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scPML: pathway-based multi-view learning for cell
type annotation from single-cell RNA-seq data
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Yu-An Huang 2✉

Recent developments in single-cell technology have enabled the exploration of cellular het-

erogeneity at an unprecedented level, providing invaluable insights into various fields,

including medicine and disease research. Cell type annotation is an essential step in its omics

research. The mainstream approach is to utilize well-annotated single-cell data to supervised

learning for cell type annotation of new singlecell data. However, existing methods lack good

generalization and robustness in cell annotation tasks, partially due to difficulties in dealing

with technical differences between datasets, as well as not considering the heterogeneous

associations of genes in regulatory mechanism levels. Here, we propose the scPML model,

which utilizes various gene signaling pathway data to partition the genetic features of cells,

thus characterizing different interaction maps between cells. Extensive experiments

demonstrate that scPML performs better in cell type annotation and detection of unknown

cell types from different species, platforms, and tissues.
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The technique of single-cell RNA sequencing (scRNA-seq)
has revolutionized the analysis of cellular heterogeneity
and opened up avenues for studying the mechanisms

underlying development and disease at a single-cell resolution1–3.
By contrast to bulk sequencing, which merely provides infor-
mation on tissue averages4, scRNA-seq allows for transcriptomic
studies on individual cells5. The crucial task of cell identification,
which assumes a fundamental role in both biological and medical
research, constitutes an indispensable component of scRNA-seq
data analysis6,7.

Cell type annotation techniques, such as SCINA8, scSorter9,
and Garnett10, commonly involve a two-step process that consists
of unsupervised clustering of cells, followed by the assignment of
cell types to each cluster based on the aggregated expression
profiles of clustering results, as well as cross-referencing with sets
of canonical gene markers. However, the accuracy of such
annotations is heavily influenced by hyper-parameter settings
(e.g., the number of clusters), and highly dependent on prior
knowledge of canonical marker sets, which may be limited or
unavailable for rare or less studied cell types8,10.

To address the challenges posed by marker genes, prevalent
annotation methods now leverage cell-type-specific information
from existing reference datasets6,11–13. These methods can be
broadly categorized as correlation-based methods or machine-
learning-based methods14. Correlation-based methods quantify
the correlation of gene expression profiles between reference and
query data. For instance, scmap15 projects cells from query data
onto reference data and measures the correlation between them
using high variable gens of reference data with three different
correlation calculations (i.e., cosine similarity, Spearman corre-
lation, and Pearson correlation). SingleR16 performs cell anno-
tations in a similar fashion, while CHETAH17 constructs a
classification tree based on the variance in gene expression pro-
files of each cell type in the reference data. These methods may be
subject to batch effects, particularly when the reference and query
data are derived from different platforms and experiments18.
Although Seurat19 addresses batch correction by identifying
anchor cell pairs between well-labeled reference data and unla-
beled query data, accurately distinguishing biological perturba-
tions along with technical batch effect20,21.

Machine learning-based methods, such as SciBet22, scNym23,
are capable of recognizing cell-type-specific patterns by extracting
key features of cells and assigning labels to query data. These
methods are renowned for their ability to handle intrinsic noise
and to overcome batch effects20,22,23. However, their performance
remains restricted, partially due to their limitation in learning
cell-type-specific patterns solely from individual cells while
ignoring inter-cellular relationships. Numerous studies have
demonstrated that Graph Convolutional Networks (GCN) can be
utilized to capture such topological cell relationships and enhance
performance24–28. The graph-based method scGCN24 employs
the CCA-MNN approach to construct a hybrid graph consisting
of both reference and query cells, thereby enabling scGGN to
transfer labels from reference to query data. Machine learning
methods that require the use of test data during the training
process, such as scNym23 and scGCN24, are known as direct
learning methods. For each new batch of test data, these methods
need to be retrained with both the training and test data to
annotate the new batch of test data, making them unsuitable for
processing multiple batches of test data. Additionally, these
methods do not consider the interactions between genes, which
may weaken their performance in cell annotation tasks.

Identifying the sources of cell-to-cell variability in signaling
dynamics is essential for cell annotation29–33. Here, we utilized
different gene sets from biological pathways to partition cell gene
features and constructed topological maps of cell-cell relations.

We then employed graph convolutional neural networks
(GCN)34 to capture high-order relationship information between
cells and obtain low-dimensional representations24,35. Recently,
pre-trained models have gained significant popularity.
Geneformer36 is a pre-trained model based on self-attention
mechanisms. It has undergone self-supervised learning on
approximately 30 million cell data to gain an understanding of
dynamic networks. After pre-training, Geneformer only requires
context-specific fine-tuning and can be applied to various
downstream tasks, such as network dynamics predictions and cell
annotations.scArches37 is also a pre-trained algorithm that can be
compiled with lots of different models, such as treeArchs38, which
is used to construct a hierarchical tree from reference data to
annotate cells of query data.Inspired by Geneformer and scAr-
ches, we designed a self-supervised GCN (Graph Convolutional
Network) here to extract low-dimentional representations of
raw data.

As there exist numerous pathway datasets39–42, we could
construct many different cell topological maps from different
perspectives on scRNA-seq data, each of which we term a “view."
To fully exploit these distinct views, we used a multi-view
learning approach43,44 to integrate these feature information.
Consequently, we proposed scPML, an artificial intelligence
neural network model based on graph convolutional neural net-
works and multi-view learning for annotating cell types. scPML
simultaneously considers cell-cell relationships and gene-gene
interactions with pathway and graph convolution network,
respectively, and integrates information from different pathway
datasets using multi-view learning. We have extensively demon-
strated the superiority and robustness of scPML in annotating cell
types from different platforms, species, and tissues through
multiple experiments. Additionally, scPML can be conveniently
applied in scenarios with multiple batches of test data without
sharing training data, and pre-training can efficiently facilitate
cumulative learning from multiple training data.

Results
Overview of scPML. The classification of a cell is predominantly
determined by the genes it expresses, thus rendering gene
expression data as an optimal basis for cell classification. scPML,
utilizing well-labeled gene expression data, learns latent cell-type-
specific patterns for annotating cells in test data (Fig. 1). scPML
initially employs various pathway datasets to model multiple cell-
cell graphs to learn kinds of relationships among cells for a
training dataset. Pathway datasets divide genes into various gene
sets based on specific biological processes39, which reflect cell
heterogeneity on the level of biological functions and minimize
the impact of dropout events as a gene has limited effect on the
entire gene set29. We use pathways to construct a similarity
matrix, which reflect the similarity between cell. Then we use
mutual nearest neighbor (MNN)18 concept to construct cell-cell
graphs. Structural information is learned from cell-cell graphs
using self-supervised convolutional neural networks in scPML to
produce denoised low-dimensional representations for cells.
Traditional auto-encoders can reduce the dimensions and denoise
the features24,45,46, but they disregard the high-order relations
between cells. Injecting auto-encoders into GCN can capture the
structural information of the data while reducing the dimension.
It is noteworthy that unlike conventional auto-encoders, some
non-zero gene expression values are masked before training, and
scPML reconstructs them through the GCN-based auto-encoders,
effectively minimizing the impact of dropout events. Different
pathways can describe the training data from distinct perspec-
tives, which may complement each other43. To utilize this
knowledge sufficiently, multiple independent GCNs are used to
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extract representations from various views, followed by the use of
multi-view learning to integrate them and obtain a shared latent
subspace representation43. Lastly, a classifier is employed to
assign cell types by learning cell-type-specific patterns from latent
representations. For test data, it is pre-processed, and graphs are
constructed in the same fashion. The parameters optimized for
scPML are utilized to assign cell types in test data. Unlike most
semi-supervised models, scPML does not require knowledge of
test data during training and can still capture essential features
and generalize the learned patterns to new data regardless of
batch effects.

