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STEM enables mapping of single-cell and spatial
transcriptomics data with transfer learning
Minsheng Hao 1, Erpai Luo1, Yixin Chen 1, Yanhong Wu 1, Chen Li1, Sijie Chen1, Haoxiang Gao 1,

Haiyang Bian1, Jin Gu 1, Lei Wei 1✉ & Xuegong Zhang 1,2✉

Profiling spatial variations of cellular composition and transcriptomic characteristics is

important for understanding the physiology and pathology of tissues. Spatial transcriptomics

(ST) data depict spatial gene expression but the currently dominating high-throughput

technology is yet not at single-cell resolution. Single-cell RNA-sequencing (SC) data provide

high-throughput transcriptomic information at the single-cell level but lack spatial informa-

tion. Integrating these two types of data would be ideal for revealing transcriptomic land-

scapes at single-cell resolution. We develop the method STEM (SpaTially aware EMbedding)

for this purpose. It uses deep transfer learning to encode both ST and SC data into a unified

spatially aware embedding space, and then uses the embeddings to infer SC-ST mapping and

predict pseudo-spatial adjacency between cells in SC data. Semi-simulation and real data

experiments verify that the embeddings preserved spatial information and eliminated tech-

nical biases between SC and ST data. We apply STEM to human squamous cell carcinoma

and hepatic lobule datasets to uncover the localization of rare cell types and reveal cell-type-

specific gene expression variation along a spatial axis. STEM is powerful for mapping SC and

ST data to build single-cell level spatial transcriptomic landscapes, and can provide

mechanistic insights into the spatial heterogeneity and microenvironments of tissues.
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H igh-resolution single-cell gene expression with spatial
information is critical for revealing the mechanisms of
cellular organization, embryogenesis, and

tumorigenesis1–5, and could further enable therapeutic
developments6,7. Recently, spatial transcriptomic (ST) profiling
protocols have been rapidly developed and applied to study gene
expression in spatial contests of many tissues8–11. The most
commonly used ST protocol aggregates multiple cells into one
spot, providing in-situ gene expressions and spatial coordinates in
a limited resolution12. On the contrary, single-cell RNA-
sequencing (SC) data provide high-throughput gene expression
profiles at single-cell resolution. They have advantages in infer-
ring cellular identity, cell states, and trajectories of diverse cell
types13–16, but lack spatial information.

It is desirable to computationally integrate SC and ST data to
retain the advantages from both sides to facilitate comprehensive
studies of spatial heterogeneities and variations of
transcriptomics17. The current widely applied integration method
is deconvolution, which employs SC or bulk RNA-seq data as
references to estimate the cell type proportion of spots in ST
data18–22. In deconvolution, a spot is regarded as a mixture of a
fixed number of cell types, where the cell type number is decided
from prior knowledge or algorithms. Such representation cannot
link the SC and ST at the single cell level and limits the potential
to flexibly discover sub-clusters or continuous gene expression
spatial variations within a cell type. Also, ST data are relatively
less available compared with SC data. Deconvolution can only
transfer the cell-type information in SC data to ST data, but
cannot transfer the spatial information to SC data. This makes it
hard to build the spatial single-cell transcription landscape based
on the massive SC data. Methods that transfer the spatial infor-
mation in ST data to SC data are needed. Such a single-cell level
spatial landscape would greatly help investigate the spatial
proximity of different cell types and spatial variations of gene
expression for one cell type.

The core of building a single-cell level spatial landscape is to
establish SC-ST mapping and SC-SC spatial associations. A few
methods23–27 and a web server28 have been proposed. One basic
idea is to transfer spatial information based on gene expression
similarity. Some data integration methods including Seurat29 are
not designed for this task, but they can construct SC-ST inte-
grated graphs for transferring the spatial coordinates from ST to
SC. Tangram23 learns a mapping matrix to convert SC to ST, and
the matrix is optimized by minimizing the cosine similarity
between the converted and ground truth ST gene expression
profile. Some other methods explicitly consider spatial informa-
tion. Spaotsc24 uses the optimal transport theory with spatial
constraints to learn the SC-ST mapping matrix. CellTrek25 uses a
multivariate random forest model to map cells to spatial loca-
tions. scSpace26 uses a multi-layer perceptron (MLP) to predict
the absolute spatial coordinates by gene expression data.

However, the existing methods didn’t simultaneously satisfy
several factors that should be considered for mapping the SC data
into ST. Firstly, it is essential to align the data between SC and ST
datasets. We need to address domain gaps such as batch effects
and technical biases to ensure the accuracy of the results. Sec-
ondly, gene expression profiles contain rich information on cell
identity and state, and we need to filter the information on gene
expression data to extract the part that is associated with spatial
adjacency. Lastly, interpretability is critical to uncover the
mechanisms governing tissue spatial organization. We need to
identify the genes that determine the spatial location of
individual cells.

To overcome these challenges, we propose STEM, a deep
transfer learning model that learns SpaTially-aware EMbeddings
of both SC and ST data for SC-ST and SC-SC spatial association

inference. STEM features a shared encoder for SC and ST data to
obtain their unified embeddings in the same latent space, and two
predictors that simultaneously optimize these embeddings during
the training stage. By preserving spatial information and elim-
inating domain gaps between SC and ST data, the optimized
embeddings can be used to infer the SC-ST mapping and the
pseudo-SC spatial adjacency. In experiments on both semi-
simulation and real data applications, STEM outperforms existing
methods in inferring spatial associations and preserving spatial
topologies. We identified genes that dominate the spatial dis-
tribution of cells by interpreting the trained STEM model with
the attribution technique. We used STEM to locate and reveal the
spatial proximity of rare cell types in human squamous cell car-
cinoma (hSCC) data. We used STEM to construct the spatial
transcriptomic landscape of hepatic lobules at the single-cell level
and identified cell-type-specific gene expression variations along a
spatial axis. STEM is a powerful method for revealing detailed
and accurate maps of cellular spatial relationships, which can
provide mechanistic insights at the single-cell level into spatial
transcriptomics studies.

Results
STEM: Learning spatially-aware embeddings of ST and
SC data. STEM has an encoder-predictor architecture and
represents both ST and SC data as embeddings in a unified space.
Figure 1 illustrates the model of the STEM method. To address
the issue of unstable and noisy representation of absolute spatial
coordinates for cells that are too close or too far apart, we use a
normalized spatial adjacency matrix between cells in SC data or
spots in ST data as the prediction goal of STEM (Methods). In the
training stage, we use the embedding of ST data and SC data to
reconstruct two predicted spatial adjacency matrices. The ground
truth spatial adjacency matrix is calculated according to the
spatial coordinates of ST data via a Gaussian kernel. A cross-
entropy loss is calculated on each pair of corresponding rows of
the predicted and ground-truth matrixes.

Two predicted spatial adjacency matrices are obtained through
two non-parameter predictor modules: the spatial-information
extracting module and the domain alignment module. The
spatial-information extracting module builds up the ST-ST
predicted matrix by computing the correlations between the
embeddings of spots in ST data. Each row of the matrix is
normalized to 1, and thus each row represents the relative
distance of one spot to others. The domain alignment module
first eliminates the domain gap between SC and ST embeddings
by minimizing the maximum mean discrepancy (MMD)30, and
then constructs an SC-ST mapping matrix and an ST-SC
mapping matrix. Both matrices are computed by the correlations
between the embeddings of single cells in SC data and spots in ST
data, and are normalized in a similar way as the ST-ST predicted
matrix. The SC-ST mapping matrix describes the relative distance
of one single cell to all spots, and the ST-SC is the reverse. STEM
constructs an ST-SC-ST predicted spatial adjacency matrix by
multiplying these two mapping matrices.

