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Organ-specific characteristics govern the
relationship between histone code dynamics and
transcriptional reprogramming during nitrogen
response in tomato
Russell Julian1,2,3, Ryan M. Patrick1,2,3 & Ying Li 1,2✉

Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These

responses occur in the context of the local chromatin landscape, but the contribution of

organ-specific dynamic chromatin modifications in responses to external signals remains

largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the

genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and

H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as

H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were

observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic

datasets generated from the same organ revealed largely syngenetic relations between

changes in transcript levels and histone modifications, with the exception of H3K27me3 in

shoots, where an increased level of this repressive mark is observed at genes activated by

nitrate. Application of a machine learning approach revealed organ-specific rules regarding

the importance of individual histone marks, as H3K36me3 is the most successful mark in

predicting gene regulation events in shoots, while H3K4me3 is the strongest individual

predictor in roots. Our integrated study substantiates a view that during plant environmental

responses, the relationships between histone code dynamics and gene regulation are highly

dependent on organ-specific contexts.

https://doi.org/10.1038/s42003-023-05601-8 OPEN

1 Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA. 2 Center for Plant Biology, Purdue University,
West Lafayette, IN 47907, USA. 3These authors contributed equally: Russell Julian, Ryan M. Patrick. ✉email: li2627@purdue.edu

COMMUNICATIONS BIOLOGY |          (2023) 6:1225 | https://doi.org/10.1038/s42003-023-05601-8 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05601-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05601-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05601-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05601-8&domain=pdf
http://orcid.org/0000-0002-5258-7355
http://orcid.org/0000-0002-5258-7355
http://orcid.org/0000-0002-5258-7355
http://orcid.org/0000-0002-5258-7355
http://orcid.org/0000-0002-5258-7355
mailto:li2627@purdue.edu
www.nature.com/commsbio
www.nature.com/commsbio


N itrogen (N) is an essential plant macronutrient and a
limiting factor for plant growth1,2. In modern agriculture,
N is often amended in soil by applying chemical N fer-

tilizer, which effectively boosts crop yield but contributes to
environmental problems and climate change, impacting biodi-
versity and human health3,4. A comprehensive understanding of
the molecular mechanisms of N uptake and assimilation is
desired to improve nitrogen use efficiency and agricultural sus-
tainability. In aerobic soil in a temperate climate, N is primarily
taken up from the soil as nitrate through nitrate transporters
(NRTs) in the roots encoded by the NITRATE TRANSPORTER 1/
PEPTIDE TRANSPORTER Family (NPF)1,5–9. Nitrate is then
assimilated in the roots or transported via NPF transporters to the
shoots for assimilation5. During N assimilation, nitrate is first
reduced to nitrite by nitrate reductase (encoded by NIAs), and
then reduced to ammonium by nitrite reductase (encoded by
NIRs)1. Ammonium, absorbed directly from the soil through
ammonium transporters (AMTs) or produced from nitrate, is
assimilated through the glutamine synthetase (GS)/glutamine-2-
oxoglutarate aminotransferase (GOGAT) cycle10 into the amino
acids glutamate and glutamine. The amino groups of glutamate
and glutamine can then be transferred between carbon skeletons
to produce other amino acids11 via aminotransferases e.g.,
asparagine synthetase (ASN)12.

