolites are freely

transported between spherical shells and thus the metabolite
concentrations on the outer surface of the (n-1) th spherical shell
are equal to the concentrations on the inner surface of the nth

spherical shell, i.e., mathematically, uðl;n�1;tÞ
i ¼ ci R nð Þ

l ; t
� �

. The

solution in equation (5) illustrates that: (a) the nutrient
concentrations, increasing from aggregate center to the surface,
become highest on the surface cðR; tÞ ¼ uiðtÞ; and (b) the
metabolite waste concentrations, decreasing from center to
surface, is highest at the center

c 0; tð Þ ¼ ui tð Þ þ 1
6∑

Nl
n¼1ρ

l;n;tð Þ
i Di R nð Þ

l

� �2
� R n�1ð Þ

l

� �2
� �

.

Estimating reaction rate ρi in RDM. Conceptually the reaction
rate ρi (nmol/(μm3 � h)) of the metabolite Wi is the weighted sum
of the associated flux rates (nmol/106 cells/h). Thus, putting
everything in vectors, we have ρ ¼ N � v � γ where N represents
the stoichiometric matrix, v is the flux rate vector, and γ is a unit
conversion factor. By assuming the averaged single-cell radius to
be 7.5 µm, the average cell volume can be estimated by A ¼
ε � 4π3 ´ 7:53 (µm3/cell) with porosity ε. Then 1 nmol/106 cells/h of
flux rate can be converted to the reaction rate of

γ ¼ 1 nmol=106 cells=h
A

¼ 3 ´ 106

4πε ´ 7:53
μm3 � h:

Stochastic metabolic reaction network model for single-cell.
For each iPSC, let us consider a metabolic network system with n

species ðW1;W2; ¼ ;WnÞ which interact with each other
through k chemical reactions. Let euiðtÞ denote the number of
molecules of metabolite Wi in an individual cell at time t. Denote
the vector eu ¼ ðeu1;eu2; ¼ ;eunÞ. Here eu includes both intracellular
and extracellular metabolites, i.e., eu ¼ ðes;ecÞ. The metabolic
reaction network can be expressed as46

∑
n

i¼1
ηijWi !

vj
∑
n

i¼1
η0ijWi; j ¼ 1; 2; ¼ ; k ð6Þ

where ηij and η0ij are nonnegative integers. Let ηj be the vector
whose ith component is ηij representing the number of molecules
of the ith metabolite consumed in the jth reaction. Let η0j be the
vector whose ith component is η0ij representing the number of
molecules of the ith metabolite produced by the jth reaction. By
writing them in matrix form, i.e., η ¼ ðη1; ¼ ; ηkÞ and
η0 ¼ ðη01; ¼ ; η0kÞ, we define the stoichiometric matrix as
N ¼ η0 � η. Let vjðeuÞ be the flux rate at which the jth reaction
occurs for an individual cell, that is, the propensity/intensity of
the jth reaction as a function of the number of molecules of
metabolites. Later on, we will show that the rate vjðeuÞ is a gen-
eralized flux rate, analogous to that of the MFA.

Let R tð Þ be the k-dimensional vector whose jth component is
RjðtÞ, representing the number of times the jth molecular reaction
has occurred by time t in a single cell. Thus, at time t; the profile
of intracellular and extracellular metabolite molecules follows the
dynamics, i.e.,

eu tð Þ ¼ eu 0ð Þ þ∑k
j¼1Rj tð Þ η0j � ηj

� �
¼ eu 0ð Þ þ N � R tð Þ: ð7Þ

Equation (7) is a mass balance equation where eu tð Þ � eu 0ð Þ is
the difference of a number of molecules in time interval ½0; t� and
N � RðtÞ is the net amount of reaction output by time t. The
number of occurrences of the jth molecular reaction,
Rj t þ dtð Þ � RjðtÞ, during time interval ½t; t þ dt� is modeled as
a Poisson random variable with mean (and variance) vj eu tð Þð Þdt
and RjðtÞ follows a nonhomogeneous Poisson process with the
flux rate or molecule generation rate vj eu tð Þð Þ17,20,46.