Through minimizing the loss function during the training
procedure, both modules simultaneously optimize encoder
parameters to achieve meaningful embeddings of SC and ST
data. The spatial-information extracting module encourages the
ST embeddings to only contain spatial information, while the
domain alignment module encourages the SC embeddings to be
similar to ST embeddings and contain reasonable spatial
information for building the optimal mapping matrices. Unlike
unsupervised dimension reduction algorithms such as
autoencoder31 and VAE32,33 which condense all information
into the latent space, STEM uses spatial adjacency to supervise the
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embeddings, helping to extract the spatial information from gene
expression and also eliminate the domain gap between SC and ST
data.

After training, the optimized ST-SC and SC-ST mapping
matrices are used to build the SC-ST spatial adjacency, and the
correlation within SC embeddings builds SC-SC spatial adjacency.
Additionally, STEM can link the predicted spatial adjacency
weights to gene expression. This is because the weight in the
predicted spatial adjacency is generated from the embeddings
which are encoded from gene expression. By following the spatial
adjacency-embedding-gene path, it is feasible to identify the genes
that highly contribute to determining the spatial location of each
cell. We employ the integrated gradient technique34 to achieve
this. Detailed descriptions of the STEM model and algorithm are
provided in the Methods section.

Semi-simulation experiments showed that STEM achieves
accurate spatial mapping at both cell and tissue levels on
embryo atlas data. To benchmark the performance of STEM, we
conducted semi-simulation experiments based on the synthetic
data generated from the Spatial Mouse Atlas35 dataset. It is a
single-cell resolution spatial transcriptomics dataset. The dataset
was produced by seqFISH36 and contained three distinct mouse
embryo slides E1z2, E2z2, and E3z2. On each embryo slide, the
single-cell level gene expression profiles were provided and each
cell had a spatial coordinate. We treated the gene expression data
as pseudo-SC data without the spatial coordinates, and treated the
spatial coordinates as the ground truth to test the predictions of
methods. We synthesized pseudo-ST data to simulate character-
istics of the widely used 10X Visium data: they had a resolution
lower than the single cell level and covered only partial cells in the
tissue (Fig. 2a). Specifically, we created a grid on the tissue slide
and generated pseudo spots at the intersections to cover a portion
of single cells in the tissue slide. The gene expression values of
each spot were the gene expression summation of all covered
cells. The true cell-type proportion of each ST spot was computed
based on the cell type annotations of covered single cells.

We applied STEM on the pseudo-SC and pseudo-ST data of
each embryo slide to get the unified embeddings and construct

the ST-SC mapping and SC-SC adjacency matrices. We compared
STEM with the other five single-cell mapping methods:
CellTrek25, scSpace26, Seurat29, Spaotsc24 and Tangram23. As
all methods were based on different principles and produced
various output forms, we uniformed the outputs of all methods
into predicted spatial coordinates, SC-SC adjacency, and SC-ST
mapping for evaluation (Methods). We used the same ground
truth for evaluating all methods, regardless of how spatial
information was used (e.g., normalized or not) in the training
process.

We first evaluated whether the absolute spatial location of all
single cells can be reconstructed. The reconstruction results of all
methods on three embryos were shown in Fig. 2b and
Supplementary Figs. 1–3. From these results, STEM was the only
method that preserved the original topology structure of all single
cells. CellTrek gave a similar shape, but it predicted spatial
information for only about 38% of single cells, with the rest
discarded by their algorithm. We used the mean absolute error
(MAE) between the predicted and ground-truth spatial coordi-
nates to measure the accuracy of predicted coordinates. CellTrek,
scSpace, Seurat, and Tangram achieved similar performances
while Spaotsc had the highest error (Fig. 2c and Supplementary
Fig. 4). STEM consistently achieved the lowest MAE compared to
all the other methods.

We then validated the correctness of predicted SC-SC
adjacency by hit number which was defined as the number of
one cell’s true k-nearest neighbors that are successfully predicted
(Method). STEM got the highest hit number, about two-fold of
the second-best method’s performance on all three embryos
(Fig. 2c middle and Supplementary Fig. 5). When considering 200
true neighbor cells, STEM identified ~100 correct neighbors on
E1z2 data. It is interesting to notice that while for most methods
including STEM, a lower MAE corresponded to a higher hit
number, CellTrek achieved the low MAE but got the lowest hit
number. This might be caused by the cell discarding feature and
point repulsion process used in their method. We further
separated the single cells into two groups based on whether they
were included within spot. We evaluated the Hit number and
MAE performance of STEM on these two groups and found that

Fig. 1 Schematic overview of STEM. Denoting SC and ST gene expression matrices as XST 2 RN ´H and XSC 2 RM´H, where N and M are spot and cell
numbers, and H is the number of genes. To align the sparsity of the XST with XSC, the XST first passes through an additional dropout layer. Then the
processed ST matrix and the SC matrix pass through a shared encoder of STEM to get the corresponding unified embeddings ZST 2 Rh and ZSC 2 Rh with
the same hidden dimension size h, respectively. An MMD loss is used to align the distribution of SC and ST embeddings. These embeddings are used to
predict the ST-ST spatial adjacency by two modules. The spatial information extracting module uses the correlation between ZST as the predicted ST-ST
adjacency eS 2 RN ´N. The domain alignment module uses the correlation between ZST and ZSC to create the cross-domain mapping matrices which are
multiplied to generate another ST-ST adjacency Ŝ 2 RN ´N. The reconstruction losses Lextract and Ltrans between the two predicted adjacency and the ground
truth adjacency are computed to optimize the STEM encoder. The ground truth spatial adjacency S 2 RN ´N is generated from the spatial coordinate of
ST data.
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both achieved high hit numbers and low MAEs compared to
other methods. The performance on included cells was slightly
better than excluded, as expected (Supplementary Fig. 6).

We then evaluated whether the true cell-type spatial distribu-
tions can be correctly mapped from single cells to spots. We used
the ST-SC mapping matrix to transfer the cell-type annotation
from single cells to ST spots and computed the Pearson
correlation coefficient (PCC) between the predicted and true
distribution of cell types (Methods). As the cell type distribution
could be obtained by the deconvolution methods, we also

compared the results with Cell2location, a representative method
benchmarked previously21. STEM and Tangram had comparable
average PCCs for all cell types across all three embryos
(0.85 ± 0.02 and 0.87 ± 0.01, mean ± s.d.), and Cell2location had
a similar performance (Fig. 2c and Supplementary Fig. 7). All
other methods gave mean PCCs lower than 0.8. We found that
the performance is also influenced by the properties of cell types
(Supplementary Figs. 8 and 9). For example, cardiomyocytes had
obvious aggregation patterns on slides, making it easier to map
their spatial distribution by just identifying the cell type from

Fig. 2 The performance evaluation results of different methods on a semi-simulation experiment using mouse embryos. a An illustration of pseudo-ST
data generation. Spots on ST data contain only a fraction of single cells. b The reconstructed spatial distribution by STEM versus the ground truth spatial
distribution. Colors indicate different cell types or regions. c The mean absolute error (MAE), hit number and Pearson correlation coefficient (PCC)
performance of different methods on the first mouse embryo data. The lower the MAE, the better. The higher the hit number and PCC, the better. In PCC
results, the two edges of box and horizontal bar inside the box represent the interquartile and median of all values, respectively. d The PCC and MSE
performance of methods on five cell types. These manually selected cell types covered all comparison results (equal, lower and higher) between the PCC of
Tangram and STEM. The bar plot shows the PCC between ground truth and predicted spatial distributions of five cell types. In MAE results, we used an
enhanced boxplot to show more quintiles. The horizontal bar inside the box represents the median of all values. Each edge of the box represents the half
percentiles of the rest data, in other words, splitting the rest data into two halves.
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gene expression. As a result, all methods yielded good results on
cardiomyocytes. Conversely, the distributions of hematoendothe-
lial progenitors were scattered in space, necessitating a more
detailed subdivision of cell subtypes for mapping cells into their
locations. All methods achieved lower PCCs on this cell type. We
also ranked the cell types by their contained cell numbers and
regarded rank 1–5, 6–10, and other cell types as major, moderate,
and rare cell type groups, respectively. As shown in Supplemen-
tary Fig. 10, PCCs of all methods’ results dropped from major to
rare cell types. Tangram and STEM could achieve a median PCC
above 0.7 even on the rare cell type.

