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Network-based restoration strategies maximize
ecosystem recovery
Udit Bhatia 1,2,5✉, Sarth Dubey3,5, Tarik C. Gouhier 4 & Auroop R. Ganguly2

Redressing global patterns of biodiversity loss requires quantitative frameworks that can

predict ecosystem collapse and inform restoration strategies. By applying a network-based

dynamical approach to synthetic and real-world mutualistic ecosystems, we show that bio-

diversity recovery following collapse is maximized when extirpated species are reintroduced

based solely on their total number of connections in the original interaction network. More

complex network-based strategies that prioritize the reintroduction of species that improve

‘higher order’ topological features such as compartmentalization do not provide meaningful

performance improvements. These results suggest that it is possible to design nearly optimal

restoration strategies that maximize biodiversity recovery for data-poor ecosystems in order

to ensure the delivery of critical natural services that fuel economic development, food

security, and human health around the globe.
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Restoring degraded ecosystems is crucial in an era of rapid
global change1–3. However, reversing declining trends in
biodiversity and ecosystem functioning requires an

understanding of how to preserve ecosystem integrity4 or, if
already severely degraded, restore species and their functions to
their original state5. Mutualistic networks are particularly vul-
nerable to ecosystem degradation, as their stability depends on a
set of strongly interdependent species and interactions6,7. The
loss of even one species can cause a ripple effect and lead to
secondary extinctions that compromise the entire system’s
stability8,9. These properties suggest that sequentially restoring
the most critical species and their interactions in the network may
promote recovery10, strengthen resilience, and increase
functioning11. The challenge lies in assessing the criticality of
each species at each step of the restoration process in order to
optimize recovery across different ecosystems.

In the past decade, there has been an increase in ecological
restoration efforts around the globe2,12. Recent theoretical studies
have demonstrated that complex ecosystems consisting of many
interacting species exhibit a universal pattern of system collapse13.
If ecosystems tend to collapse in the same manner, it is reasonable
to expect a similar universal pattern of recovery, a phenomenon
that could be used to design optimal restoration strategies.
However, it remains to be seen whether a single universal
restoration strategy can be generalized across disparate ecosystems
to maximize multiple key criteria such as persistence, total species
abundance, and faster stabilization after species reintroduction.
Here, we seek to determine whether such a generalizable
restoration strategy can be developed based on the network
topology of ecosystems and the underlying dynamics of interact-
ing species following perturbations of different magnitudes14,15.

Although returning a severely degraded ecosystem to its ori-
ginal state can be difficult, it remains a key goal for many con-
servation and restoration projects12,16. Traditional attempts to
design optimal restoration strategies have focused on single-
species17, suitable habitat identification18, prioritization of sites
that maximize spatial rescue effects in communities inter-
connected by dispersal19, or have used low-dimensional models
with a few interacting components20. More recently, researchers
have highlighted the need to shift from single species to entire
interaction networks in order to design effective restoration
strategies21,22, with the expectation that the most effective
recovery strategy may involve reversing the sequence of species
loss that led to the maximum amount of habitat loss or number of
secondary extinctions23,24. Other approaches have used phylo-
genetic relationships to address the restoration of mutualistic
ecosystems such as plant-pollinator networks in data-scarce
regions25. For food web networks, researchers have used mea-
sures of topological centrality as indicators of species importance
or ‘keystoneness’ in the context of extinction. Although these
centrality indicators are strongly correlated, they yield divergent
prioritization schemes or rankings for species reintroductions
that ultimately influence the effectiveness of restoration
strategies15. Hence, there is a lack of consensus about how to
quantify a species’ role in restoration gains when ecosystems
undergo varying magnitudes of degradation, and to what degree
‘keystone’ species contribute to biodiversity gains within complex
networks. Therefore, a generic framework for identifying an
effective multispecies restoration strategy that accounts for the
topological and dynamical characteristics of high-dimensional
ecological networks remains elusive. Below, we address this cri-
tical knowledge gap by determining whether effective restoration
approaches that account for the full species interaction network
can be generalized to maximize the recovery of geographically
and topologically diverse ecosystems while ensuring stable
dynamics of multispecies assemblages.