Cell type annotation across platforms. The rapid development
of single-cell sequencing technology has led to the generation of
vast amounts of single-cell datasets from diverse experiments and
sequencing platforms. However, batch effects can make it chal-
lenging to accurately annotate cell types (Fig. 2c, d). In this study,
we evaluated the ability of scPML to annotate cell types for cross-
platform experiment.

We used 12 well-labeled Peripheral Blood Mononuclear Cells
(PBMCs) datasets from six distinct sequencing platforms47, and
for each pair of training-test dataset generated by different

sequencing technologies, we utilized one dataset as training data
to predict the cells in the other one as test data. We compared
scPML’s performance with other methods, including Seurat19,
scmap15, CHETAH17, SingleR16, scGCN24, Geneformer36 and
scArches37, using accuracy score and Macro F1 (Supplementary
Fig. 8) as the evaluation metrics. Our results consistently showed
that scPML outperformed other methods (Fig. 2a, Supplementary
Fig. 12b), with an accuracy of 0.87 compared to Seurat (mean
accuracy of 0.81), scGCN (mean accuracy of 0.78), Geneformer
(mean accuracy of 0.72), CHETAH (mean accuracy of 0.70),
scmap (mean accuracy of 0.700), scArches (mean accuracy of
0.65) and SingleR (mean accuracy of 0.619). The Macro F1 also
showed the superior performance of scPML (Supplementary
Fig. 8). Correlation-based methods such as CHETAH, scmap and
SingleR have been shown to exhibit lower accuracy partially due
to their limited capacity to handle batch effects. In contrast,
scPML demonstrates superior performance in cross-platform
experiments, indicating its ability to recognize cell-type-specific
patterns regardless of batch effects. To further support this claim,
we visualize the latent representations generated by the GCN
layer and classification layer of scPML, and we can see that the
self-supervised GCN layer can effectively alleviate batch effects

Fig. 1 Overview of scPML. a scPML constructing cell-cell graphs using gene enrichment analysis with various pathways, yielding various cell-cell graphs
marked with different colors. b Self-supervised GCN auto-encoder with the objective of recovering the masked units of processed expression data. The
white grids are masked values which will be set to 0. c Obtaining common latent representation with multiple embeddings using multi-view learning.
scPML attempts to find a common representation which can be reconstructed to according embeddings and has the quality of separability. After obtaining
the common latent representations, scPML uses a classifier to assign labels.
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Fig. 2 Comparison of scPML with other methods in cross-platform experiments. a The performance of scPML and other methods is measured by
accuracy score for 11 training-test data pairs, where training and test data are profiled using different scRNA-sequence protocols. The y-axis represents
each experiment, and the x-axis stands for accuracy. Each point corresponds to the accuracy of a method in an experiment. b Box plots are used to
illustrate the accuracy results of all methods, where the middle line represents the median, the lower and upper hinges represent the first and third
quartiles, and the whiskers extend to the range of 1.5 times the interquartile range (IQR). c The UMAP projections of cells from SeqWell-10X V3 with
features of raw data and latent representations produced by self-supervised graph convolutional layer, as well as embeddings from the classifier of scPML
are presented. Silhouette score and batch mixing entropy are abbreviated as sil and bme respectively. d Sankey plots of scPML, Seurat, scGCN, and
CHETAH for SeqWell-10X V3 are shown, where the left column represents the true labels of cells, and the right column represents the predictions.
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(Fig. 2c) with a higher batch mixing score of -2883.72 than raw
data (batch mixing entropy=−3070.75). Furthermore, UMAP48

projections of the embedding from the classifier demonstrate that
the training and test data are well mixed and primarily grouped
by their cell labels (Supplementary Fig. 1), providing evidence
that the self-supervised GCN module of scPML is capable of
capturing low-dimensional representations of the training and
test data, thereby alleviating batch effects and leading to improved
prediction. To ensure experimental fairness, we also conducted
reversed cross-platform experiments (Supplementary Note 4 and
Supplementary Fig. 15). The results similarly demonstrate the
superior performance of scPML.

The Sankey plots for all methods applied to SeqWell-10X V3 is
presented (Fig. 2d, Supplementary Fig. 2). scmap assigns most
CD14+ monocyte cells to Dendritic cells, while SingleR
incorrectly assigns some B cells to Dendritic cells. Seurat and
scGCN are able to accurately classify most cells. However, they
can not clearly distinguish CD4+ T cells and Cytotoxic T cells
due to their high similarity. In contrast, scPML outperforms the
other methods in distinguishing CD4+ T cells and Cytotoxic
T cells. Although the anchors of Seurat and scGCN can be
utilized to correct batch effects, it is believed that they sometimes
distort biological signals along with technical perturbations,
particularly in cases where cells are closely related. To further
explore this, the anchors of Seurat and scGCN for SeqWell-10X
V3 were examined. For Seurat, only 68 out of 325 anchors in
CD4+ T cells (average quality score of 0.248) were paired with
CD4+ T cells with an average quality score of 0.244, while 111
anchors were mis-paired with Cytotoxic T cells with an average
quality score of 0.264. For scGCN, out of 2545 anchors in CD4+
T cells, only 544 anchors were paired with CD4+ T cells, while
1674 anchors were paired with Cytotoxic T cells. It is maintained
that Seurat and scGCN may distort biological signals when
modeling anchors between reference and query datasets alongside
batch effects.

It is worth noting that scPML exhibits a remarkable ability to
accurately classify Dendritic and Megakaryocyte cells, despite
their infrequent occurrence in the datasets (Fig. 2d), thus
highlighting the robustness of scPML to imbalanced class
distributions. Moreover, scPML demonstrates a stable and
consistent performance for cross-platform prediction, as depicted
in Fig. 2b. In contrast, other methods exhibit significant
variations in their performance across different training-test
pairs, while scPML shows only a slight variation, suggesting the
generalizability of scPML for cross-platform annotation tasks.

Cell type annotation across species. By annotating cell types
across species, researchers can develop more detailed phylogenies
of cell types that can help to understand the evolutionary and
developmental connections between cell types in different
species49–51. In this study, we aim to annotate cells for a parti-
cular species, such as humans, by using cells from another species,
such as mice, as a training set. This presents a challenge, but one
that we are eager to take on. To accomplish this, we have
designed four experiments, each consisting of a training-test pair
that uses cells from the mouse and human pancreas. In total, we
are examining 11 cell types, including the major cell types of the
pancreas (alpha, beta, delta, and gamma cells) with with
Baron:mouse52, Baron:human52, Xin53, Muraro54, and
Segerstolpe55. We combined Xin, Muraro, Segerstolpe and Bar-
on:human as Combination (human). To extract the most relevant
features for cell annotation, we focus on the common homo-
logous genes between the training and test data.