By comparing the MAE and PCC performance, we observed
that Tangram and Spaotsc could map cells to spots with high
gene expression similarity, but could not guarantee that these cells
were the spatial neighbors of that spot. We further verified this on
the five cell types shown in Fig. 2d, Spaotsc reached the average
PCC values of all methods, and Tangram had comparable PCC
values with STEM. But with the MAE metric, Spaotsc performed
worse than the average, while Tangram was also inferior to
STEM. These results demonstrated that spatial information is not
an explicit signal in gene expression, while STEM achieved more
accurate single-cell spatial reconstruction by embedding spatial
information.

We conducted experiments to further examine whether
STEM’s performance was robust across different scenarios
(Methods). We constructed different ground truth spatial ST
adjacency matrices by changing the parameters and types of the
spatial kernel. We found that except for the extremely small
values of parameters, in most cases the STEM performance was
not sensitive to kernel settings (Supplementary Figs. 11 and 12).
When adding noise with different levels into the SC data, we
found that the increase in noise didn’t decrease STEM’s
performance too much. The hit number of 200 considered
neighbors was above 60, and the median PCC of cell type
proportions was above 0.7 (Supplementary Fig. 13). We also
simulated the pseudo-ST data with more resolutions including 55,
40, 22, and 10 μm, and we found that STEM had better
performance when the resolution increased (Supplementary
Fig. 14).

Overall, these semi-simulation experiments systematically
showed that STEM could reconstruct the spatial landscape of
all SC data by transferring information from ST data that cannot
reach a single-cell resolution. STEM consistently achieved more
accurate single-cell spatial adjacency estimation compared with
other methods and was robust under different settings and noise
levels.

STEM builds spatial informative embeddings and identifies
spatial dominant genes. Interpretability is important for using
machine learning-based prediction methods to study underlying
mechanisms. We interpreted STEM by analyzing the latent
embeddings and traced genes that contribute to the spatial
information of cells. For instance, we experimented on single cells
in the forebrain, tegmentum, midbrain, and hindbrain regions of
E1z2 data. These regions were reported to have spatially-driven
transcriptional heterogeneity35. The latent embeddings of cells
obtained from the STEM encoder showed a trend from the
forebrain to the hindbrain in the uniform manifold approxima-
tion and projection (UMAP) plot (Fig. 3a), suggesting the ability
of STEM for extracting spatial manifold from gene expression
profiles.

We found a clear hollow structure on the UMAP of STEM
embeddings, but the structure was not shown in the UMAP of
PCA embeddings of gene expression derived by SCANPY37

(Fig. 3a). We examined the hollow structure by calculating the

proportion of cells included in high-dimensional spheres centered
on the mean embedding but with different radius (Methods). A
hollow structure existed if many cells were excluded from spheres
with small radius. As shown in Supplementary Fig. 15, when the
radius was low, the proportion of cells embedded by STEM was
much lower than that embedded by PCA. All the results
suggested that STEM can preserve the spatial structure.

By utilizing integrated gradient techniques34 on the STEM
model, we assigned each cell an attribution vector that showed the
contribution of each gene in determining the spatial location of
this cell (Methods). We identified genes that had a high
contribution to determining cell spatial locations in the STEM
model as spatial dominant genes (SDGs). Specifically, we focused
on the spinal cord region which is spatially distributed along the
anterior-posterior axis. We formulated a spatial trajectory on it
and computed pseudo time score for each single cell (Method).
We divided the trajectory into 11 segments based on the score
(Supplementary Fig. 16) and made the Wilcoxon rank sum test
across segments. We identified genes with significantly highly
expressed attribution scores (FDR < 0.05) compared to other
segments as SDGs. A total of 272 SDGs were identified among
351 genes. The top differentially scored SDGs displayed a clear
diagonal pattern in the heatmap (Fig. 3b), indicating that the
attribution scores of these top SDGs peaked only in the specific
spatial region. We further plotted six SDGs’ raw and recon-
structed spatial gene expression patterns in Fig. 3c, d. A
comparison with their attributions on the heatmap revealed that
these genes had high expression values in spatial segments with
high attribution scores. We then assessed if the expression
patterns of these genes remained consistent in the STEM
reconstructed results. We computed cells’ estimated pseudo time
based on STEM reconstructed spatial locations, and then
compared these SDGs expression trends along the reconstructed
and ground-truth pseudo time. The Pearson correlation between
these two fitted trends was higher than 0.99 (Supplementary
Fig. 17), revealing that STEM preserved the genes’ expression
patterns.

The identified SDGs had potential interests in revealing tissue
organization mechanisms, as supported by previous studies. For
instance, Marcks was reported to be highly expressed in the
nervous system and was important for the regulation of embryo
development38. The Hox genes (Hoxb5 and Hoxb1 in our case)
were reported to emerge gradually from the posterior aspect of
the vertebrate embryo and displayed anteroposterior positional
information during tissue generation39. There were also some
SDGs that did not visually exhibit a strong spatial aggregated
expression pattern, such as Nebl, Bak1, Kmt2d, Suz12, and Fgfr2
(Supplementary Fig. 18). We guessed that these genes may help
STEM to locate cells in regions with certain cellular states. For
instance, Nebl is a protein-coding gene involved in the actin-
binding and cytoskeletal protein-binding molecular function
reported in the Mouse Genome Informatics40. The cytoskeletal
protein is responsible for many cell functions including cell
movements and differentiation. We thus inferred that Nebl may
help STEM to identify the tissue domain where cell differentiation
or movement processes were activated. Bak1 is a protein-coding
gene related to the apoptotic signaling pathway41 and had been
reported to be involved in mouse organogenesis and
morphogenesis42. We thought this gene may help STEM to
identify the local tissue region with an activated apoptotic
process. All these results demonstrated that STEM can extract
spatial information from genes that do not have easily identifiable
spatial patterns.

To compare SDGs with region-specific highly expressed genes,
we conducted the Wilcoxon rank sum test on the gene expression
matrix to identify differentially expressed genes (DEGs) in
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segments. As shown in Supplementary Figure 19, while DEGs
showed a similar relative rank as SDGs, SDGs had lower FDR
values and thus included more genes (272 vs. 218 when
FDR < 0.05). For those genes uniquely identified as SDGs, we
ranked them by their FDR values and explored the top
10 significant ones. Their attribution profiles had clearer patterns
compared with gene expression (Supplementary Fig. 20). These
results showed that SDGs were similar but not equivalent to
DEGs, and could provide extra information in understanding
how genes were related to cells’ spatial organization.

These results manifested that the attribution analysis could
interpret the STEM model results and made it possible to identify
genes that have high contributions for determining cell location,
which could provide insights into the spatial formation and

evolution of cells in complex normal tissues or tumor
microenvironments.