Results and discussion
The dynamical behavior of ecosystems, including mutualistic
networks, is typically simulated by high-dimensional equations
that capture how species interact with each other and their
environment. However, the characterization of such systems in
multi-dimensional parameter space often results in intractable
and unpredictable behavior. Recently, researchers have proposed
formalisms to reduce the complexity of these n-dimensional
systems where n represents the number of species in 1-D13 and
2-D26 systems of equations. While these frameworks offer ana-
lytical insights into the collapsing behavior of these systems when
subjected to external perturbations, they have yet to be adopted to
design restoration strategies.

Integrating network topology and ecological dynamics for
mutualistic networks. Here, we combine network topology
measures with the underlying ecological dynamics simulated
through a 1-D model that is simple to analyze but does not
account for mutualistic interactions comprehensively; a 2-D
model that captures the bipartite and mutualistic nature of
interactions with one variable representing aggregate plants and
another for aggregate pollinators; and an n-dimensional coupled
dynamical model that explicitly accounts for all species.

We conducted a systematic analysis of 30 real-world plant-
pollinator mutualistic systems around the globe to identify a universal
and near-optimal restoration strategy (Fig. 1a; Supplementary
Table 1). To cover the spectrum of ecological properties that these
real-world networks do not capture, we also simulated 27 synthetic
networks with varying attributes (Supplementary Fig. 1, Supplemen-
tary Table 2). We compared the different network-based and random
(null) restoration strategies via three key criteria measured after the
reintroduction of each species: abundance X13, settling time ST6, and
persistence P27. Specifically, we examined whether restoration
strategies based on attributes measured by network topology
systematically resulted in meaningful gains in abundance while
ensuring persistence and faster stabilization (i.e., lower settling time)
relative to null restoration strategies based on random species
reintroduction sequences.

Perturbation scenarios and network-based restoration strate-
gies. Figure 1b (Supplementary Data 1) shows a representative
mutualistic network generated synthetically and the ripple effect
of secondary extinctions triggered by a single primary extinction
(Fig. 1c, Supplementary Data 1). Each node represents individual
species in the complex network representation, whereas the links
represent the mutualistic relationships between a pair of plants
and pollinators. In our analysis, we reduce the abundance of a
perturbed species under consideration to zero and obtain the new
equilibrium states using the three models described above (i.e.,1-
D, 2-D, and n-dimensional models (Supplementary Fig. 2)). We
then track the proportion of surviving species (persistence),
abundances of surviving species, and time taken for abundance to
reach the equilibrium state (a measure of settling time, quantified
using n-dimensional model). Since the loss of species does not
always happen randomly in real-world ecosystems, we con-
structed three perturbation scenarios: generalists preferred
(probability of primary extinction was directly proportional to the
number of mutualistic interactions or degree of the node), spe-
cialists preferred (probability of primary extinction was inversely
proportional to the number of mutualistic interactions or degree
of a node), and random (non-strategic removal of species).

Post perturbation, we used network-based restoration strategies
to identify the most critical species at each step of the recovery
process. Specifically, at each time step, we restored the most
‘critical’ species based on its topological importance in the
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Fig. 1 Illustration of network-informed restoration strategies for mutualistic systems. a Geographical and ecological information about the 30 real-world
mutualistic interaction networks. b A representative mutualistic network generated synthetically c is used to show the secondary extinctions that a primary
extinction trigger. d An example ecosystem (`M_PL_041' in Supplementary Table 1) is perturbed by removing 20% of the plant species (6 species).
e Outcomes measured in terms of percentage mean abundance and persisting species recovered for restoration strategies based on each topological
property are plotted over the solution space generated by all possible reintroduction sequences.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05622-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1256 | https://doi.org/10.1038/s42003-023-05622-3 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


network as captured by each of the following three centrality
measures: (i) degree (a ‘first order’ metric based solely on each
species’ number of mutualistic interactions), (ii) closeness
centrality (a ‘higher order’ metric that measures the proximity
of each species to others in the network based on the pattern of
interactions), and (iii) betweenness centrality (a ‘higher order’
metric that measures the degree to which species act as bridges in
the network by linking otherwise unconnected subsets of
species28). For each of these three network-based restoration
strategies, we first created a degraded ecosystem by removing
species using three perturbation scenarios. We then used 1-D, 2-
D, and n-dimensional dynamical equations to simulate the
system response after each species reintroduction.