For cross-species annotation, the scPML algorithm exhibited
the best performance, as evidenced by its average accuracy of 0.94

(Fig. 3a, Supplementary Fig. 12a). This value is significantly
higher than that of Seruat (mean accuracy of 0.88), Geneformer
(mean accuracy of 0.81) scmap (mean accuracy of 0.807), SingleR
(mean accuracy of 0.655), scArches (mean accuracy of 0.54) and
also superior to scGCN (mean accuracy of 0.927). Conversely,
CHETAH demonstrates a low accuracy of 0.231, indicating its
inability to recognize shared genome patterns across different
species. Of note, scPML also achieves a high accuracy of 0.94
when applied to the human-mouse paired dataset, suggesting its
robustness to batch effects in training data. In addition, the
Macro F1 also showed the superior performance of scPML in
cross-speices experiments (Supplementary Figs. 7 and 12).

To provide a more intuitive representation of scPML’s
annotation results, we compared the UMAP projections of cells
using different methods with the training-test pair data (Fig. 3b,
Supplementary Fig. 3). The raw data displays inadequate
separation of cell clusters due to noise and batch effects,
particularly for the paired dataset Combination (human)-Baron
(mouse), where the alpha and beta cells are distributed into
multiple clusters and ductal cells are intermixed with other cells.
Seurat fails to separate most cells, such as alpha, beta, and delta
cells, which is further evidenced by the confusion matrix (Fig. 3c,
Supplementary Fig. 4). We further verify the the results by
selecting marker genes for beta cells and displaying gene
expression dot plots for labels predicted by Seurat and scPML
(Fig. 3d). Known marker genes for beta cells have high expression
for scPML-predicted beta cluster. In constrst, known marker
genes for beta cells have high expression in alpha cluter predicted
by Seurat. Although scGCN is able to discriminate most cells, the
adjusted rand index (ARI) and Silhouette score indicate that
scGCN’s clustering results are inferior to scPML (Supplementary
Fig. 5, Supplementary Fig. 6). Conversely, scPML is able to clearly
discern cells of different types and achieves superior performance
in clustering. Notably, scPML overcomes batch effects in the
training data in Combination (human)-Baron (mouse), resulting
in well-separated cell subpopulations and further confirming its
robustness to batch effects in training data. Collectively, these
results suggest the excellent and robust performance of scPML for
cross-species annotation.

Benefits of multi-view learning. In practical scenarios, objects
are often described from multiple perspectives, such as utilizing
multiple types of features. For instance, an image can be identified
by considering its color and texture features. Empirical studies
have shown that leveraging multiple views can complement each
other and improve performance43. For single-cell annotations, we
model multiple cell-cell graphs of single-cell data using various
pathways, which can partition genes into various subsets based on
distinct biological processes. These multiple graphs can be
regarded as different views for the single-cell data. Through the
aggregation of GCN layers, we can generate multiple low-
dimensional representations for each cell, which can be integrated
using multi-view learning methods. We designed experiments to
showcase the advantages of multi-view learning. We selected four
training-test data pairs from cross-platform and cross-species
experiments, including Baron (mouse)-Baron (human), Baron
(human)-Baron (mouse), SeqWell-10X V3, and SeqWell-
SmartSeq. Given four views produced from multiple pathways
(KEGG39, Reactome40, WikiPathways41, yan42), we tested all
possible combinations of views within the range of view numbers
from 1 to 4.

We have conducted experiments to investigate the effectiveness
of scPML in multi-view learning for single-cell annotation. Our
study includes four cases, namely, single-view, two-view, three-
view, and four-view, with all possible combinations of views. Our
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results reveal that multi-view learning generally outperforms
single-view learning in terms of accuracy, indicating the benefits
of integrating multiple views (Fig. 4a). Interestingly, our
experiments show that increasing the number of views generally
leads to better performance, as indicated by the rising trend in
accuracy (Fig. 4a). Specifically, in the Baron (mouse)-Baron
(human) dataset, the four-view case achieves the highest accuracy

of 0.951, followed by the three-view case (mean acc= 0.938), two-
view case (mean acc= 0.919), and single-view case (mean
acc= 0.877).The Macro F1 also demonstrates the advantages
brought by multiple views (Supplementary Fig. 9). However, we
also observed that too many views may not always yield the best
performance, as demonstrated by the case of SeWell-10x V3,
where a three-view case of Reacome+WikiPathway+ Yan (i.e.,
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R+W+Y) performs better with higher accuracy (acc= 0.924)
than the four-view case (acc= 0.915).

Multiple views can enhance the performance of cell annota-
tions due to the complementary nature of different views, where
each view may provide knowledge that other views may lack43.
To gain a deeper understanding of why multi-view learning
outperforms single-view learning, we utilized confusion matrix to
visualize the accuracy of each cell type. Our results, as shown in
Fig. 4b, indicate that in the Baron (mouse)-Baron (human)
dataset, KEGG misclassifies most activated stellate cells to
quiescent stellate cells, while Reactome misclassifies most
quiescent stellate cells to activated stellate cells. This suggests
that each pathway contains unique knowledge that the other
pathway lacks. However, by combining KEGG and Reactome, the
multi-view learning approach can integrate these knowledge

sources, leading to more accurate cell type predictions, as
evidenced by the correct prediction of most activated stellate
cells and quiescent stellate cells in the right part of Fig. 3b. In
summary, these empirical results suggest that multi-view learning
can significantly improve cell annotation accuracy by integrating
complementary knowledge sources.

Multiple training data. In some scenarios, the lack of sufficient
cells for certain cell types in the training data can result in poor
performance of cell annotation. A straightforward solution is to
collect more training data and combine them to obtain a larger
training data, as more data can provide more knowledge and lead
to better performance20,56. However, there are two major chal-
lenges in this approach. Firstly, combining multiple training data

Fig. 3 Comparison of scPML with other methods on mouse and human pancreas datasets when training and test data are from different species. a The
performance of scPML and other methods (scGCN, Seurat, SingleR, scmap, and CHETAH) is measured by accuracy score for 4 paired cross-species
datasets, and bar plots are used to illustrate the results. b UMAP projections of Baron (mouse)-Baron (human) and Combination (human)-Baron (mouse)
by raw data and different methods (scPML, scGCN, Seurat) are presented, where 11 cell types are displayed. The first row represents Baron (mouse)-Baron
(human), and the second row represents Combination (human)-Baron (mouse). c Confusion matrices of different methods (scPML, scGCN, Seurat, and
scmap) for Baron (mouse)-Combination (human) are shown, where 9 cell types are displayed. The rows represent true labels, while the columns represent
predicted labels. d Dot plots of marker gene expression for alpha and beta for cells with labels obtained from scPML and Seurat for the Baron (mouse)-
Baron (human) dataset are presented. The beta marker genes were selected from CellMaker62.