STEM reconstructs single-cell spatial distribution on the
human middle temporal gyrus. We applied STEM on the well-
studied human middle temporal gyrus (MTG) region43 to further
verify its performance in the real case. The SC data we used were
sequenced by the SMART-seq protocol and derived from 8
donors between 24 and 66 years old44. These SC data lacked the
spatial coordinates of cells, but had the dissection information of
brain subregions and manually annotated cell types. The ST data
we used were at single-cell resolution produced by the in-situ
sequencing technique MERFISH45. The ST data contained about

Fig. 3 Interpretation of the STEM model. a Raw spatial distribution of cells and UMAP visualization of cell embeddings obtained from STEM and Gene
expression. The color indicates the different spatial region annotation. b The heatmap shows the attribution score of SDGs along the spinal axis. Each
column represents a gene expression vector, with the attribution score scaled from 0 to 1. c The ground truth spatial expression patterns of six SDGs. d The
STEM reconstructed spatial expression patterns of six SDGs. The genes are highly attributed in different regions, corresponding to the bolder name in the
heatmap.
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4000 genes with spatial coordinates and layer segmentation
information.

The single-cell spatial distribution reconstructed by STEM
closely resembled the human cortex topological structure in the
ST data (Fig. 4a), whereas other methods produced more blurry
distributions (Supplementary Fig. 21). We further examined the
cortical-depth distribution of single cells estimated by all methods
across different dissection layer groups. We divided single cells
into six layer groups of L1–L6 based on the tissue dissection
information. We divided the ST data into L1, L2/3, L4, L5, and
L6 subregions using the reference provided in the original study.
Ideally, cells from the same dissection layer group should
aggregate in the corresponding layer spatial region on the
MERFISH tissue. As depicted in Fig. 4b, the cortical-depth
distribution of single cells produced by all methods exhibited
laminar organization, meaning that cells in the L1 group had the
minimal relative depth, while cells in the L6 group had the
maximum relative depth. However, all other methods except
STEM failed to locate the cells in their corresponding regions.
Spaotsc and Tangram compressed all cells into L1 and L2/3
regions. Seurat and CellTrek located cells of L6 group in the
shallow region, while scSpace located all cells with an offset to
deeper region. Only the depth distribution estimated by STEM
fitted well with the true layer regions identified from ST data.

We further validated this result by computing the neighbor-
hood enrichment score46 between the SC and ST data. We
focused on the excitatory neurons in the SC data. As the SC data
did not contain any exact spatial information, we compared the
results according to the cell annotation in both data to see if cells
annotated with the same layer were enriched in spatial. As shown
in Fig. 4c, the STEM results had a clear diagonal neighborhood
score on the heatmap, indicating the estimated SC spatial
distribution of all layers was in accordance with the ST ground
truth. Spaotsc mapped all cells around the L4 region. Tangram
and Seurat failed to locate the L1 excitatory neurons which is a
thin region in human MTG. scSpace mixed the L3 and L4
excitatory neurons. STEM was the only method that recovered
the absolute spatial distribution and preserved the spatial
topology.

Based on the reconstructed coordinates, we explored whether
STEM had the potential to retrieve more genes’ spatial patterns
that were not captured in ST data. We divided mapped single cells
into five regions (L1, L2/3, L4, L5, and L6) according to their
reconstructed locations, and found 5 SC unique genes with clear
spatial region-specific patterns: CXCL14, CUX2, RORB, NFIA,
APOD. To verify our finding, we compared results with a ST
Visium dataset sequenced on similar human MTG tissue47. As
shown in Supplementary Figure 22, all five genes exhibited

Fig. 4 Performance evaluation on human MTG using all methods. a The overall reconstructed spatial distribution of single cells obtained by STEM. The
six subplots show the spatial distribution of cells in L1-L6 groups. These groups were determined based on tissue dissection information. b Comparison of
cortical-depth distribution of cell groups between different methods. The enhanced boxplot in various colors displays the cortical-depth distribution of
different single cell groups. The dashed lines indicate the boundaries of layer regions given by ST data. The horizontal bar inside the box represents the
median of all values. Each edge of the box represents the half percentiles of the rest data, in other words, splitting the rest data into two halves.
c Neighborhood enrichment analysis between SC and ST data using all methods. The x axis represents regions in the ST data while the y axis represents SC
excitatory neurons from different dissection layers. The score is row-normalized, and the red color indicates a higher neighborhood score. Bold squares
represent areas where high scores are expected.
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similar expression patterns in the Visium data, and were re-
identified as region-specific genes. These results showed that
STEM retrieved more genes’ spatial patterns from scRNA-seq
data.

STEM locates tumor-specific keratinocytes and immune cells at
the single-cell level. We applied STEM to real datasets to study
tumor microenvironments. The characterization of the spatial
architecture and arrangement of single cells in the tumor
microenvironment is critical for understanding tissue hetero-
geneity and plasticity7,48,49. We applied STEM to a human
squamous cell carcinoma (hSCC) dataset50. We used the paired
SC and ST data from the hSCC tissue of two donors. The SC data
were obtained by 10× single-cell sequencing, and a detailed
manual cell-type annotation was provided. The ST data were
obtained by an early version of the 10X Visium (Spatial Tran-
scriptomics) technique12.

STEM mapped all the SC data to ST slides accompanied with
hematoxylin and eosin (H&E)-stained histological images
(Fig. 5a). We verified that the tumor specific keratinocytes
(TSKs) were colocalized with endothelial cells at the top tumor
leading edge in both donors (Fig. 5b). In the original study, the
TSK localization was estimated by scoring each spot with TSK-
signature genes which were manually identified from scRNA-seq

data. Compared to this process, STEM achieved similar results
but reduced the workload and the potential bias in the manual
gene selection process. We further explored the spatial distribu-
tion of other keratinocyte (KC) subtypes, including tumor basal,
tumor cycling, and tumor differentiating KCs (Supplementary
Fig. 23). Neighborhood enrichment analysis showed that TSKs
tended to spatially self-aggregate and separate from other KCs,
especially far away from the tumor cycling KCs. And tumor
differentiating cycling and tumor basal KCs were colocalized
(Fig. 5c). This is consistent with the finding in the original study
that TSKs and other KCs are distributed in different leading
edges. These findings revealed the spatial characteristic of TSKs in
the tumor microenvironment.

We then studied the immune cell population in the non-TSK
leading edge area, where we observed the predominant spatial
positioning of plasmacytoid dendritic cells (pDCs) at the bottom
leading edges in donor 2 (Fig. 5d). This cell type was around 4%
of the total single cell data. We visually checked the expression
levels of pDCs and immune marker genes such as BST2, NRP1,
and JCHAIN (obtained from CellMarker51) and also quantita-
tively compared the gene expression levels between spots near
pDC cells and other spots (Fig. 5d and Supplementary Fig. 24).
The results showed these marker genes were highly expressed in
the pDC region (P value < 0.01). Furthermore, the original study
reported the activation of IFNs-related signaling pathways in this

Fig. 5 STEM results on human squamous cell carcinoma data. a The HE images and spatial reconstruction results of STEM on patient 2 and patient 10.
The black dashed line annotates the tumor-non tumor leading edge observed in the image. The colors of dots represent different cell types. b Highlighted
spatial distribution of TSK cells on P2 and P10 slides. c Neighborhood enrichment analysis on tumor keratinocyte subtypes. The score is row normalized
and thus asymmetric. Color in red indicates a higher neighborhood score. d The spatial distribution of pDC cells and three spatial expression patterns of
corresponding pDC and other immune-related marker genes.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05640-1

8 COMMUNICATIONS BIOLOGY |            (2024) 7:56 | https://doi.org/10.1038/s42003-023-05640-1 | www.nature.com/commsbio

www.nature.com/commsbio


region, and STEM allowed us to infer that the localization of
pDCs could be the potential driving force of this pathway. This
inference was consistent with previous studies showing that pDCs
secrete high amounts of type 1 interferon52. Our results and
analysis illustrated that the topology preserved results given by
STEM enabled the joint analysis with the HE image, and STEM
streamlined the determination of the spatial location of low
proportions cell types without the need for manual identification
of signature genes.