Based on the definition of Poisson process, during the time
interval ðt; t þ dt�, the probability that the jth reaction occurs n
times becomes46,47

P Rj t þ dtð Þ � Rj tð Þ ¼ n
� �
¼

e�
R tþdt

t
vj eu xð Þ
� �

dx R tþdt
t vj eu xð Þð Þdx

� �n

n!
¼def Poisson

Z tþdt

t
vj eu τð Þð Þdτ

� �
ð8Þ

Define the expected accumulated occurrences of the jth
molecular reaction by time t, i.e., Λj tð Þ ¼

R t
0vj eu τð Þð Þdτ. Equation

(8) can be rewritten as RjðtÞ ¼ Y Λj tð Þ
� �

, where YðtÞ is a unit (or
rate one) Poisson process. Then equation (7) becomes,

eu tð Þ ¼ eu 0ð Þ þ∑k
j¼1Y Λj tð Þ

� �
η0j � ηj

� �
: ð9Þ

Bio-SoS mechanistic model for iPSC aggregate culture. By
assembling the single-cell metabolic network with population
balance and RDMs, we developed the Bio-SoS model character-
izing the dynamics of iPSC aggregate culture with either homo-
geneous or non-homogeneous cell population. Since cells create
the driving force for the dynamics of the culture process, we focus
on modeling the evolution of cell metabolic dynamics and asso-
ciated microenvironmental conditions. Let X denote the cell
density, i.e., number of cells per unit of volume. Let eub tð Þ denote

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05653-w ARTICLE

COMMUNICATIONS BIOLOGY |            (2024) 7:39 | https://doi.org/10.1038/s42003-023-05653-w |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


the number of molecules of metabolites within and “around” each
bth cell with b ¼ 1; 2; ¼ ;X.

First, the homogeneous cell population is assumed. Let
uðt;XÞ ¼ ∑X

b¼1eub tð Þ denote metabolite concentrations (i.e., the
number of molecules of metabolites per unit of volume) in the
system at time t. Given a cell density XðtÞ (i.e., the number of cells
per unit of volume), the change in the number of metabolite
molecules during the short time interval ðt; t þ dt� is obtained by
summing the changes from each cell, i.e.,

Δu t;Xð Þ�u t þ Δt;Xð Þ � u t;Xð Þ ¼ ∑X
b¼1 eub t þ Δtð Þ � eub tð Þ� 	

¼∑X
b¼1∑

k
j¼1Y

Z tþΔt

t
vj eub τð Þ� �

dτ

� �
η0j � ηj

� �
¼∑k

j¼1Y X
Z tþΔt

t
vj eub τð Þ� �

dτ

� �
η0j � ηj

� �
ð10Þ

When the flux rate is constant vj eub tð Þ� � ¼ vj, the dynamics of
expected metabolite concentration are the same as the dynamic
flux balance model15,48 (see “Supplementary Methods”). Thus,
the deterministic ODE-based metabolic model can be interpreted
as a special case of the stochastic reaction model (Eq. (10)) with
mean metabolite concentrations and constant flux rates, ignoring
cell-to-cell variation.

Second, the heterogeneous cell population is considered. Let
uiðtÞ denote the concentration of metabolite Wi (i.e., the number
of molecules per unit of volume) in the system at time t. Here the
metabolite concentrations include both intracellular and extra-
cellular metabolites, i.e., u ¼ ðs; cÞ. Recall that the cell aggregates
were divided to L groups with different size. Each aggregate is
divided to Nl spherical shells with c Rn

l; t
� �

and s Rn
l; t

� �
representing the concentrations of extracellular (within aggre-
gate) and intracellular metabolites in the lth aggregate at the
radius of Rn

l at time t. Thus, the cell density (i.e., the cell number
per unit of volume) in the nth spherical shell of the lth aggregate
group at time t can be computed based on the aggregate density
and the number of cells in that spherical shell, i.e.,

G nð Þ
l tð Þ ¼ Ml tð Þ 1� εð Þ

R nð Þ
l

� �3
� R n�1ð Þ

l

� �3

R3
0

where the aggregate density Ml tð Þ (Eq. (3)) was obtained by
solving the PBM.

Then, for each jth reaction, the overall flux rate of all cells in a

unit of volume residing in the spherical shell R n�1ð Þ
l ;R nð Þ

l

h i
at time t

(denoted by �vðl;n;tÞj ) is given by the product of the cell density G nð Þ
l

and single-cell flux rate vðl;n;tÞj ¼ vj c R nð Þ
l ; t

� �
; s R nð Þ

l ; t
� �� �

in the

shell, i.e.,

�vðl;n;tÞj ¼G nð Þ
l tð Þvðl;n;tÞj :

Recall that c R nð Þ
l ; t

� �
can be obtained by solving the RDM (see

“Methods” section).
After that, we can divide the culture time ½0; t� into G equally

spaced intervals g � 1
� �

Δt; gΔt
� 	

with g ¼ 1; 2; ¼ ;G, and
numerically compute the metabolite concentrations u(t) as

u tð Þ � u 0ð Þ þ ∑
L

l¼1
∑
Nl

n¼1
∑
G

g¼1
∑
k

j¼1
Y �v

l;n;ðg�1ÞΔtð Þ
j Δt

� �
η0j � ηj

� �
where u 0ð Þ is the initial concentrations.