Fig. 4 Evaluation of the performance of different views on paired datasets. a The boxplots illustrate the accuracy scores of different views on four paired
datasets, with the gray dotted line separating the four groups representing different numbers of views. The views are represented by KEGG, Reactome,
WikiPathway, and Yan with abbreviations K, R, W, and Y, respectively. In the box plot, the middle line represents the median, the lower and upper hinges
represent the first and third quartiles, and the whiskers extend to the range of 1.5 times the interquartile range (IQR). b The heatmap displays the confusion
matrices for single-view (KEGG, Reactome) and two-view (KEGG+ Reactome) models on the Baron (mouse)-Baron (human) dataset. Rows correspond to
true labels, while columns represent predicted labels.
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can inevitably introduce batch effects. Secondly, the combined
data may require a large amount of memory, and retraining the
model with the combined data is computationally expensive. It is
noteworthy that scPML can effectively address the first challenge.
The superior performance of scPML in the Combination
(human)- Baron (mouse) case in cross-species experiments sug-
gests the robustness of scPML to batch effects in combined
training data. For the second challenge, we employed pre-train-
ing, which has proven effective in other applications36–38. Owing
to the neural network and supervised learning method of scPML,
we can obtain a well-trained scPML model using a small amount
of training data. When new training data become available, we
can retrain the model with the new data based on the existing
parameters to obtain more knowledge. Due to the semi-
supervised learning method, other methods such as scGCN and
Seurat can only manually combine training data to handle
inadequate data situations.

We designed two experiments to examine whether scPML can
achieve a rising trend in accuracy with more training data. In the
first experiment (PBMCs), we used SeqWell, DropSeq, and
Indrop as training data and 10X V2 as test data. In the second
experiment (MCA liver)57, we used three different training data
sets sampled from different ages of mice (eight months, neonatal,
ten days) as training data and adult liver cells as test data.

In this study, we evaluated the performance of scPML on single
and multiple training data sets in PBMCs and MCA liver. For
multiple training data sets, we employed a pre-trained model and
fed it with the new training data. For instance, in the SeqWell
+DropSeq (S+D) case, we utilized DropSeq to feed the model,
which had already been trained on SeqWell data. The same
procedure was applied to the SeqWell+DropSeq+Indrop (S+D
+I) and MCA liver experiments. The results showed that the S
+D data set achieved an accuracy of 0.912 (Fig. 5a), which was
higher than the DropSeq data set (acc= 0.899), and the E+N
data set (acc= 0.810) had a higher accuracy than the Neonatal
data set (acc= 0.681)). Additionally, S+D+I had a better
performance than InDrop, and E+N+T had better performance
than Ten days in the MCA liver case. These findings indicate that
pre-training can improve the performance of scPML. Further
analysis revealed that scPML is capable of accumulating knowl-
edge from multiple data sets through pre-training. When we
provided more training data, the accuracy of both PBMCs and
MCA liver showed an upward trend. Specifically, the accuracy of
SeqWell was 0.854, and scPML achieved a higher accuracy of
0.912 with S+D. Furthermore, when provided with InDrop data,
the accuracy of scPML increased to 0.915 with S+D+I. Similar
observations were made in the MCA liver case, where the
accuracy of Eight month was 0.798, E+N was 0.810, and E+N+T
was 0.848 (More details can be seen in Supplementary Figs. 10
and 11, including Macro F1 and cases of S+D, S+I and E+T, N
+T). Overall, these results suggest that pre-training can enhance
cell annotations by enabling scPML to learn multiple data sets
cumulatively.

To further elucidate the advantages of pre-training, we
conducted a heatmap analysis to visualize the accuracy of each
cell type. As illustrated in Fig. 5b, when using only DropSeq data,
scPML erroneously assigns most Plasmacytoid dendritic cells to
the B cell category. However, the scPML model trained on
SeqWell data and then fed with DropSeq data in the S+D case
retains the ability to distinguish between Plasmacytoid dendritic
cells and B cells. Furthermore, from the perspective of SeqWell
data, the incorporation of DropSeq data enhances scPML’s ability
to predict Megakaryocytes and Dendritic cells, presumably due to
the acquisition of additional knowledge from DropSeq. Notably,
the S+D+I approach outperforms S+D, SeqWell, DropSeq, and
InDrop in classifying each cell type. Collectively, our results

demonstrate that scPML can leverage pre-training to accumulate
knowledge from multiple datasets and achieve improved
performance without the need for data integration.

Identification of unknown cell types. In certain practical
applications, testing datasets may contain unknown cell types that
are not represented in the training data, making it essential for
cell annotation methods to identify these unknown cells. Marker
gene-based methods may face challenges in differentiating
unknown cells due to the absence of prior knowledge. Conversely,
neural network-based methods can automatically identify
unknown cell types by evaluating the predicted probability.
Similarly, some correlation-based methods, such as CHETAH
and scmap, support the identification of unknown cells by
assessing the confidence score.

To effectively detect unknown cells, an ideal method should
not only distinguish between known and unknown cells by
producing low confidence scores for the latter, but also accurately
identify each known cell type. In order to evaluate the
performance of scPML in detecting unknown cells, we compare
its performance with that of other methods, including scGCN,
CHETAH, and scmap, using the Macro F1 score in binary
classification scenarios where cell types are considered either
known or unknown. A higher Macro F1 indicates better
performance in distinguishing between known and unknown
cells. Furthermore, we use accuracy score to assess the ability of
each method to classify known cells. We apply all methods to
three paired tumor datasets (GSE72056-GSE103322, GSE103322-
GSE72056, GSE118056-GSE117988), where malignant cells are
excluded from the training data but retained and marked as
“unknown" in the test data. For machine-learning based methods
(scGCN and scPML), cells with probability of model prediction
lower than 0.5 for all known cell types are manually annotated as
‘unknown’.

scPML exhibits superior performance compared to other
methods in terms of Macro F1 (Fig. 6a), achieving an average
of 0.807, a substantial margin over CHETAH (0.587), scGCN
(0.53), and scmap (0.282), which suggests its capacity to
accurately identify malignant cells. It should be noted that
CHETAH shows a slight advantage over scGCN in detecting
unknown cells (Fig. 6a). In the classification of known cells,
scPML attains a mean accuracy of 0.836, higher than scGCN
(0.826), CHETAH (0.693), and scmap (0.08), indicating its
superior ability to categorize cells with known types. To further
illustrate these findings, we employ confustion matrix to present
the predictions for each cell of all methods (Fig. 6b). While
scGCN is capable of classifying most known cells, it struggles to
detect unknown cells by categorizing most of them as T cells. On
the other hand, CHETAH discerned unknown cells from known
cells but incorrectly assigned most B cells to the unknown type. In
contrast, scPML demonstrated a remarkable ability to accurately
distinguish between each cell type by generating low confidence
scores for unknown cells and high confidence scores for cells with
known cell types (Fig. 6c). Overall, these results suggest that
scPML possesses the capacity to accurately detect unknown cells
that were not present in the training data while also providing
accurate predictions for known cells.