STEM reveals cell-type transcriptomic variations along the
liver zonation axis. We applied STEM to mouse liver data to
characterize the cell-type-specific transcriptomic spatial variation
in hepatic lobules. In the liver, hepatic lobule is a repeated basic
anatomical unit53 that displays a spatial trend from the portal
vein (PV) to the central vein (CV) (Fig. 6a). Studying the tran-
scriptomic variation of different cell types along the trend is
critical for revealing the mechanism of liver diseases such as
cirrhosis and hepatocellular carcinoma54. We used scRNA-seq

Fig. 6 Cell-type-specific transcriptomic variation along the liver zonation revealed by STEM. a Distribution of zonation scores on the ST data. A high
score indicates the CV region, while a low score indicates the PV region. Arrow in red indicates the direction from a low (PV) to a high (CV) zonation score
region. b Illustration of the transfer of zonation scores from ST to SC data. The zonation scores of SC data are obtained by multiplying the SC-ST mapping
matrix with the ST zonation score vector. Then cells are grouped into different cell types, and the analysis of cell-type-specific gene variation along the axis
can be performed. c Expression profiles of six zonation landmark genes along the PV-CV axis. The x axis represents the zonation score, and the y-axis
represents the gene’s raw count expression level. Each curve was obtained by fitting the polynomial function of degree 3 on the corresponding expression
value. d Heatmap of the top significantly differentially expressed genes along the PV-CV axis. Gene expression values are scaled, with red indicating high
expression and blue indicating low expression. e Expression profiles of six endothelial cell-specific marker genes along the PV-CV axis. The top and bottom
genes are highly expressed in the PV and CV regions, respectively. The shading shows the 95 confidence interval. f Violin plots of fibroblast-specific marker
genes identified by STEM. The top panel shows the PV marker gene, while the bottom panel shows the CV marker gene.
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and ST data from a liver cell atlas55. Four liver tissue slide datasets
of a healthy mouse from 10X Visium technique were used as the
ST data. Single cells from all healthy mice were used as the SC
data. Each spot in the ST data was manually assigned a zonation
score that reflected the scaled distance from the spot to the PV.
Using the spatial mapping matrix obtained from STEM, we
reordered the cells along the lobular axis from PV to CV, and
revealed the spatial variation of cell-type-specific gene expression
along this axis (Fig. 6b).

We first studied hepatocytes which were known to have an
obvious spatial variation of gene expression along the PV-CV
axis54,56. Six previously reported marker genes57 Cyp2f2, Alb, Asl,
Ass1, Cyp2e1, and Glul were highly expressed in the PV, middle,
and CV region of the hepatic lobule, as shown in Fig. 6c. By
further dividing hepatocytes into 10 spatial subregions along the
zonation axis, 819 statistically significant regionally highly
expressed genes (FDR < 0.05) were identified. For instance, Gene
Mup20, Sds and Aldh1b1 were highly expressed near the PV
region. Gene Ybx1, Aes and Npm1 were highly expressed in the
middle region of the trajectory. Gene Serpinale, Akr1c6 and Oat
were highly expressed near the CV region (Fig. 6d). We validated
these region marker genes with a recently published work
iSpatial58. They gave eight in-situ sequencing verified PV and CV
enriched genes, and we found 7 genes were also identified as the
significant DEGs of the corresponding near PV and CV subregion
(FDR < 0.05, Supplementary Table 1). Furthermore, they compu-
tationally identified 10 genes each enriched in PV and CV
regions, and we found these genes were also identified as the
significant DEGs in the near PV and CV clusters, as shown in
Supplementary Tables 2 and 3. These results demonstrated STEM
could potentially provide a more comprehensive set of marker
genes to reveal the spatially varied transcriptomic properties of
hepatocytes.

We conducted a similar analysis on endothelial cells which had
also been reported to have spatial variations in a recent study55.
Two genes Gja5 and Adgrg6 were identified as the marker of
endothelial cells at the PV region (Supplementary Fig. 25), which
was in accordance with the Molecular Cartography results shown
in the previous study55. Besides, genes such as Ntn4, Msr1, and
Efnb1 were highly expressed near PV region, and genes such as
Lgals1, Ptgs1, and Gas6 were highly expressed near CV region
(Fig. 6e).

Then, we studied the spatial variation of gene expression in
fibroblasts between the PV and CV regions. Fibroblasts are
critical to hepatic fibrogenesis and have attracted interest as a
potential therapeutic target59. The transcriptomic variation
among different functional sub-cell types of fibroblasts had been
studied in the original study, but the variation in spatial zonation
was not investigated. Fibroblasts were categorized into three
groups based on their zonation score: those near the PV region,
those in the middle, and those near the CV region. The
differential analysis was performed between cells near PV and
CV regions. 126 and 105 genes significantly highly expressed
(FDR < 0.05) of the two regions were found, respectively. Among
them, genes Sparc, Tagln, and Press23 were the most significantly
highly expressed genes near the PV region. Rspo3, DCN and Apoe
were the most significantly highly expressed genes near the CV
region (Fig. 6f). These genes found by STEM could further help to
guide gene selection for spatial in-situ sequencing experiments.

We further performed CellTrek and Tangram, the second and
third performed methods in the semi-simulation experiments, on
the hSCC and mouse liver dataset, respectively. As shown in
Supplementary Fig. 26, for the hSCC data, Tangram was unable
to reconstruct the spatial pattern, hindering its application of
joint analysis with tissue images. CellTrek reconstructed a coarse
morphology in the hSCC dataset but introduced artifacts. For the

mouse liver data, Tangram recovered similar gene expression
patterns along the PV-CV axis. The PV and CV marker genes’
expression pattern reconstructed by CellTrek was not obvious.
These results demonstrated the unique value of STEM for
assigning cells with spatial information to study the transcrip-
tomic variation of interested cell types along the tissue anatomic
or functional axis.

Discussion
Revealing the spatial variation of gene expression in tissues and
the spatial heterogeneity of cellular transcriptional signatures at
the single-cell level is vital to understanding the functional
organization of tissues and the underlying mechanisms of various
diseases. Due to limitations in current spatial and single-cell
transcriptomics techniques, computational methods for con-
structing spatial gene expression landscapes at the single-cell level
are in need. The key is to infer the SC–SC spatial adjacency and
SC-ST mapping by learning gene-spatial relations from the ST
data. We propose STEM for this purpose. It learns spatially-aware
embeddings of transcriptomic data via transfer learning. The
learned embeddings support inferring spatial adjacency between
spots in ST data and cells in SC data, as well as between cells in
SC data.

STEM offers unique advantages for the integrated analysis of
SC and ST data. Compared to most spot deconvolution algo-
rithms requiring prior knowledge of cell types, STEM overcomes
the limitations of fixed selection of cell-type numbers and does
not use any additional metadata information for learning spatial
information of all single cells, allowing for the description of cells’
continuous status and the exploration of spatial distribution at
different levels. Compared to other spatial mapping algorithms,
STEM provides more accurate spatial reconstructions that are
consistent with referenced spatial topology as shown in our semi-
simulation and biological verification experiments. This enables
joint analysis of the location of single cells with referenced tissue
images, such as colocalizing TSK cells with the tumor leading
edge. STEM also supports the analysis of transcriptomic variation
within a specific cell type along the spatial axis. Using the single-
cell level spatial landscape of liver tissue reconstructed by STEM,
we identified gene expression changes in hepatocytes, endothelial
cells, and fibroblasts. Upon the model, by following the spatial
adjacency-embedding-gene pathfinding, we highlight the spatially
dominant genes (SDGs) in the STEM model. These SDGs can be
used for model interpretation and facilitate the discovery of
healthy or diseased tissue organization mechanisms. Further-
more, identifying SDGs of cancer cells or disease-related cell types
could also be used to provide insights into potential drug targets.

