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In the paper by Li et all, we reported DNA methylation
(DNAm) of 946 CpG sites influenced by genetic variants in the
conventional model (LA-naive), and 135 CpGs with genetic
effects that significantly differed by local ancestry (LA-specific).
Meeks et al. raised a concern that 37.5% of the 946 CpG sites were
inadequately controlled as they contained nearby commons var-
iants (Probe-SNPs). They argued that different allele frequencies
of probe-SNP between populations of African ancestry and
European ancestry led to spurious findings in the paper. In
response to Meeks et al.’s concern, using a Methyl-Seq approach
in a subset of the samples (N = 211), we were able to show that a
large proportion (47.1%-71.6%) of the significant SNP-CpG
associations originally reported by Li et al. using Illumina
HumanMethylation 450K (HM450K)! were replicated. We did
not observe significant difference in the replication rates between
CpGs with and without probe-SNPs, indicating that there is no
substantial evidence to suggest that CpGs with probe-SNPs biased
our published findings.

Associations of the reported SNP-CpG pairs are replicated
using a bisulfite sequencing method

It is well known that the methylation probe containing SNP
within 10 base pair (bp) biases the call of CpG methylation in an
array-based assay>3. In practice, CpG sites with SNP within 10bp
are filtered out in analyses? although a few studies removed such
CpG sites beyond 10bp window’. Other studies examined the
effects of probe-SNP on significant CpG sites in post-hoc
analyses®. In our paper!, we removed the polymorphic CpG
sites (the ones that overlay with SNPs) and CpG sites with probe-
SNP within 10bp based on the annotation file provided by Illu-
mina Infinium. Additionally, following the previous report’, we
removed CpG sites with detection p-value>le—12, a more
stringent threshold than recommended by Illumina (p =0.01).
The use of a stringent detection p-value could more effectively
filter out low quality CpG sites and enhance the quality of DNAm
array data8.

Methyl-seq serves as a gold standard to validate array-based
methylation detection®!0, To confirm the quality of DNA
methylation in our previous study, we re-profiled DNA methy-
lation of 211 samples (Supplementary Table 1) that were included
in the previous paper! using Agilent SureSelectXT Methyl-Seq

(Supplementary Data 1). No significant differences in demo-
graphic variables were observed between the 211 samples with
Methyl-seq data and the original discovery group except for
smoking (p = 0.04) (Supplementary Table 1). A total of 547 out of
the 946 CpG sites in the conventional model, and 77 out of 135
CpGs in the LA-specific model were measured by both platforms.
The 547 CpGs in the conventional model had 728 significant
SNP-CpG associations, while the 77 CpGs in the LA-specific
model had 87 significant associations. To replicate the original
findings identified using HM450K data, we first re-conducted the
association analyses for the significant SNP-CpG pairs using
Methyl-seq data, then we investigated whether the replication
rates would differ between CpGs with and without probe-SNPs.
The overall replication rates were 71.6% for the 728 significant
SNP-CpG pairs in the conventional model (Supplementary
Data 2), and 47.1% for the 87 significant pairs in the LA-specific
model (Supplementary Data 2). A similar trend of replication
rates was observed in the original results of Li et al.l: the repli-
cation rate in the LA-specific model was consistently lower than
that in the conventional model. Importantly, we found no sig-
nificant difference in replication rates between CpGs with and
without probe-SNPs (p = 0.15 for CpGs in the LA-naive model;
p=1.00 for CpGs in the LA-specific model) (Fig. 1a).

Meeks et al. define whether a CpG has probe SNPs within 50bp
using the 1000 genomes data. Here, we re-examined if our
reported CpGs harbored nearby SNPs using the genotype data
from the study cohort (4.7 million SNPs with minor allele fre-
quency >0.01)!: among the 946 CpGs identified in the conven-
tional model (LA-naive), 28 (3.0%) had probe SNPs within 10bp
and 157 (16.6%) had probe SNPs within 50bp. Among the 135
CpGs with genetic effects significantly differed by ancestry (LA-
specific), only 3 of them (2.2%) had probe SNPs within 10bp and
21 of them (15.6%) had probe-SNPs within 50bp. When evalu-
ating whether there is a significant difference in replication rates
between CpGs with and without probe SNPs, we also presented
parallel results using the studied population SNP-list as reference
and found no significant difference (Fig. 1b). Together, these data
suggest that there is no clear evidence for the probe-SNP bias in
the results of Li et al.! as the replication rate in CpGs with probe-
SNPs was not significantly different from that in CpGs without
probe-SNPs.
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Using 1000G SNP-list as reference