Discussion
Single-cell sequencing technology enables the study of cellular
heterogeneity at the level of individual cells and provides insights
into the differentiation and development processes of cells.
Annotation of single-cell types is a crucial step in scRNA-seq
analysis, which helps researchers investigate the role and
mechanisms of different cell types in disease occurrence and
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development, thereby aiding in disease diagnosis and treatment.
In single-cell type annotation, the relationships between cells and
genes are two important pieces of information that, if fully uti-
lized, can help reduce noise and batch effects in scRNA-seq data.
Therefore, we propose scPML, a supervised cell type prediction
model that fully utilizes gene relationships in pathways to model
single-cell networks from multiple perspectives. We collected 14
datasets and designed 17 experiments, including the detection of
data from different platforms, species, and unknown cell types,
using evaluation metrics such as Accuracy, F1-score (Macro),
ARI, Silhouette, and Confusion matrix. We demonstrated that

scPML outperforms other methods in annotating data from dif-
ferent species, platforms, and tissues, and also has reliable per-
formance in the detection of unknown cell types. In addition, to
test the robustness of scPML on cross-perturbation data, we
conducted a cell type prediction experiment using the GSE96583
dataset (Supplementary Note 8, Supplementary Figs. 21 and 22).

From a technical perspective, scPML is a deep learning neural
network model that has an advantage over correlation-based
methods such as Seurat in identifying cell type patterns. Addi-
tionally, scPML simultaneously utilizes information on the rela-
tionships between cells and between genes in multiple pathways,

Fig. 5 Multiple training data experiments. a The accuracy scores of scPML on PBMCs and MCA liver datasets are shown using bar plots with different
multiple training data settings. b Heatmaps of confusion matrices are shown for single training data methods (SeqWell, DropSeq, and Indrop) and multiple
training data methods (SeqWell+DropSeq and SeqWell+DropSeq+Indrop) using pre-training. Rows represent the true labels of cells, while columns
represent the predicted labels.
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and it can be seen that scPML can still learn cell type patterns well
even in the presence of batch effects. We also demonstrated the
benefits of combining information from multiple pathways.
Moreover, we demonstrated that the inductive scPML model can
efficiently perform cumulative learning on multiple training
datasets using pre-training methods. In addition, we perform a
sensitivity analysis on the primary hyperparameters of scPML

and time complexity analysis, as detailed in Supplementary
Note 2, 9 and Supplementary Figs. 13 and 23. Now, scPML is
available for public use as a robust and reliable cell type predic-
tion model.

Despite these successful results, there is still room for
improvement in scPML. Firstly, as a neural network model,
scPML has some limitations, such as model unexplainability,

Fig. 6 Comparison of the Performance of scPML and Three Existing Methods. a Boxplots show the accuracy of classifying known cells and Macro
F1 score of binary classification with known and unknown cell labels for scPML, Seurat, scGCN, and scmap. In the box plot, the middle line represents the
median, the lower and upper hinges represent the first and third quartiles, and the whiskers extend to the range of 1.5 times the interquartile range (IQR).
b Heatmap illustrates the correlation between true labels and predicted results for scPML, Seurat, scGCN, and scmap. c Violinplots display the confidence
scores provided by scPML and scGCN for GSE72056-GSE103322 data pair, where the white dot represents the median, the left and right hinges in the
black area represent the first and third quartiles, the whiskers extend to the range of 1.5 times the interquartile range (IQR), the shape displays the
distribution of data and the width of the plot at a given point represents the estimated density of the data at that value. Overall, scPML demonstrates
superior performance in single-cell RNA sequencing analysis compared to the other methods evaluated in this study.
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which can be addressed through downstream analysis such as
differential gene identification and enrichment analysis, that can
ameliorate some of the problems and bring insights into the
labeled cells. Secondly, as a model with the ability to fuse multiple
types of features, scPML should not be limited to constructing
different cell-cell graphs using different pathways for com-
plementary learning. Perhaps more diverse cell feature informa-
tion, such as embedding from various other models, could also be
considered. Notably, in Supplementary Note 5 and Supplemen-
tary Fig. 16, We integrate the cell-cell graph constructed using
MNN (mutual nearest neighbors) with the gene features from the
raw data, which has yielded improved performance. We have
observed that using gene features at times produces better results
than employing a single pathway alone. Therefore, for practical
applications, the incorporation of gene features from the raw data
as an additional view is recommended. We may explore this in
future versions.

Methods
Construction of similarity matrix. In order to capture the
topological characteristics of cells, we first need to calculate the
similarities between single cells. The similarity between two cells
can be represented by the euclidean distance between their fea-
tures, which are often described by genes. A pathway is a col-
lection of genes that regulates the same biological process39. Here,
we use pathways to denote the features of single cells because
pathway can better reduce the impact of dropout events as one
gene has little impact on the entire gene set. We first partition
single cells’ genes into many gene groups represented by path-
ways, then calculate the score for each cell-pathway pair. Speci-
fically, we denote X 2 RN ´M as the gene expression data, where
N is the number of cells in the training data and M is the number
of genes. Then we need to utilize pathway data to calculate the
pathway activity levels for each cell. We define the cell-pathway
score matrix as Q 2 RN ´Mp , where Mp is the number of path-
ways. The scoring process can be represented as:

Qij ¼ f AUCðXiÞ ð1Þ
The mapping function fAUC returns the Area Under Curve

(AUC) where x-axis is the genes ranked by their counts
decreasingly, y-axis is the number of genes that hits the pathway
j. We use AUCell33 package in R to partition genes and calculate
the cell-pathway scores.When calculating cellular pathway
activity in this context, we do not need to consider other issues
such as pathway topology information. Therefore, we choose
simple and straightforward AUCell as score function. Once we
get the cell-pathway score matrix, we can calculate the similarity
between cells using Euclidean distance:

Sij ¼
1

1þ k Qi � Qjk2 ð2Þ

where S 2 RN ´N is the similarity matrix of single cell data and Sij
stands for the similarity between cell i and cell j.

The in-depth analysis of the advantages of pathways is
provided in Supplementary Note 6, 7 and Supplementary Figs.
17–20.

Graph construction. GCN34 takes as input the unweighted
graph, which is often represented as an adjacent matrix. Here,
based on similarity matrix, we use mutual nearest neighbors
(MNN)18 concept to construct effective graph. First, we denote
the adjacent matrix for X 2 RN ´M as A 2 RN ´N . Aij= 1 if cell i
is the nearest neighbors of cell j and cell j is also the nearest
neighbors of cell i, otherwise, Aij= 0.

Data pre-processing. For training and test data, we first take an
intersection of their genes to obtain the common genes. We
denote the training data as Xtrain 2 RN0 ´M0 , and the test data as
Xtest 2 RN1 ´M0 , where N0 and N1 are the number of cells in
training data and test data, M0 is the number of shared high
variable genes. As not all genes are useful for cell annotation. We
use analysis of variance (ANOVA) to select top M0= 2000 high
variable genes (HVGs) across cell labels in training data. We keep
only the HVGs in both training data and test data.

After gene feature selection, we performs median normal-
ization for training data:

x̂ij ¼
xij

∑Mh
j xij

∑N0
i ∑Mh

j xij
N0

ð3Þ

where xij is the raw value of cell i and feature j in Xtrain and x̂ij is
the normalized value, where 1 ≤ i ≤ N0 and 1 ≤ j ≤ Mh. We make
each cell have the same expression counts as the average across
cells. By doing so we can eliminate the impact of cell size. After
normalization, training data becomes X̂train. For the test data, we
follow the similar fashion and normalize test data as X̂test .