STEM can receive input data of various conditions. The ana-
lysis on the MTG and hSCC datasets showed the ability of STEM
to integrate SC data with different types (in-situ or sequenced
based) of ST data. The mouse liver dataset demonstrated that
STEM could produce convincing results when ST and SC data
were not from the same donor but from the same healthy region
with similar cell type proportions. In the future, we will try to
apply STEM to SC and ST data from different donors in the same
disease state.

Spatial transcriptomics has become a valuable technique in
investigating the biological process in different tissues, and has
generated a wealth of data60. In the future, it is anticipated that
more tissues will be characterized using both SC and ST data.
Integrating these two data can provide a comprehensive under-
standing of cell interactions and spatial niches at single-cell
resolution. We expect that STEM will be a valuable method for
reconstructing single-cell spatial transcriptomic landscapes and
enhancing the understanding of spatial cellular heterogeneity.
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Methods
Spatial adjacency matrix. STEM takes spatial gene and single-cell
expression as input, and predicts the ST-ST spatial adjacency
matrix at the training stage. The corresponding ground truth
spatial adjacency matrix is converted from spatial coordinates. As
for the input, the spatial gene expression data XST is a N ´H
matrix, where N is the number of spots, H is the number of
highly variable genes identified from the standard SCANPY
workflow. The single-cell gene expression data XSC is a M ´H
matrix, where M is the number of cells. The gene is aligned with
ST data to make the unified input for STEM. The gene expression
value in these matrices is normalized: The unique molecular
identifier counts for each gene is divided by the total counts
across all genes, and then multiplied by 10,000 and transformed
into a log scale.

Giving the ground truth ST data spatial coordinates
YST 2 RN ´ 2, we convert the absolute coordinate values into a
normalized spatial adjacency matrix S. Each element Sij in the
matrix represents pairwise spatial association strength and is
computed by the Gaussian kernel between coordinate YST

i of spot
i and YST

j of spot j. The specific form of Gaussian kernel function
is:

ϕ YST
i ;YST

j

� �
¼ 1ffiffiffiffiffi
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i ;YST
j
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where σ is the standard deviation which controls the width of the
Gaussian bell, YST

i and YST
j are the coordinates of two ST spots.

Then L1 normalization is applied over columns in S to let the sum
of values in each row be 1, and thus each row is the normalized
distance from spot i to all spots. From the semi-simulation
experiments, we empirically found that STEM achieved the best
performance when σ is half of the mean nearest neighbor distance
of ST spots (Supplementary Figure 11).

Encoder of STEM. STEM uses a shared MLP encoder to repre-
sent SC and ST gene expression vectors as embeddings in a
unified latent space. As a spot in ST data contains more cells than
a single cell in SC data, the number of expressed genes in one spot
is generally higher than in a single cell, resulting in a higher
sparsity of the SC data. To account for this difference in sparsity,
we add a dropout layer for ST data before the encoder. The
hyperparameter d in the dropout layer which represents the
probability of an element to be zeroed is defined as:

d ¼ 1�Median ðnSCÞ
Median ðnST Þ

where nSC and nST represent the average number of expressed
genes in SC and ST data, respectively. Intuitively this dropout
layer will set the sparsity of two data in the same level. Then we
use a MLP encoder to embed the expression vectors into latent
embeddings ZST 2 Rh and ZSC 2 Rh with the same dimension
size h ¼ 128.

Predictor of STEM. Based on the embeddings obtained from the
encoder, STEM reconstructs the spatial adjacency relationship of
ST data in two ways, corresponding to the two predictor parts in
the model. The first predictor utilizes only ST embeddings to

reconstruct spatial relationships, while the second predictor uti-
lizes both SC and ST embeddings.

In the spatial information extracting module, the spatial
information extracting module uses ST embeddings ZST to
construct the predicted ST spatial adjacency matrix eS 2 RN ´N :

eSij :¼ softmaxcol
�
ZST
i ;ZST

j

� ¼ exp
�
ZST
i ;ZST

j

�� �
∑k exp

�
ZST
i ;ZST

k

�� �
where <�; �> represents the inner products, softmaxcol denotes the
softmaxing operation over columns.

Then STEM uses the cross entropy H as the loss function
between the ground truth and predicted ST spatial adjacency
matrix eS and S. Specifically, the row vectors eSi and Si represents
the predicted and ground truth normalized distance from spot i
to all spots, respectively. The cross entropy loss is applied to these
row vectors and can be described as:

Hi
eSi; Si� �

¼ � ∑
N

j¼1
logeSij ´ Sij

The total cross entropy loss is defined as the mean of all rows’
loss:

Lextract ¼ H eS; S� �
¼

∑N
i¼1Hi

eSi; Si� �
N

In the domain alignment module, STEM first reduces the mean
distance between ST and SC embeddings, and then uses these
embeddings to estimate the SC-ST and ST-SC mapping matrices.
These two mapping matrices are multiplied together to construct
another ST spatial adjacency matrix Ŝ 2 RN ´N . By directly
optimizing Ŝ, the optimal SC-ST and ST-SC mapping relationship
can be found. A similar idea is proposed in Haeusser’s work61,62.
We extend its applicability from classification to relation
construction and fully utilize the cross-domain association matrix
as the SC-ST and ST-SC mapping matrix.

Specifically, the STEM introduces the Maximum Mean
Discrepancy loss to reduce the mean distance of ST and SC
embeddings:

LMMD ¼ MMD ZSC
b ;ZST

b

� �
where ZSC

b and ZST
b are SC and ST embeddings in a mini-batch.

The inner-product is used to measure the similarity between
ST and SC embeddings: Bij :¼ <ZSC

i ;ZST
j >. The mapping matrix

C 2 RM ´N from SC to ST is computed by softmaxing similarity
matrix B over columns:

Cij :¼ softmaxcolBij ¼
expðBijÞ

∑
k
exp Bik

� �
Similarly, the mapping matrix from ST to SC Ĉ 2 RN ´M is

computed in the same way by replacing B with BT . Then the two-
step spatial adjacency matrix Ŝ is the multiply results of two
mapping matrices:

Ŝ ¼ Ĉ � Cwhere Ŝij :¼ Ĉ � C� �
ij ¼ ∑

k
ĈikCkj

The cross entropy H between the ground truth and this two-
step ST spatial adjacency matrix is used as the loss function:

Ltrans ¼ H Ŝ; S
� �

The total loss of STEM consists of three parts:

L ¼ Lextract þ α ´ LMMD þ β ´ Ltrans
The hyperparameters α and β are the weight of LMMD and the

transition loss Ltrans in the domain alignment module,
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respectively. It should be noticed that one preliminary require-
ment of successful transferring is that the ST embeddings do
encode the spatial information, which is optimized by the Lextract
loss during training. In addition, the Ltrans is more important than
LMMD, because Ltrans encourages the inner product between ST
and SC embeddings could be used to reconstruct the spatial
adjacency matrix, and LMMD only encourages minimizing the
mean distance between SC and ST embeddings, with no
constraint on the spatial relation. We set β as a dynamic value,
increasing from 0 to 1 during the training. This design
encouraged STEM first to focus on reconstructing the spatial
adjacency within ST and then learning the spatial mapping
between ST and SC.