Nitrate is not only a macronutrient but also a signaling molecule.
Nitrate is sensed by the transceptor NPF6.3, a dual-function
transporter and sensor protein13,14, triggering a signaling cascade
and widespread reprogramming of gene expression on a scale of
minutes to hours15,16 that results in physiological and develop-
mental changes within days, including enhanced chlorophyll bio-
synthesis in the shoots and morphological changes in the roots17,18.
NLP7, a member of the NIN-like protein family (NLPs), is a master
regulator which translocates into the nucleus within minutes of
nitrate supply to bind and regulate hundreds of nitrate-responsive
genes19 and has also recently been recognized to function as a
nitrate sensor protein20. Many other transcription factors (TFs)
involved in nitrate responses have been characterized5: HYPER-
SENSITIVE TO LOW PI-ELICITED PRIMARY ROOT SHORT-
ENING 1 (HRS1) and other members in the HRS1 HOMOLOG
FAMILY (HHO) are induced by a supply of nitrate within 10min
to regulate nutrient metabolism and root growth21; Basic leucine
zipper 1 (bZIP1), another master regulator of N responses, acts
through a hit-and-run mechanism to activate a large set of genes in
response to N supply22; WRKY1 integrates light response and N
signaling to coordinate carbon and N metabolism23; LATERAL
BOUNDARY DOMAIN CONTAINING PROTEIN 37 (LBD37),
LBD38, and LBD39 are induced by N and function as repressors of
NPF6.3, NRT2.1 and NIA1 to fine-tune nitrate response24.

Regulation of gene networks by TFs occurs in the context of
the local chromatin landscape. At the most basic level, this con-
sists of genomic DNA wrapping around histone octamers to form
nucleosomes25. Posttranslational modifications of histone pro-
teins at their N-terminal tails are known to affect chromatin
organization with resultant effects on gene expression26. The
combination of a wide range of possible histone modifications,
such as methylation and acetylation at different amino acid
positions on histone tails, forms the histone code to extend the
information potential of the genomic DNA at a given gene
locus27. Histone acetylation reduces the positive charge of his-
tones to create an open chromatin state, which is generally
associated with active gene transcription28. Histone methylation
can be associated with gene activation or repression depending on
the amino acid substrates: histone subunit 3 lysine (K) 4 tri-
methylation (H3K4me3) and H3K36me3 are usually associated
with active gene expression, while H3K27me3 and H3K9me2 are
considered repressive histone marks associated with gene

silencing29,30. Histone methylation and acetylation are reversible
marks maintained by the coordinated function of writer and
eraser enzymes. Histone acetylation is deposited by the histone
acetyltransferase (HAT) writer proteins and erased by histone
deacetylases (HDACs)31. Similarly, histone methylation is written
by SET DOMAIN GROUP (SDG) proteins and erased by
demethylases such as Jumonji (JMJs)32.

In plants, histone modifications play a key role in interfacing
external signals and cellular gene expression to potentiate ade-
quate physiological responses to the environment. For instance,
histone deacetylases HDA633,34, HDA935, HDA1936, and
HDT237 are involved in plant response to abiotic or biotic
stresses. H3K4 demethylases JMJ16 and JMJ17 mediate drought
response38. H3K36me3, partially mediated by SDG8, was shown
to regulate response to light39, pathogen40, and temperature41.
Recently, a few studies have suggested that chromatin regulation
plays an active role in plant nutrient responses, especially
responses to N. HIGH NITROGEN INSENSITIVE 9 (HNI9), a
component of the Pol II complex, was shown to repress NRT2.1
during high N supply through increased H3K27me342.
H3K27me3 was also shown to be deposited at NRT2.1 locus even
when NRT2.1 is highly induced, possibly to attenuate its
expression43. In maize, the chromatin remodeling protein
ZmCHB101 was found to contribute to nitrate response in part
by regulating H3K4me3 and H3K27me3 dynamics at the NRT2.1
and NRT2.2 genes44. Levels of H3K9ac and H3K27ac at
autophagy-related genes were observed to be dynamically regu-
lated by HDA9 in response to nitrate starvation45. A genome-
wide study found that SDG8 affects H3K36me3 levels and RNA
processing in response to nitrate treatment46; however, this study
focused on aerial tissues, while the epigenomic changes in roots,
the organ that first senses and uptakes N, remain unknown. In
fact, although it has been well documented that chromatin
modifications are dependent on organ or tissue context47, it has
remained unclear whether the same external stimulus triggers
similar or distinct chromatin changes in different organs such as
shoots vs roots. In addition, while previous studies typically
focused on either specific genes, gene families, or pathways, and
assayed a limited number of histone marks, an in-depth under-
standing of the histone code requires multiple histone marks to
be evaluated simultaneously genome-wide to elucidate the indi-
vidual and combinatorial effects of histone modifications on gene
expression. Finally, to date, most studies have been performed in
Arabidopsis, while knowledge on epigenetic regulation in crop
species is relatively scarce.