Obtaining low-dimensional representations through graph
auto-encoder. To incorporate the structural information of single
cells and reduce the noise, we design a self-supervised graph auto-
encoder. For training data X̂train, We first randomly mask some
non-zero values and attempts to reconstruct these values through
the graph auto-encoder. The graph auto-encoder consists of an
encoder and decoder both based on graph convolutional
network34. The encoder takes as input the randomly masked
expression matrix X̂train and the according cell-cell graph Atrain.
Then the encoder aggregate the hierarchical cell information to
produce low-dimensional representation for each cell, which is
denoised and incorporates the knowledge of high-order relations
between cells. The decoder maps the low-dimensional repre-
sentation to original feature space and attempts to reconstruct the
masked values of raw data. Formally, with a learnable matrix
Wð1Þ 2 RM ´ d as the parameters of encoder, where d < <M, and a
non-linear function σ, the encoder can be defined as:

Htrain ¼ σ eAtrainX̂trainW
ð1Þ

� �

ð4Þ
where Htrain is the low-dimensional output of encoder and we use
ReLu as the non-linear function. For efficiency34, we normalize

Atrain as eAtrain ¼ ~D
�1

2
trainðAtrain þ IÞeD�

1
2

train, where I is the identity
matrix, ~Dtrain is the diagonal degree matrix of (Atrain+ I).

The decoder performs the same propogation rules on H and
produce the reconstructed matrix eXtrain 2 RN0 ´M0 :

eXtrain ¼ σðeAtrainHtrainW
ð2ÞÞ ð5Þ

where Wð2Þ 2 Rd ´M0 is the parameter of decoder.
For the parameters optimization, we define the loss function of

training as:

minLr ¼ min X̂train m � eXtrain m

�

�

�

�

2
ð6Þ

where Xtrain_m and eXtrain m are the masked values we retrieve
from X̂train and eXtrain respectively.

For test data, we use the encoder with parameters estimated
from training data to obtain low-dimensional representations,
which can be represented as:

Htest ¼ σ eAtest X̂testW
ð1Þ

� �

ð7Þ
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With various pathway datasets, we can construct multiple cell-
cell graphs from different perspectives. Let fAvigNv

i¼1 be the set of
multiple cell-cell graphs, where Nv is the number of pathway
datasets, i.e. the number of views. In our experiments, we utilize
four distinct pathway datasets (namely, KEGG, Reactome,
Wikipathway, and Yan) with scPML, thus Nv= 4.We use
multiple independent graph auto-encoders to encode the data
following the same fashion, then we can obtain the training
representation set fHvi

traing
Nv

i¼1 and test representation set fHvi
testgNv

i¼1
respectively.

Multi-view learning. In scPML, we can describe each cell from
different views with multiple representations produced by the
graph encoder, denoted as fHvigNv

i¼1. In order to sufficiently utilize
these views to obtain a complementary representation, we use
multi-view learning to integrate them by using latent subspace
learning method44. Intuitively, we want to find a common latent
representation denoted as h 2 RN ´ ds (N is the number of cells
and ds is the dimension of features in latent subspace) that can
reflects the characteristics of representations of different views.
Following the previous study44, we define a set of mapping
functions as f vj ðhi; θvj Þ; 1≤ i≤N; 1≤ j≤Nv , which attempts to

reconstruct the common representation hi back to the original
representations of different views. The reconstruction loss can be
represented as:

‘rðh; θÞ ¼ ∑
N

i¼1
∑
Nv

j¼1
f vj ðhi; θvj Þ � H

ðvjÞ
i

�

�

�

�

�

�

2
ð8Þ

where hi 2 Rds ;Hi 2 Rd .
In order to make the latent representation structured for

separability44, we incorporate label information by adding
misclassification loss:

‘cðyi; y; hiÞ ¼ ∑
N

i¼1
max
y2Y
ð0;Δðyi; yÞ

þEh�τðyÞFðh; hiÞ �Eh�T yi
Fðh; hiÞÞ

ð9Þ

where Fðh; hiÞ ¼ hThi;Y is the set of class labels. τ(y) is the set of
latent representation with class y. Δ(yn, y)= 0 if y= yn, else

Δ(yn, y)= 1. Intuitively, we can see that the misclassification loss
attempts to maximize Eh�τðyÞFðh; hnÞ and minimize
Eh�τðynÞFðh; hnÞ, which will make the similarity between h with
the same class yi larger than that h with different labels by a
margin Δ(yn, y).

The overall objective loss function of multi-view learning is
deduced as:

min
ðfhigNi¼1;fθvi g

Nv
i¼1Þ

Lm ¼
1
N
ð‘r þ λ‘cÞ ð10Þ

where λ > 0 balances the weight of information from multiple
views and class labels.

At training stage, we randomly initialize the parameters fθvig
Nv

i¼1
of the mapping ff vig

Nv

i¼1 and the common latent representations h.

Then the fθvig
Nv

i¼1 and h are optimized by minimizing reconstruc-
tion loss ℓr and Lm respectively by using stochastic gradient
descent:

θvi  θvi �
1
N
α
∂‘r
∂θvi

ð11Þ

htraini  htraini � α
1
N0

∂Lm

∂htraini
ð12Þ

where α is the learning rate. The optimization will stop if the
misclassification loss becomes convergent or the iterations
exceeds the maximum epochs we set.

At testing stage, we preserve the parameters fθvig
Nv

i¼1 estimated
from training process and calculate the latent representations for
test data using stochastic gradient descent:

htesti  htesti �
1
N1

α
∂‘r
∂htesti

ð13Þ

The pseudocode for the training and test procedure of multi-
view learning can be summarized as Table 1.

Classification module. We use a two-layer fully connected neural
network as the classification module. Formally, we define Fi as the
i− th fully connected layer. The forward propagation is realized

Table 1 The training and test procedure of multi-view learning.

Training stage
Input: representation of training data fHvi

traing
Nv

i¼1 and labels fyigNi¼1
Initialization: Randomly initialize the values of fθvi g

Nv

i¼1 and htrain 2 RN0 ´ ds

For epoch→ epochs
For j= 1→Nv

Optimize the parameters of mapping functions: ffvj g
Nv

j¼1
θvj  θvj � 1

N0
α ∂‘r
∂θvj

End For
For i= 1→N0

Optimize the latent representation htrain for training data:
htraini  htraini � 1

N0
α ∂Lm
∂htraini

End For
End For
Output: the parameters fθvi g

Nv

i¼1 and latent representation of training data htrain
Test Stage
Use the parameters of mappings functions estimated from training data to update latent representation of test data
For epoch→ epochstest
For i→N1

htesti  htesti � 1
N1
α ∂‘r
∂htesti

End For
For
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as:

ŷn ¼ softmaxðF2ðReLUðF1ðhnÞÞÞ ð14Þ
where the softmax function is represented as:

softmaxðxÞ ¼ expðxÞ
∑expðxÞÞ ð15Þ

Subsequently, We optimize the classification module using the
following cross-entropy loss:

LCE ¼ �
1
N

∑
N

i¼1
yilogðŷiÞ ð16Þ

Furthermore, we conduct a performance comparison using
different classification methods, as detailed in Supplementary
Note 3 Supplementary Fig. 14.

Cross-species classification. For cross-species classification, we
select homologous genes between human and mouse and keep
only genes that have a one-to-one correspondence by using
HomoloGene databases. We keep the homologous genes that
overlap between the mouse and human data and we convert
mouse gene names to human gene names to obtain compatible
input for graph construction with pathways.