As for setting the value of α, we examined the STEM
performance from α= 0 to α= 1. We used the hit number
under the considered hit number of 25 as the evaluation metric.
We found that STEM achieved an improved performance
(Hit number from 6.3 to 6.6) when introducing the MMD
loss (α > 0), and the performance (Hit number from 6.6 to 6.7)
was not very sensitive to the change of nonzero α values
(Supplementary Table 4). So we set the alpha= 0.5 as the
default value.

After training, STEM gives multiple results including the cell
type deconvolution results TST 2 RN ´D, pseudo spatial coordi-

nates of single cells Ŷ
SC 2 RM ´ 2 and the SC spatial adjacency

matrix SSC 2 RM ´M. STEM uses the ST-SC mapping matrix Ĉ
for deconvoluting the cell type proportion in each spot. Given a
cell type indicator matrix TSC 2 RM ´D, where D is the number of
cell types. Each row in TSC is a one-hot vector, and the nonzero
index is the corresponding cell type. The deconvolution result

T̂
ST 2 RN ´D is given as:

T̂
ST ¼ Ĉ ´TSC

The pseudo spatial coordinates of single cells are retrieved by
computing:

Ŷ
SC ¼ C ´YST

And the reconstructed spatial adjacency matrix is the inner-product
results of SC embeddings:

Ŝ
SC
ij :¼ �ZSC

i ;ZSC
j

�
Attribution function. STEM employs the integrated gradient
(IG) technique for each cell to assign attribution of genes to its
desired spatial location. The IG technique is based on counter-
factual intuition, which considers the absence of the cause as a
baseline and compares the baseline with current results. For a
computational model, the baseline absence of the cause is mod-
eled as a zero input vector. Specifically in STEM, let Xi be the
input gene expression of cell i, Ci;m is the max value in matrix C’s
i th column, and X0 ¼ ½0; 0; ¼ ; 0� is the baseline vector. Given
this three information, the attribution Wij of gene j in cell i is
computed as the integrated gradient along the path from the
baseline X0 to the input Xi:

Wij :¼ IG xj; x
0
j;Ci;m

� �
¼ IG xj; 0; FðxjÞ

� �
¼ xj ´

Z 1

α¼1

∂F α ´ xi
� �
∂xi

As the maximum value Ci;m indicates that cell i has the
maximum probability located around ST spot m, the attribution
vector Wi reveals the contribution of genes for determining this
spatial location. We compute the gene attribution vector of all
single cells and get a gene attribution profile AM ´H .

Semi-simulation data generation. Transcriptomic data with
spatial information at the single-cell resolution is required for
evaluating the methods’ ability of inferring spatial associations.
Currently, such data can only be provided by some less popular
spatial sequencing technologies which are low-throughput and
require complicated operations. We take these experimental
single-cell resolution spatial transcriptomic data as SC data with
the ground-truth spatial information, and simulate pseudo-ST
data by creating a spatial grid on the spatial space of these data.

Specifically, we placed the pseudo-ST spots at the crossing
point of the spatial grid. The number of pseudo-ST spots was
decided by the topology structure and spatial distribution of the
original data. A 30´ 40 grid was generated for mouse embryo
data as the default setting. The gene expression profile of each
spot is obtained by summing the expression of its surrounding
single cells. We removed the spots that contained less than three
cells. It is noticeable that in real spatial data the tissue cannot be
fully covered by spots, so the transcripts of some single cells
cannot be captured. We took this into account in the simulation
process. The gene expression of each spot aggregated only about
50–70% of the local surrounding single cells. In other words, one-
third of single-cell gene expression profiles were not included in
the ST data. Then the cell type proportion of each spot is
calculated based on its contained single cells’ annotation. Pseudo-
spots in the simulated ST data have the information of gene
expression XST , spatial coordinate YST and cell type proportion P,
where P is a N ´A matrix and A is the number of cell types
appeared in the tissue.

Output unification. To make the results comparable, we ran all
methods with default parameter settings and unified the outputs
of different methods into three parts: the reconstructed SC spatial
coordinates, the SC spatial adjacency matrix and the SC-ST
mapping matrix. The SC spatial coordinates were used for
computing MAE. The SC spatial adjacency matrix was used for
computing hit number. It was notable that hit number was a
rank-based metric and was not sensitive to the kernel function
used for building SC spatial adjacency matrix. The SC-ST map-
ping matrix was used for computing the cell type proportion
of spots.

CellTrek. We obtained the estimated SC coordinates from Cell-
Trek. We set the coordinates of cells discarded by CellTrek as
zero. Then we computed the distance between each pair of single
cells and got the ranked SC spatial adjacency matrix based on the
coordinates. Each row in the adjacency matrix was one cell’s
spatial proximity to others. The closest cell pair was ranked as
one. For getting SC-ST mapping matrix C, given a single cell i and
a spot j, we first set the value Cij as 1 if the cell was located within
the spot in spatial, otherwise 0. Then we normalized the mapping
matrix by column, guaranteeing that the sum of cells’ mapping
weights to one spot was 1.

scSpace. We obtained the SC coordinates of all single cells from
scSpace. Then we got the SC spatial adjacency matrix and SC-ST
mapping matrix via the same procedure used for CellTrek.

Seurat. We used the “FindTransferAnchors” to integrate the SC
and ST data and got the SC-ST mapping matrix C from
“TransferData” function. We got the reconstructed SC spatial

coordinates Ŷ
SC

by averaging the coordinates of spots according
to the mapping weights:

Ŷ
SC ¼ Crn ´YST

where Crn was the mapping matrix C with row sum normalized
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to 1 and YST represented spot coordinates. Based on the recon-
structed coordinates, we computed the SC spatial adjacency
matrix in the same way illustrated in the above CellTrek
paragraph.

Spaotsc and Tangram. We obtained the SC-ST mapping matrix C
from their outputs. We got the SC spatial adjacency matrix and
SC-ST mapping matrix via the same procedure used Seurat.

STEM. We obtained the SC and ST embeddings. We got the SC-
ST mapping matrix and SC adjacency matrix by computing the
inner product of SC-ST and SC-SC embedding pairs. We got the
reconstructed SC spatial coordinates by multiplying the mapping
matrix with the spot coordinates, as depicted in the “predictor of
STEM” section.

Performance evaluation. We validate the model performance by
using three metrics on the synthetic data. We compute the MAE
of distance between the predicted and true spatial coordinates as
the error metric. We used the hit number to justify the correct-
ness of predicted SC-SC adjacency. We calculated the PCC
between the predicted and true cell type spatial distribution.

The predicted coordinates are computed by multiply the SC-ST
mapping matrix with ST spatial coordinate vector. Distance MAE
is defined as the mean distance among all predicted and ground
truth coordinate pairs:

MAE ¼ 1
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YSC
0 � Ŷ

SC
0

� �2
þ YSC

1 � Ŷ
SC
1

� �2r !
where Y �

0 and Y �
1 are the coordinate values in the first and second

spatial axis.
Hit number is calculated on the SC spatial adjacency matrix. It

is the average number of cell’s K-nearest neighbors that can be
successfully predicted. It is the function of K and is increased as
the K increases. Specifically, for each cell i, a set Sgi contains K
ground truth nearest neighbor cells and a set Spi contains K
predicted truth nearest neighbor cells obtained from the
reconstructed SC adjacency. Both two sets have K elements:

Sgi
		 		 ¼ Spi

		 		 ¼ K

The number of cell i’s conserved neighbor is:

#ConservedNeighboriðKÞ ¼ jSgi \ Spi j
The hit number under K neighbors is the mean value of all

cells’ conserved neighbor:

Hit numberðKÞ ¼ 1
M

∑
M

i¼1
#ConservedNeighboriðKÞ

For cell type i, it has a spatial proportion distribution among all
ST spots. The ground truth proportion Pi 2 R1 ´N is obtained by
recording the annotation of cells belonging to each spot during
the semi-simulation generation. As for estimated cell distribution
P̂i 2 R1 ´N , we first select the cells (rows) belonging to cell type i
in the SC-ST mapping matrix and get a tailored mapping matrix
Ci 2 RMi ´N , where Mi is the number of cells belonging to cell
type i, N is the number of spots. Then, we summarize rows in Ci

into a vector P̂i 2 R1 ´N and regard it as the estimated cell type
distribution. The PCC is computed between the estimated cell
distribution vector P̂i and ground truth Pi:

PCC ¼ ∑ðP̂i �mpÞðPi �mgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ P̂i �mp

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Pi �mg

� �2r

where mp is the mean of the vector P̂i and mg is the mean of the
vector Pi.