We focused on network-based restoration strategies because
they can be applied to any mutualistic network with known
interactions15,28, but with limited or no information on
interaction strengths, parameters controlling competitive and
mutualistic dynamics, and phylogenetic relationships25. Hence,
such approaches have the potential to yield system-agnostic and
context-independent restoration strategies for data-poor systems.
Furthermore, to understand the relationship between network
architecture and recovery from perturbations, we measured the
following attributes: network size (total number of species),
asymmetry (ratio of pollinators to plants), connectance (propor-
tion of possible links realized), and nestedness (defined by the
disassortative assemblage of interactions)29. These attributes have
been linked to the resilience of mutualistic and non-mutualistic
networks6. Hence, assessing their relationships with species
abundance (X), settling time (ST), and persistence (P) can help
us determine the suitability of recently popularized dimension-
ality reduction approaches for guiding restoration13,26.

Simulating recovery dynamics for an example ecosystem. To
illustrate this approach, we used one of the 30 real-world net-
works (Fig. 1d) as an example ecosystem. This ecosystem is
located in Syndicate, Dominica, and it comprises 74 species
(hereafter referred to as nodes), with 31 plants and 43 pollinator
species. Before simulating the system’s response to reintroduc-
tion, we remove 20% of plant species (6 species) using all three
scenarios. However, for real-world ecosystems, we considered
30%, 60%, and 90% of node removal under all three perturbation
scenarios (9 combinations in total). Even with a small fraction of
the nodes removed (20% in this case) for the example ecosystem,
there are 6! or 720 possible restoration pathways when these
species are introduced sequentially. While changes in abundance,
persistence, and time to stabilization are tractable exhaustively for
such networks (Fig. 1e for abundance; Supplementary Fig. 3a for
settling time, and Supplementary Fig. 3b for persistence), prior-
itization becomes a challenge for species-rich ecosystems under-
going massive degradation. For both 1-D and 2-D models, the
region of all possible 720 reintroduction pathways is drawn for all
three perturbation scenarios with 20% of nodes removed (Fig. 1e,
Supplementary Data 1). Overall, reintroduction sequences based
on species degree, closeness, and betweenness offer near-optimal
mean abundance recovery for each perturbation scenario. The
nearest-neighbor average degree achieves similar performance for
generalist-preferred perturbation but not for random and
specialist-preferred perturbation scenarios.

For this example network, while strategies that prioritize
species based on their degree, closeness, or betweenness
centralities result in relatively faster gains in abundance (Fig. 2a
and b, Supplementary Data 2), random restoration of species can
result in faster stability (Fig. 2c and d), at the cost of species
persistence (Fig. 2e and f) for both 1-D and 2-D models. Fig. 2
shows the comparative analysis of various restoration strategies

for the generalist-preferred perturbation scenario with perturba-
tion corresponding to 60% of the species being removed (see
Supplementary Fig. 4–11 for the remaining eight perturbation
combinations). We observed a significant difference in the
distribution of mean abundance based on topology-driven
restoration strategies compared to random (or non-strategic)
interventions (p < 0.05, 2-sample Kolmogorov–Smirnov test;
Supplementary Table 3). Given the strong correlation between
degree and betweenness (Spearman Corr= 0.95; p < 0.05), no
significant difference is observed in the distributions of
abundance between strategies where restoration prioritizes degree
vs. betweenness for both 1-D and 2-D models.

Identifying “winning” strategies for species reintroduction
across 30 real-world ecosystems. To determine whether these
results hold for diverse ecosystems located around the globe that
exhibit large variations in their network structures (Supplemen-
tary Fig. 1a), we simulated the nine combinations of perturbation
scenarios for all 30 real-world networks and quantified the effi-
cacy of each prioritization strategy by simultaneously measuring
the three criteria mentioned above (i.e., abundance, settling time,
persistence). Despite broad similarities in the performance of
distinct restoration strategies that echo those found in the
example ecosystem, we found clear and important differences in
their effectiveness for each criterion across both 1-D and 2-D
models.