Multiple-training data. With multiple training data, we first take
an intersection of their gene features and for the sake of simpli-
city, we only keep the HVGs selected from the first training data
as their gene features. Given a training sequence like (training
data 1, training data 2, …), we will first train scPML model with
training data 1 and save the model. Then we load the model
trained with training data 1 and feed it with training data 2, and
so on. After finishing training, we will use the final model to
predict cells in test data.

Comparison methods. We compared our model with other
methods including Seurat19, scmap15, SingleR16, CHETAH17,
scGCN24, scArches37 and Geneformer36. For Seurat, we use
Seurat V4 with default Principle Component Analysis (PCA) as
reduction method. For scmap, We annotate cell types of test data
using the scmapCluster function. For CHETAH, we predict cell
types in test data using the CHETAHclassifier function. For
SingleR, we use the SingleR function. For Geneformer, we use
6-layer pre-trained model. For scArches, we use treeArches38

model to annotate cells. All the methods are applied with default
parameters. For more information see Supplementary Table 2.

Statistics and reproducibility. All data are publicly available
online and detaila information (e.g. sample size) can be seen in
Supplementary Table 1. All experiments can be reproduced by using
the code and hyperparameters we provide (See code availability).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All datasets analyzed in the current study are publicly available and can be downloaded
from their public accessions. The PBMC data of six different sequencing protocols are
available from the Broad Institute Single Cell portal (https://portals.broadinstitute.org/
single_cell/study/SCP424/single-cell-comparisonpbmc-data)47. The published pancreatic
datasets were downloaded from https://hemberg-lab.github.io/scRNA.seq.datasets/
(Baron52, Xin53, Muraro54, Segerstolpe55). The source data of mouse liver were
downloaded from https://bis.zju.edu.cn/MCA/57. The source data of tumor were
downloaded from https://www.ncbi.nlm.nih.gov/geo/(GSE72056, GSE10332,
GSE118056, GSE117988)58,59. The source data of Cao60 were downloaded https://cblast.

gao-lab.org/download. The source data of cross-perturbation were downloaded from
GSE96583. The pathway datasets used in this paper can be downloaded from https://
github.com/GaoLabXDU/sciPath. For detailed data information see Supplementary
Table 1 and Supplementary Note 1.

Code availability
The source code of scPML are implemented as a python software that is freely available
at Github61 (https://github.com/Kevis9/Cell_Classification). The source code for
comparison methods are publicly available. (See Supplementary Table 2).

Received: 30 May 2023; Accepted: 24 November 2023;

References
1. Ding, S., Chen, X. & Shen, K. Single-cell rna sequencing in breast cancer:

understanding tumor heterogeneity and paving roads to individualized
therapy. Cancer Commun. 40, 329–344 (2020).

2. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and
metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624
(2017).

3. Potter, S. S. Single-cell rna sequencing for the study of development,
physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

4. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type
deconvolution with multi-subject single-cell expression reference. Nat.
Commun. 10, 380 (2019).

5. Chen, G., Ning, B. & Shi, T. Single-cell rna-seq technologies and related
computational data analysis. Front. Genet. 10, 317 (2019).

6. Pasquini, G., Arias, J. E. R., Schäfer, P. & Busskamp, V. Automated methods
for cell type annotation on scrna-seq data. Comput. Struct. Biotechnol. J. 19,
961–969 (2021).

7. Zhao, X., Wu, S., Fang, N., Sun, X. & Fan, J. Evaluation of single-cell classifiers
for single-cell rna sequencing data sets. Brief. Bioinforma. 21, 1581–1595
(2020).

8. Zhang, Z. et al. Scina: a semi-supervised subtyping algorithm of single cells
and bulk samples. Genes 10, 531 (2019).

9. Guo, H. & Li, J. scsorter: assigning cells to known cell types according to
marker genes. Genome Biol. 22, 1–18 (2021).

10. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables
rapid annotation of cell atlases. Nat. Methods 16, 983–986 (2019).

11. Mezger, A. et al. High-throughput chromatin accessibility profiling at single-
cell resolution. Nat. Commun. 9, 3647 (2018).

12. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of
regulatory variation. Nature 523, 486–490 (2015).

13. Wang, T. et al. Mogonet integrates multi-omics data using graph
convolutional networks allowing patient classification and biomarker
identification. Nat. Commun. 12, 3445 (2021).

14. Yang, F. et al. scbert as a large-scale pretrained deep language model for cell
type annotation of single-cell rna-seq data. Nat. Mach. Intell. 4, 852–866
(2022).

15. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell rna-seq
data across data sets. Nat. Methods 15, 359–362 (2018).

16. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

17. De Kanter, J. K., Lijnzaad, P., Candelli, T., Margaritis, T. & Holstege, F. C.
Chetah: a selective, hierarchical cell type identification method for single-cell
rna sequencing. Nucleic Acids Res. 47, e95–e95 (2019).

18. Haghverdi, L., Lun, A. T., Morgan, M. D. & Marioni, J. C. Batch effects in
single-cell rna-sequencing data are corrected by matching mutual nearest
neighbors. Nat. Biotechnol. 36, 421–427 (2018).

19. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888–1902 (2019).

20. Hu, J. et al. Iterative transfer learning with neural network for clustering and
cell type classification in single-cell rna-seq analysis. Nat. Mach. Intell. 2,
607–618 (2020).

21. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for
single-cell rna sequencing data. Genome Biol. 21, 1–32 (2020).

22. Li, C. et al. Scibet as a portable and fast single cell type identifier. Nat.
Commun. 11, 1818 (2020).

23. Kimmel, J.C., Kelley, D.R.: Semisupervised adversarial neural networks for
single-cell classification. Genome Res. 31, 1781–1793 (2021).

24. Song, Q., Su, J. & Zhang, W. scgcn is a graph convolutional networks
algorithm for knowledge transfer in single cell omics. Nat. Commun. 12, 3826
(2021).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05634-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1268 | https://doi.org/10.1038/s42003-023-05634-z | www.nature.com/commsbio 13

https://portals.broadinstitute.org/single_cell/study/SCP424/single-cell-comparisonpbmc-data
https://portals.broadinstitute.org/single_cell/study/SCP424/single-cell-comparisonpbmc-data
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/
https://bis.zju.edu.cn/MCA/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72056
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10332
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118056
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117988
https://cblast.gao-lab.org/download
https://cblast.gao-lab.org/download
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583
https://github.com/GaoLabXDU/sciPath
https://github.com/GaoLabXDU/sciPath
https://github.com/Kevis9/Cell_Classification
www.nature.com/commsbio
www.nature.com/commsbio


25. Zeng, Y., Zhou, X., Rao, J., Lu, Y. & Yang, Y. Accurately clustering single-cell
rna-seq data by capturing structural relations between cells through graph
convolutional network. In 2020 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 519–522 (IEEE, 2020).

26. Rao, J., Zhou, X., Lu, Y., Zhao, H. & Yang, Y. Imputing single-cell rna-seq data
by combining graph convolution and autoencoder neural networks. Iscience
24, 102393 (2021).