Variance decomposition analysis. Stem cells, such as iPS cells
that proliferate in the culture process can undergo considerable

variation in metabolic reaction rates due to the change in specific
micro-environmental conditions. To better understand the
metabolic heterogeneity of stem cell culture and identify sources
of uncertainty, we developed a variance decomposition method
based on the Bio-SoS model. It can be used to explain how the
variance measuring the metabolic heterogeneity is contributed by
different-sized cell aggregates and how the variance is spatially
distributed within each cell aggregate.

● Single aggregate: Let ∑k
j¼1Yð�vðl;n;tÞj ΔtÞðη0ij � ηijÞ represent

the concentration change of metabolite Wi due to the
reactions occurring in cells located in the nth spherical shell
of the lth aggregate during the time interval ðt; t þ dt�.
Then, the total variance of the metabolite Wi in an
individual aggregate, denoted by σ2i;l;t , can be expressed by

σ2i;l;t ¼ Var ∑
Nl

n¼1
Δuðl;n;tÞi

� �
¼ Var ∑

Nl

n¼1
∑
k

j¼1
Y �v l;n;tð Þ

j

� �
η0ij � ηij

� �� �
:

RSD is a statistical measurement that describes the spread of
data with respect to the mean. The RSD of metabolite Wi in each
lth cell aggregate at time t is expressed by

RSDi;l;t ¼
σ i;l;t
μi;l;t

with μi;l;t¼E ∑Nl
n¼1Δu

l;n;tð Þ
i

h i
: ð11Þ

● Cell population heterogeneity: Given well-controlled bulk
bioreactor conditions, we suppose the independence of
different aggregates. During the time interval ðt; t þ dt�, the
total variance of the metaboliteWi concentration change in
the bio-system, denoted by σ2i;t , can be divided into the
contribution from each lth group of aggregates with radius
Rl, i.e.,

σ2i;t ¼ Var ∑
L

l¼1
∑
Nl

n¼1
∑
k

j¼1
Y �v l;n;tð Þ

j Δt
� �

η0ij � ηij

� �� �
¼ ∑

L

l¼1
σ2i;l;t:

This study can support the analysis and provide insights into
both metabolic heterogeneity and spatial heterogeneity. The
metabolic heterogeneity can be assessed by studying the relative
changes of metabolic fluxes for cells residing at different locations
and times within an aggregate, as shown in Fig. 7. At the same
time, the impact of spatial heterogeneity can be investigated by
measuring the contribution of (biomass) output variance from
the cell aggregates with different radius size as illustrated in Fig. 8.
This can guide the selection of optimal aggregate size to maximize
the expected yield and control the output variance.

Flux and metabolite standardization. Standardization of the flux
rates and metabolite concentrations used was performed in three
steps: (1) the average fluxes and metabolite concentrations were
calculated for each lth group of aggregates with radius Rl ranging
from 30 to 600 μm; (2) the means and standard deviations of
those fluxes and concentrations over all aggregates were com-
puted; and (3) for each flux or metabolite concentration, the
mean value was subtracted and the result was divided by the
corresponding standard deviation. For example, the average flux
of the jth reaction in the lth group of aggregates is given by
�v l;�;tð Þ
j ¼ 1

Nl
∑Nl

n¼1 �v
l;n;tð Þ
j and the standardization of this within-

aggregate flux is performed by

Standardization �v l;�;tð Þ
j

� �
¼

�v l;�;tð Þ
j � �vð�;�;tÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

l¼1
�v l;�;tð Þ
j ��v �;�;tð Þ

j

� �2

L�1

s

where �vð�;�;tÞj ¼ 1
L∑

L
l¼1�v

l;�;tð Þ
j .
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Statistics and reproducibility. The details about sample sizes,
parameters, and steps of statistical analysis are provided in rele-
vant methods and results sections, figure legends, and tables
where applicable. All statistical analysis is performed in Python.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data used in this work are collected from open-access databases. The monolayer
iPSC cell culture data are in Supplementary Data11. The bioreactor iPSC culture data are
from Kwok et al.7. The parameters of the population balance model are adapted from
Wu et al.14. The diffusion coefficients are from multiple published sources49–55.

Code availability
The main results are generated using Python 3. The code generating the main results in
this work is available at the GitHub repository. A supplementary file (zip file) containing
the code used in the paper, associated test data, parameters, and documentation is
available.
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