Figure 3a summarizes the “winning” reintroduction strategies
for both the 1-D and 2-D models for each of the three criteria of
interest (i.e., abundance, settling time, and persistence) across all
30 real-world networks (see Supplementary Fig. 12 for a similar
analysis of the 27 synthetic networks). For both 1-D and 2-D
models, centrality-guided restoration emerged as the most
effective strategy to recover abundance for ecosystems with
disparate sizes and complexities undergoing varying magnitudes
of perturbations under all three removal scenarios. A similar
pattern was observed for persistence, where betweenness-guided
restoration emerged as the “winner” in 90.37% of the simulations,
and other topological centralities accounted for the remaining
9.63% (Fig. 3b, Supplementary Data 3). However, for the 1-D
model, betweenness-guided restoration was the most efficient
“winning” strategy across 37.04% of the simulations, followed by
closeness-guided restoration at 34.81%. In contrast to the
“winning” strategies for maximizing mean abundance, the
random species reintroduction strategy yielded the lowest time
to stabilization in 58.52% of the simulations. This is because
random restoration results in fewer species that persist in the
network resulting in faster stabilization on average. However, the
comparison of the reintroduction strategies on an example
ecosystem (Fig. 1d) reveals minor differences in relative
performances between network-based restoration strategies (see
Supplementary Figs. 13 and 14 for similar analysis on all 30 real-
world networks).

The analysis for 2-D models showed that although
betweenness-guided restoration outperformed the other strate-
gies, with degree-guided restoration being a close second, the
performance difference between degree-guided and betweenness-
guided restoration strategies was within 1% for all criteria
(Supplementary Fig. 13). Similarly, the performance difference
between closeness- and betweenness-guided restoration was
within 1% for 7.78%, 18.52% and 5.56% of the simulations for
the three criteria (i.e., abundance, settling time, and persistence),
respectively (see Supplementary Fig. 15). Furthermore, the
performance difference between random and betweenness-
guided restoration strategies was 1% or less in 1.11% of the
simulations for settling time (see Supplementary Fig. 16). The
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small performance differences between the network-based
strategies is likely due to their strong correlations across real-
world networks (see Supplementary Fig. 17 for aggregated results
across all 30 networks and Supplementary Fig. 18 for pairwise
correlations for each of the 30 real-world networks).

Relationships between network attributes and restoration cri-
teria. As noted earlier, the 1-D model is simple to analyze but
does not account for mutualistic interactions comprehensively,
whereas the 2-D model fully captures the bipartite and mutua-
listic nature of the interactions with one collective variable for
plants and another for pollinators. Although using these dimen-
sionality reduction models to understand the robustness, resi-
lience, and restoration pathways is pragmatic, it is important to

determine whether their predictions concur with those of the full
n-dimensional system. Specifically, do the 1-D and 2-D projection
approaches preserve the relationships between network measures
and species mean abundance (X), settling time (ST), and persis-
tence (P) observed in the full n-dimensional networks? In our
analysis, we kept track of the criteria and the structural properties
of the ecosystem network (i.e., network size, asymmetry, con-
nectance, and nestedness) during the restoration process and then
computed the Spearman rank correlation between the criteria and
the structural properties for both the 1-D and 2-D models.

Figure 4a shows the relationship between the mean abundance
and the established network structural properties for the 1-D and
2-D models (see Supplementary Fig. 19a for settling time, and
Supplementary Fig. 19b for persistence; Supplementary

Fig. 2 Performance of different restoration strategies for the example mutualistic network. Distributions of mean abundance X (a, b), settling time ST
(c, d), and persistence P (e, f) for each restoration strategy under generalist-preferred perturbation scenarios where 60% of all species were removed.
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Figs. 20–22 for the real-world and synthetic networks studied). In
the 2-D model, we observed a negative relationship between
mean abundance and network size and asymmetry but a positive
relationship between mean abundance and either connectance or
nestedness. This is consistent with the ecological literature, where
higher connectance and nestedness have been linked to more
stable mutualistic ecosystems. However, although the 1-D model
results are consistent with the reported statistical relationships
between connectance and nestedness, the relationship reverses for
network size and asymmetry. The positive relationship between
abundance and network size observed in the 1-D model does not
agree with the literature and thus shows the potential limits of
projection schemes that fail to capture the full complexity of
natural ecosystems when restoring perturbed mutualistic systems.
Figure 4b shows the relationship between the criteria used to
measure the effectiveness of the restoration strategies. The highest
mean abundance was systematically associated with lower settling
time and lower persistence in both the 1-D and 2-D models.
Therefore, faster stabilization and greater mean abundance are
realized at the cost of fewer species persisting within the
ecosystem, which is a suboptimal and undesirable outcome. This
tradeoff supports our choice of using multiple criteria for
assessing the effectiveness of species restoration strategies in
perturbed mutualistic systems.