27. Wang, J. et al. scgnn is a novel graph neural network framework for single-cell
rna-seq analyses. Nat. Commun. 12, 1882 (2021).

28. Zeng, Y., Wei, Z., Pan, Z., Lu, Y. & Yang, Y. A robust and scalable graph
neural network for accurate single-cell classification. Brief. Bioinforma. 23,
bbab570 (2022).

29. Zhang, C., Gao, L., Wang, B. & Gao, Y. Improving single-cell rna-seq
clustering by integrating pathways. Brief. Bioinforma. 22, bbab147 (2021).

30. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and
gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

31. Wang, H., Sham, P., Tong, T. & Pang, H. Pathway-based single-cell rna-seq
classification, clustering, and construction of gene-gene interactions networks
using random forests. IEEE J. Biomed. Health Inform. 24, 1814–1822 (2019).

32. Wegmann, R. et al. Cellsius provides sensitive and specific detection of rare
cell populations from complex single-cell rna-seq data. Genome Biol. 20, 1–21
(2019).

33. Aibar, S. et al. Scenic: single-cell regulatory network inference and clustering.
Nat. methods 14, 1083–1086 (2017).

34. Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. Preprint at https://arxiv.org/abs/1609.02907 (2016).

35. Cao, S., Lu, W. & Xu, Q. Deep neural networks for learning graph
representations. In Proceedings of the AAAI conference on artificial intelligence,
vol. 30 (AAAI, 2016).

36. Theodoris, C. V. et al. Transfer learning enables predictions in network
biology. Nature 618, 616–624 (2023).

37. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer
learning. Nat. Biotechnol. 40, 121–130 (2022).

38. Michielsen, L. et al. Single-cell reference mapping to construct and extend cell-
type hierarchies. NAR Genomics Bioinforma. 5, lqad070 (2023).

39. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. Kegg: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45,
D353–D361 (2017).

40. Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res.
46, D649–D655 (2018).

41. Slenter, D. N. et al. Wikipathways: a multifaceted pathway database bridging
metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667
(2018).

42. Ji, Z. & Ji, H. Tscan: Pseudo-time reconstruction and evaluation in single-cell
rna-seq analysis. Nucleic Acids Res. 44, e117–e117 (2016).

43. Xu, C., Tao, D. & Xu, C. A survey on multi-view learning. Preprint at https://
arxiv.org/abs/1304.5634 (2013).

44. Zhang, C. et al. Cpm-nets: Cross partial multi-view networks. In Advances in
Neural Information Processing Systems 32 (NIPS, 2019).

45. Du, B. et al. Stacked convolutional denoising auto-encoders for feature
representation. IEEE Trans. Cybern. 47, 1017–1027 (2016).

46. Chen, M., Weinberger, K., Sha, F. & Bengio, Y. Marginalized denoising auto-
encoders for nonlinear representations. In International conference on
machine learning, 1476–1484 (PMLR, 2014).

47. Abdelaal, T. et al. A comparison of automatic cell identification methods for
single-cell rna sequencing data. Genome Biol. 20, 1–19 (2019).

48. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using
umap. Nat. Biotechnol. 37, 38–44 (2019).

49. Shafer, M. E. Cross-species analysis of single-cell transcriptomic data. Front.
Cell Dev. Biol. 7, 175 (2019).

50. Deppmann, C. D., Alvania, R. S. & Taparowsky, E. J. Cross-species annotation
of basic leucine zipper factor interactions: Insight into the evolution of closed
interaction networks. Mol. Biol. Evol. 23, 1480–1492 (2006).

51. Mabee, P. M. et al. Phenotype ontologies: the bridge between genomics and
evolution. Trends Ecol. Evolution 22, 345–350 (2007).

52. Baron, M. et al. A single-cell transcriptomic map of the human and mouse
pancreas reveals inter-and intra-cell population structure. Cell Syst. 3, 346–360
(2016).

53. Xin, Y. et al. Rna sequencing of single human islet cells reveals type 2 diabetes
genes. Cell Metab. 24, 608–615 (2016).

54. Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas.
Cell Syst. 3, 385–394 (2016).

55. Segerstolpe, Å et al. Single-cell transcriptome profiling of human pancreatic
islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

56. Yuan, M., Chen, L. & Deng, M. scmra: a robust deep learning method to
annotate scrna-seq data with multiple reference datasets. Bioinformatics 38,
738–745 (2022).

57. Wang, R. et al. Construction of a cross-species cell landscape at single-cell
level. Nucleic Acids Res. 51, 501–516 (2023).

58. Gustafsson, J. et al. Sources of variation in cell-type rna-seq profiles. PLoS One
15, e0239495 (2020).

59. Paulson, K. et al. Acquired cancer resistance to combination immunotherapy
from transcriptional loss of class i hla. Nat. Commun. 9, 3868 (2018).

60. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721
(2020).

61. Du, Z. et al. Software-scpml:pathway-based multi-view learning for cell type
annotation from single-cell rna-seq data. (Zenodo, 2023).

62. Zhang, X. et al. Cellmarker: a manually curated resource of cell markers in
human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).

Acknowledgements
This work was supported by the National Key R&D Program of China under Grant
2020YFA0908700, the National Nature Science Foundation of China under Grant
62176164, 62203134, the Natural Science Foundation of Guangdong Province under
Grant 2023A1515010992, Science and Technology Innovation Committee Foundation of
Shenzhen City under Grant JCYJ20220531101217039

Author contributions
Z.D. and Y.H. conceived and designed the project. W.H. developed and implemented the
algorithms under the guidance of Y.H. and J.L., X.S., Z.Y and W.H. collected the datasets.
W.H. conducted the experiments, data analysis, method comparisons. W.H. drew the
figures and wrote the manuscript, with the guidance of Y.H. and Z.D., J.L., X.S., Z.Y. and
Y.H. finalized the manuscript and figures. Z.D., Z.C. and Y.H. gave suggestions on
improving the manuscript. W.H. revised the figures and manuscript. All of the authors
reviewed and approved the manuscript.

Competing interests
The authors declare no competing interests

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-05634-z.

Correspondence and requests for materials should be addressed to Yu-An Huang.

Peer review information Communications Biology thanks Juexin Wang, Qianqian Song
and the other, anonymous, reviewer (s) for their contribution to the peer review of this
work. Primary Handling Editors: Anam Akhtar, Tobias Goris and Christina Karlsson
Rosenthal.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05634-z

14 COMMUNICATIONS BIOLOGY |          (2023) 6:1268 | https://doi.org/10.1038/s42003-023-05634-z | www.nature.com/commsbio

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1304.5634
https://arxiv.org/abs/1304.5634
https://doi.org/10.1038/s42003-023-05634-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	scPML: pathway-based multi-view learning for cell type annotation from single-cell RNA-seq�data
	Results
	Overview of�scPML
	Cell type annotation across platforms
	Cell type annotation across species
	Benefits of multi-view learning
	Multiple training�data
	Identification of unknown cell�types

	Discussion
	Methods
	Construction of similarity�matrix
	Graph construction
	Data pre-processing
	Obtaining low-dimensional representations through graph auto-encoder
	Multi-view learning
	Classification�module
	Cross-species classification
	Multiple-training�data
	Comparison methods
	Statistics and reproducibility
	Reporting summary

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