(a) LA-naive model identified meQTLs

p=0.15
Replicated  Not replicated Rep%
CpG with probe-SNPs 257 115 69.09%
CpG without probe-SNPs 264 92 74.16%

LA-specific model identified meQTLs

Using the studied population SNP-list as reference

(b) LA-naive model identified meQTLs

p=0.51
Replicated ~ Not replicated Rep%
CpG with probe-SNPs 85 29 74.56%
CpG without probe-SNPs 436 178 71.01%

p=1.00
Replicated  Not replicated Rep%
CpG with probe-SNPs 27 31 46.55%
CpG without probe-SNPs 14 15 48.27%
LA-specific model identified meQTLs
p=0.60
Replicated  Not replicated Rep%
CpG with probe-SNPs 7 5 58.33%
CpG without probe-SNPs 34 41 45.33%

Fig. 1 Comparing the replication rate between CpGs with probe-SNPs and CpGs without probe-SNPs. The Methyl-seq data (N = 211) were used to
replicate the meQTLs identified by Li et al. CpG sites with common probe-SNP within 50bp were defined using the SNPs in a the 1000 Genomes and b the
study sample population, respectively. The p-values were derived from 42 test.

The 1000 Genomes versus study population based genomes
Meeks et al. mapped the nearby SNPs for our reported CpG sites
using the 1000 Genomes SNP-list and found a large proportion
(37-61%) of them contained SNPs within 50bp. However, using
the genotype data from our study cohort, we noted that the
proportion of CpGs with probe SNPs was lower (2.2-3.0% con-
taining SNPs within 10bp, 15.5-16.5% containing SNPs within
50bp) (Supplementary Fig 1). One reason for the discrepancy was
the difference in size between the studied population SNP-list and
the 1000 Genomes SNP-list, and we agreed with Meeks et al. that
our strict genotype quality control steps! led to the smaller SNP-
list (4.7 million SNPs with minor allele frequency >0.01 in our
studied cohort). This strict procedure is appropriate to keep high
quality SNPs for meQTL identification, but to avoid probe-SNP
bias, a more comprehensive SNP-list, such as the 1000 Genomes,
is also a helpful reference to filter CpGs with probe-SNPs.
Therefore, to assess whether our previous results were affected by
potential probe-SNPs defined by 1000 Genomes, we performed
parallel replication analyses using both the studied population
SNP-list and the 1000 Genomes SNP-list as references, and the
results were consistent: there was no significant difference in
replication rates between CpGs with and without probe-SNPs
(Fig. 1).

In summary, the concerns highlighted by Meeks et al. under-
scored the importance of filtering CpGs with probe-SNPs in
methylation association and meQTL studies in a mixed ancestry
population. Using Methyl-Seq data, we confirmed that replication
rates of the significant SNP-CpG associations did not differ sig-
nificantly between CpGs with and without probe-SNPs. Applying
bisulfite methylation sequencing not only prevents the biased
methylation detection influenced by nearby SNPs in array-based
assay, but can also enable the evaluation of additional allelic/
haplotypic genetic-epigenetic effects that array-based methods are
blind to!1:12, Furthermore, polymorphic repeats between human
populations may require specialized long-read techniques!3.
Altogether, future studies may consider applying Methyl-seq
based methods instead of relying on array-based assay.

Methods

Quality control (QC) on the Methyl-seq data was conducted
following standard procedure!4. Quality of sequence data was
examined by using FastQC (ver. 0.11.8). We used Bismark
pipelines (ver. v0.22.1_dev)!” to align the reads to the bisulfite
human genome (hg19) with default parameters. Quality-trimmed

paired-end reads were transformed into a bisulfite converted
forward strand version (C— T conversion) or into a bisulfite-
treated reverse strand (G — A conversion of the forward strand).
Duplicated reads were removed from the Bismark mapping
output by deduplicate_bismark. All CpG sites were grouped by
sequencing coverage, also known as read depth. Only the CpG
sites with coverage > 10x depth were kept to ensure the data
quality. The study was approved by the committee of the Human
Research Subject Protection at Yale University and the Institu-
tional Research Board Committee of the Connecticut Veteran
Healthcare System. Informed consent was obtained from all
human participants. All analyses were carried out in accordance
with all relevant ethical regulations.

Data availability

The generation of the methyl-seq data was partially supported by NIH grants. The full
dataset will be released based on the NIH data sharing plan and Veterans Aging Cohort
Study policy. All relevant methyl-seq data for the samples and CpGs involved in this
manuscript are available in Supplementary Data 1.
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