Revealing why ‘first order’ network-based strategies are near-
optimal. Overall, our findings indicate that more complex ‘higher

order’ network approaches where species prioritization is based
on betweenness or closeness centrality provide only minimal
improvements over ‘first order’ strategies based solely on species
connectivity or generality. That is, the benefits of targeting more
intricate ‘higher order’ effects by reintroducing species that
optimize network compartmentalization or nestedness–two
attributes associated with the stability and persistence of ecolo-
gical networks–offer marginal restoration gains6. Instead, rein-
troducing species based on their ‘first order’ effects as measured
by generality is sufficient to ensure an effective restoration
strategy because generality is usually correlated with ‘higher
order’ network effects (see Supplementary Fig. 17).

While the relationship between a species’ generalism and its
contribution to nestedness–a measure of organization within
mutualistic networks–seems weak when viewed collectively, as
depicted in Supplementary Figs. 17 and 18, a detailed analysis
uncovers a robust positive correlation between nestedness and
generalism during the initial phases of ecological restoration. Notably,
the greatest enhancement in nestedness occurs during the first
restoration steps when species are removed based on generalist-
preferred criteria and reintroduced through network-centric
approaches (See Supplementary Fig. 23). By prioritizing the
reintroduction of generalist species (or using other centrality
measures strongly correlated with generality), we achieve near-
optimal gains in species abundance and persistence, particularly at
the outset of restoration when nestedness improvements are most
pronounced. This aligns with the notion that nestedness fosters

Fig. 3 Identifying the most effective restoration strategies for each criterion. a For the 30 real-world networks studied with the three criteria of interest
(blocks with nine columns each) and all nine perturbation scenarios: random selection of species (columns 1–3), generalist-preferred (columns 4–6) or
specialist-preferred (columns 7–9), with perturbation corresponding to the removal of 30%, 60%, and 90% species (ordered left to right for each
perturbation scenario). Restoration strategies are ranked based on a `best-vs-rest' policy for 1-D and 2-D models (upper and lower triangle, respectively).
b The distribution of the best restoration strategies is drawn in a nested pie chart (1-D and 2-D models on inner and outer regions, respectively) for each
criterion.
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stability and resilience within networks6. It is crucial to recognize that
in mutualistic networks, only a small percentage of species
significantly contribute to overall nestedness. Consequently, over
time, changes in nestedness contributions become marginal, which
may partially account for the observed weak yet meaningful
correlations at the aggregate level. Another factor potentially
influencing this weak correlation is that species with varying degrees
of centrality could have similar marginal contributions to total
nestedness, further obscuring the relationship at the aggregate level.

Conclusions
Trait-based approaches offer valuable insight into the design of
effective restoration strategies. However, obtaining the necessary
data for such analyses is a considerable challenge, particularly due
to the vast geographical, phylogenetic, and environmental

disparities that exist between ecosystems30. In this study, we have
analyzed 30 real-world ecosystems around the globe that are
characterized by differences sizes, environmental conditions, and
ecological attributes. We demonstrated that using network
properties such as species connectivity or generalism to guide
restoration efforts can assist in identifying near-optimal pathways
for recovering abundance while ensuring persistence. Addition-
ally, the strong and significant correlations observed between ‘first
order’ characteristics such as species connectivity or generality
and other ‘higher order’ network properties suggest that the
choice of a specific centrality measure for designing restoration
strategies may not be critical, as the differences between the most
effective and the next-best network solutions are generally within
a 1% margin for all criteria across all ecosystems and scenarios.