Constructing ground truth ST spatial adjacency via different
kernel settings. We conducted two experiments on constructing
different ST spatial adjacency matrices. First we fixed the Gaus-
sian kernel and varied the parameter σ on three semi-simulated
embryo data. We used the hit number with considered neighbor
numbers ranging from 0 to 25 as the evaluation metric.

Then we constructed the adjacency matrix as the exponential
kernel and the KNN kernel. In the exponential kernel, the spatial
adjacency value between YST

i and YST
j was formed as:

ϕe YST
i ;YST

j

� �
¼ exp �

jjYST
i � YST

j jj
2

l

 !
where l is the scale factor and jj � jj2 is the L2-norm (Euclidean
distance). In the experiment, we varied the scale factor l and
examined the STEM performance. In the KNN kernel, we defined
the spatial adjacency value as 1 if two spots were K neighbors:

ϕKNN YST
i ;YST

j

� �
¼ 1if cell j in K neighors

0if cell j not in K neighors



We varied the number of neighbor K and examined the STEM

performance. We plotted and compared the hit number
performance with considered neighbor numbers in the range
of 0–25.

Adding different noise levels to semi-simulation data. For
benchmarking STEM on noise SC data, we added the Gaussian
noise to the gene expression profiles. Specifically, we simulated
the noise gene expression profiles by introducing Gaussian noise
into the raw data, characterized by zero mean and gene-specific
variances. The noise variance of gene i was calculated as R ´Gi,
where Gi was the inherent variance of gene i. This approach
allowed us to manipulate the signal-to-noise ratio via the para-
meter R. To avoid the introduction of negative values due to
noise, we established a minimum expression threshold of zero.
We generated four noise levels with R= 0.2, 0.4, 0.6, and 0.8. We
plotted and compared the hit number and PCC performance with
considered neighbor numbers in the range of 0–25.

Examining the hollow structure. We got the cells’ embeddings
from the STEM model and PCA, respectively. For each type of
embedding, we computed the mean embedding and the distance
of the nearest neighbor as D. We then regarded the mean
embeddings as the center of a high dimensional sphere and
monitored how many cells could be included within the sphere as
the normalized radius R/D increasing from 0. A hollow structure
existed if many cells were not included when the R/D was small.

Constructing spatial trajectory along the spinal cord. We fitted
a polynomial function pðxÞ of degree 5 to all cells belonging to the
spinal cord region. We regarded the coordinates along the x and y
axis as the independent and dependent variables, respectively. And
we got the optimal functions by minimizing the squared error:

E ¼ ∑
K

i¼1
p xi
� �� yi

		 		2
where K was the number of single cells. ðxi; yiÞ is the spatial
coordinate of cell i. After getting the function pðxÞ, we defined the
cell at the top right corner as the starting point and set its pseudo
time as 0. For other cells, we computed their geodesic distances
along the fitted function to the starter cell and used the distances
as the pseudo time values.
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Data preprocessing. We used published data for analysis. The
original source data had received ethical approval, and in cases of
human data, informed consent from participants.

We obtained the raw count matrices and selected the “z= 2”
slice for each embryo section. We removed cells with “Low
quality” annotation. We used the raw count matrices to generate
the pseudo ST data. And then we normalized and log scaled the
SC and generated ST data by using the “normalize_total” and
“log1p” functions of SCANPY package in Python.

We used the 4000-gene MERFISH data from the donor “H18”
as the ST data. We manually separated the MERFISH data into
L1-L6 layers according to the Fig. 3 shown in the original paper43.
We used the exons matrix of SMART-seq data as the SC data. We
categorized cells into different layers according to the “brain_re-
gion” column in the provided cell metadata. After gene
alignment, 3,491 genes were shared across the SC and generated
ST data. As for the reference Visium data, we used the data from
healthy tissue named “control” from donor “1_1”. We aligned
their annotations with the MERFISH data by changing “Layer X”
to “LX” and merging two pairs “Layer 2” and “Layer 3”, “Layer 6”
and “White matter” as “L2/3”, “L6 and others”.

We used single-cell RNA-seq and the Spatial Transcriptomic data
of donor 2 and donor 10. We removed single cells with “Multiplet”
annotation. To reduce the computation burden, we selected 2000
highly variable genes from the ST data as the common gene set for
SC and ST gene alignment. We used the function “nhood_enrich-
ment” in squidpy package to perform the neighborhood enrichment
analysis.

We utilized four Visium liver sections from mouse sample 1 as
the ST data. We used both CD45− and CD45+ cells (sample
“CS88”, “CS89”, “CS93”, “CS97”, “CS138” and “CS141”) sequenced
by scRNA-seq as the SC data. As the number of Endothelial cells
and Kupffer cells in the SC data was three times higher than other
cell types, we implemented a subsampling strategy with a sampling
rate of 0.3. We then identified 2000 highly variable genes in each
Visium section and merged them into a union common gene set
containing a total of 4866 genes. We used this gene set to align the
genes between the SC and ST data.

Statistics and reproducibility. All statistical analyses were per-
formed with the SCANPY package in Python. Two independent
groups’ comparisons were performed using the Wilcoxon rank
sum test on the log normalized data, with false discovery rate
(FDR) < 0.05 considered statistically significant. For finding
significant expressed genes across multiple groups or segments,
we performed Wilcoxon rank sum test on each group to the
union of the rest of the group. We used three mouse embryo
tissue slides for the semi-simulation experiments, one human
MTG region for the first real application experiment. For the
hSCC experiment, we used ST and SC data from two donors, and
each donor had three tissue ST replicates. We trained STEM
jointly on these three replicates of each donor. For the liver
experiment, we used SC and ST data from the same healthy
mouse, and the ST data had four tissue slides.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The original data used in this paper can be accessed through the following links. The
mouse embryo data can be downloaded from https://marionilab.cruk.cam.ac.uk/
SpatialMouseAtlas. The human MTG data can be downloaded from https://doi.org/10.
5061/dryad.x3ffbg7mw, and the SMART-seq data can be downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq. The referenced

human MTG Visium data can be downloaded from GSE220442. The hSCC ST and SC
data can be obtained from the GEO database (GSE144240). The mouse liver ST and SC
gene expression data can be downloaded from the “Liver Cell Atlas: Mouse StSt” dataset
at https://www.livercellatlas.org/download.php. The corresponding spatial coordinates
and corresponding H&E images can be obtained from the GEO database (GSE192742).
The processed data were deposited in Figshare63: https://doi.org/10.6084/m9.figshare.
24452812. The source data for Figs. 2c, 2d, 4b and 6f can be obtained in Supplementary
Data 1–4, respectively. All other data are available from the corresponding author (or
other sources, as applicable) on reasonable request.

Code availability
STEM is openly available as a Python package for free academic use. The source code,
examples and analysis are accessible at https://github.com/WhirlFirst/STEM or
Zenodo64.
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