Conservation efforts often focus on habitat restoration because
much of the observed biodiversity loss can be attributed to habitat

Fig. 4 Restoration performance is correlated with network topology. a The mean abundance of the surviving species obtained after each reintroduction
for every perturbed scenario considered. The panels include the Spearman rank correlation (‘corr’) as well as both the coefficient of multiple linear
regression (‘coef’) and the coefficient of multiple determination R2 using normalized values of the network structural properties. b Surface plots show the
relationships between the three criteria (mean abundance, settling time, and persistence) for both the 1-D and 2-D models. The plot reveals the trade-offs
between maximizing abundance and persistence while reducing settling time when designing restoration strategies for mutualistic networks using
dimensionality reduction approaches.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05622-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1256 | https://doi.org/10.1038/s42003-023-05622-3 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


loss and fragmentation31. Given the widely observed species-area
relationships, such habitat-based restoration efforts are likely to
lead to positive outcomes (all things being equal). Here, we
wanted to focus on an alternate premise: how can we promote
biodiversity recovery in ecosystems suffering from local species
extirpation following a strong (pulse) environmental
perturbation32 such as a prolonged heat wave or a persistent cold
snap when habitat restoration is neither necessary (e.g., because
the environmental perturbation has not influenced habitat
availability) nor possible (e.g., due to financial or spatial man-
agement constraints)? Our results thus represent an important
“worst case” scenario establishing the kinds of results one can
expect under different network-based restoration strategies when
more traditional approaches, such as habitat amelioration are not
available. Our results also highlight the complex relationships
among three criteria that are often used to assess the effectiveness
of restoration strategies: abundance, settling time, and persis-
tence. Although low settling time may suggest rapid stabilization,
this outcome is often associated with weak long-term persistence
and lower overall species abundance. For example, achieving
rapid stabilization may come at the cost of fewer species per-
sisting in the system, thus eroding overall resilience. Conversely,
an exclusive focus on abundance could negatively impact settling
time and long-term persistence. Our study highlights the
importance of carefully assessing and prioritizing these three
interdependent criteria when designing restoration strategies for
entire ecosystems.

Many have proposed that the sixth mass extinction is well
underway and is mainly attributable to direct and indirect
anthropogenic effects33,34. Global change has severely disrupted
critical mutualistic ecological networks35, with climate-mediated
shifts in temperature expected to exacerbate extinction risks for
insects, including pollinators32. These changes have far-reaching
impacts on plant diversity, ecosystem stability, and even crop
production. In this context, our study offers insights into optimal
restoration strategies that may be particularly useful under
varying environmental conditions. Although we focused pri-
marily on designing restoration strategies to remediate the effects
of species loss, our framework can easily be adapted to address a
wider range of relevant perturbations in conservation biology.
Future work could extend our approach to include the impact of
temporal environmental variability and thus allow the develop-
ment of adaptive restoration strategies that mitigate the impacts
of environmental change in ‘real-time’. Addressing these chal-
lenges is of utmost importance for the preservation of the planet’s
interconnected ecosystems.

Methods
Mutualistic plant-pollinator networks. We analyzed 30 mutua-
listic plant-pollinator networks (listed in Supplementary Table 1)
from the Web of Life database (www.web-of-life.es), representing
them as unweighted, undirected bipartite Species Interaction
Networks (SINs). In these networks, nodes represent species, and
edges depict mutualistic interactions between a pair of nodes.
Further, we measure the following attributes for these SINs: Size
(S): Total number of species in the mutualistic network. That is,
S= n+m; where n and m represent the number of plant and
pollinator species, respectively; Asymmetry (A): The ratio of
pollinator to plant species, defined as A ¼ m

n ; Connectance (C):
The proportion of possible links that are realized. That is,
C ¼ L

ðm�nÞ; where L is the total number of interactions; Nestedness
(N): The degree to which the species interactions are structured in
a hierarchical way. It measures the extent to which species with
fewer interactions are subsets of species with more interactions.
The NODF metric ranges from 0 to 100, where 0 indicates a

completely non-nested matrix, and 100 indicates a perfectly
nested matrix26.

Simulating dynamics. The dynamical models simulate species
abundances within plant-pollinator networks by incorporating pro-
cesses such as intrinsic growth, intraspecific and interspecific com-
petition, and mutualistic interactions between pollinators and plants.

n-D model. Mathematically, the n-D model is represented as
follows:

∂Pi

∂t
¼ Pi αðPÞi � ∑

SP

j¼1
βðPÞij Pj þ

∑SA
k¼1 γ

ðPÞ
ik Ak

1þ h∑SA
k¼1 γ

ðPÞ
ik Ak

 !
þ μðPÞ ð1Þ

∂Ai

∂t
¼ Ai αðAÞi � ∑

SA

j¼1
βðAÞij Aj þ

∑SP
k¼1 γ

ðAÞ
ik Pk

1þ h∑SP
k¼1 γ

ðAÞ
ik Pk

 !
þ μðAÞ ð2Þ

Here, Pi and Ai represent the abundances of the ith plant and
pollinator species, respectively, with SP and SA denoting the total
number of plant and pollinator species within the network. The
parameter α represents the intrinsic growth rate in the absence of
competition and mutualistic effects, while βii and βij (for i ≠ j)
characterize intraspecific and interspecific competition respec-
tively; μ parametrizes the immigration of species; and h is the
half-saturation constant. The parameter γ quantifies the strength
of mutualistic interactions, with γ= 0 indicating the absence of
such interactions in the network. Generally, γ is dependent on the
degree (i.e., number of mutualistic partners) of species i (Di), as
follows:

γij ¼ ϵij
γ0
ðDp

i Þ ð3Þ

where γ0 is a constant, ϵij= 1 if there is an interaction between
species i and j or 0 otherwise, p characterizes the tradeoff between
the interaction strength and the number of mutualistic links.

2-D Model. The n-dimensional model (eq. (1) and eq. (2)) can be
dimensionally reduced to a 2-D model in terms of effective
abundance of plant (Peff) and pollinator (Aeff) species as:

∂Peff

∂t
¼ αPeff � βP2

eff þ
<γP>Aeff

1þ h<γP>Aeff
Peff þ μ ð4Þ

∂Aeff

∂t
¼ αAeff � βA2

eff þ
<γA>Peff

1þ h<γA>Peff
Aeff þ μ ð5Þ

The values of all parameters are listed in Supplementary Table 4.
Physical interpretations of each parameter, along with detailed
derivations of equations (4) and (5), are available in Jiang et al.26.

1-D model. Given that mutualistic interactions occur between a
plant and a pollinator species, and not within the plant or pol-
linator species themselves, the formed network is bipartite in
nature. Consequently, we can project this bipartite network onto
plants or pollinators to simulate species abundances, using the
projected adjacency matrix (Aij)36.

Mathematically, we represent the n-dimensional model
employing the projected adjacency as follows:

∂xi
∂t

¼ Bi þ xi 1� xi
Ki

� �
xi
Ci

� 1

� �
þ ∑

N

j¼1
Aij

xixj
Di þ Eixi þ Hjxj

ð6Þ
In this model, xi denotes the abundance of the ith plant or
pollinator species, contingent on the chosen projection of the
adjacency. Incorporated processes in this model include constant
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rate incoming migration Bi, logistic growth governed by a
carrying capacity Ki, Allee’s effect, which results in reduced
growth at lower abundances (xi < Ci), and the positive effects of
mutualistic interactions between species i and j. These interac-
tions are influenced by the projected adjacency Aij and are
parameterized by Di, Ei, and Hj.

Using the methodology delineated in Gao et al.13, we simplify
eq. (6) to a one-dimensional model (eq. (7)) to quantify the
effective abundance, xeff, of plants and pollinators:

∂xeff
∂t

¼ Bþ xeff 1� xeff
K

� � xeff
C

� 1
� �

þ βeff
x2eff

Dþ ðE þ HÞxeff
ð7Þ

Here, βeff characterizes the nearest-neighbor weighted degree of
the projected network. The values of all parameters are listed in
Supplementary Table 4. Physical interpretations of each para-
meter, along with detailed derivations of equation (7), are
available in Gao et al.13.

Simulating perturbations. In this study, the nodes correspond to
individual species, while the edges delineate the mutualistic
interactions between pairs of plant and pollinator species. Within
this framework, a perturbation is defined as the elimination of a
species, represented by removing the corresponding node and its
associated edges from the network. We impose a model of obli-
gate mutualism: a species is deemed extinct, and consequently, it,
along with its connecting edges is excised from the network if it
loses all mutualistic partners. Following the removal of a specific
node and its links, we update the adjacency matrix, which can be
either the projected or the original matrix, depending on the
dimensionality of the model. We use three distinct perturbation
scenarios to select the species to be perturbed. The first, random
sampling, involves the random removal of species. The second,
generalist-preferred sampling, entails selecting species with a
probability directly proportional to their degree, which reflects
the number of mutualistic partners they possess. On the contrary,
the third scenario, specialist-preferred sampling, selects species
with a probability inversely proportional to their degree. Each of
these perturbation scenarios is applied to the removal of 30%,
60%, and 90% nodes within a plant-pollinator network, thus
generating nine unique combinations in total. To mitigate sta-
tistical biases, we analyze 10-ensembles for each combination.

Key criteria. To evaluate the relative efficacy of different recovery
strategies in our dynamical simulations, we monitor the following
key criteria: Abundance (X)13: The total number of individuals of a
species in an ecosystem.; Settling Time (ST)6: The time taken by the
dynamical models to achieve a steady state for every species. A steady
state is confirmed when the population abundance of each species
remains within a predefined tolerance limit of 10−6 for at least five-
time steps; and Persistence (P)27: Calculated as the proportion of
species that survive (i.e., those not going extinct) to the total number
of species in the network, once a steady state is achieved.

Simulating recovery. Post perturbation, we simulate the ecosys-
tem’s recovery by strategically reintroducing species deemed most
’critical’ to the perturbed network. This reintroduction process not
only brings back the selected species, but also restores their
respective mutualistic links within the network. During each step of
this restoration process, the three key criteria are recalculated using
dynamical models. The criterion for determining the ‘criticality’ of
species hinges on their topological significance within the network,
gauged by four distinct measures13,28: Nearest-neighbor weighted
degree (βeff), Degree Centrality, Closeness Centrality, and

Betweenness Centrality. For centrality-based measures, the species
with the highest centrality score is prioritized for reintroduction,
being identified as the most ‘critical’. In contrast to these centrality
measures, βeff yields a single value characterizing the entire per-
turbed network. Consequently, the sequence of species reintro-
duction is determined by selecting species in a manner that
maximizes the incremental increase in βeff at each restoration step.
To evaluate the efficacy of these reintroduction strategies, we used a
null model in which species are restored in a random sequence
until the network achieves complete recovery.

Identifying ‘winning’ strategies. We subject each network to
perturbations using the 9 combinations of scenarios, with 10
ensembles for each combination. To simulate species abundances
using dynamical models, we set an initial abundance of 10−6 for
each species. These simulations are conducted for a maximum of
300 time steps, equivalent to a span of 100 years, with each time step
representing a period of 4 months. This temporal framework enables
detailed monitoring of the three key criteria in each restoration step.

To determine the most effective restoration strategy for each
criterion, we calculate the average value of each criterion over the
course of the restoration steps and across all ensembles. This
approach not only accounts for variations in the length of
restoration sequences, but also ensures that the contributions of
different species at various stages are duly considered. This
averaging is crucial for comparing networks of different sizes, as a
uniform perturbation percentage (e.g., 30%) results in the
removal of varying numbers of nodes depending on the network
size. Additionally, the average of ensembles addresses potential
statistical biases arising from sampling. The ‘winning’ strategy is
determined based on its performance against these criteria: higher
values of abundance (X) and persistence (P), and lower values of
settling time (ST) are deemed superior. In instances where there is
a tie in a key criterion, we resort to the other criteria (abundance
and settling time, in that order) to designate the ‘winner’.

Statistics and reproducibility. We investigated the linear rela-
tionship between each of the three key restoration criteria and the
network attributes, assessing how these relationships are affected
by 1-D and 2-D models. For each criterion, we normalize both
the criterion and the network attributes on a scale of 0–1, based
on their respective maximum and minimum values. Using simple
linear regression (with a sample size of N ~ 105), we regress each
criterion against the attribute of the network. Subsequently, we
determined the Spearman Rank Correlation for each best-fit line
derived from both 1D and 2D models. Furthermore, we perform
a multivariate linear regression, in which each criterion is
regressed against all attributes of the network collectively, and
calculate R2, the ratio of the variance explained to the total var-
iance. To ensure the reproducibility of the results, the dynamical
equations and the values of the parameters and time steps are
provided in the Methods and Supplementary Table 4, and the
associated codes are provided via Zenodo repository37. Source
data underlying figures 1–3 are provided in Supplementary
Data 1–3, respectively.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Data for 30 mutualistic plant-pollinator networks were obtained from the Web of Life
database (www.web-of-life.es). Data used to generate the figures are available in
Zenodo37.
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Code availability
The computer code for analyzing the data and creating the graphs was written in Python.
The code along with the datasets can be downloaded from Zenodo37.
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