Here, we present an extensive genome-wide study of five his-
tone marks: H3K4me3, H3K27ac, H3K36me3, and H3K27me3, in
two organs, shoots and roots, and additionally H3K9me2 in
shoots, in response to the nutrient nitrate in tomato plants. The
marks were chosen based on previous evidence for their invol-
vement in nitrate-responsive gene regulation42–46 and the avail-
ability of reliable and high-quality antibodies for chromatin
immunoprecipitation sequencing (ChIP-Seq). Our results suggest
that histone modifications are responsive to the N supply in an
organ-specific manner, with H3K27ac being the most dynamic.
Overlaying transcriptome data collected from the same organs,
we found that while permissive marks are often associated with
gene activation, and vice versa, a non-canonical pattern of
increasing H3K27me3 was observed at a group of up-regulated
genes in the shoots. Finally, we applied machine learning
approaches to understand the contribution of histone marks,
individually or in combination, in predicting gene regulation.
While combinatorial information from multiple histone marks
greatly increased accuracy of prediction of gene regulation,
accuracy of those predictions was mostly dependent on
H3K36me3 in the shoots and H3K4me3 in the roots.
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Results
A supply of nitrate triggers organ-specific changes of histone
modifications at specific gene loci. To investigate the organ
specificity of dynamic histone modifications in response to N
changes, we treated 3-week-old tomato seedlings (Solanum lyco-
persicum, cultivar M82) with four days of N starvation, followed
by N-supply (2.8 mM NO3

−; +N) or continued N-starvation
(2.8 mM Cl− as a control; −N) treatments (Supplementary
Fig. 1). Growth in +N conditions led to increased biomass,
greater shoot-to-root ratio, and higher chlorophyll content
compared to the −N controls after seven days (Supplementary
Fig. 2). To investigate the chromatin regulatory mechanisms
underlying response to N, we assayed the genome-wide profiles of
four histone modifications, H3K4me3, H3K27ac, H3K27me3, and
H3K36me3, by ChIP-Seq in shoots and roots six hours following
+N or −N treatment (Supplementary Fig. 1). One additional
histone modification, H3K9me2, was assayed for shoots only, as
described in the following section. The six-hour time point was
chosen to capture the relatively early regulatory events that would
lead to physiological divergence, while allowing enough time for
the histone modifications to respond to the N signal48. The
analyses of our ChIP-Seq data uncovered hundreds to thousands
of dynamic islands, i.e., genomic regions associated with
H3K4me3, H3K27ac, H3K27me3, or H3K36me3 modifications
that are significantly different between +N and −N conditions
(FDR < 0.05 and fold-change > 1.5) (Supplementary Fig. 3a, b).
The majority of dynamic H3K4me3 and H3K36me3 islands are
colocalized with the transcribed region of annotated genes (i.e.,
genic region; Supplementary Fig. 3c, d). By contrast, the genomic
islands with dynamic H3K27ac or H3K27me3 are not only
associated with genic regions, but also located to putative pro-
moters (i.e., 5 kb upstream of the start of annotated genes), and
located in intergenic regions (>5 kb from any gene) (Supple-
mentary Fig. 3c, d). Differentially modified genes (DMGs) asso-
ciated with dynamic histone modifications were identified, both
in the genic region (Fig. 1a) and in the putative upstream pro-
moters (Fig. 1b) for roots or shoots separately (Supplementary
Data 1). Among the four histone marks assayed, H3K27ac
appeared to be the most strongly responsive to N supply; dynamic
H3K27ac occurs at hundreds of gene loci, while dynamic
H3K27me3, H3K4me3, and H3K36me3 are observed at a more
limited set of gene loci (Fig. 1a, b). Moreover, different histone
marks seem to be regulated at gene loci involved in distinct
biological processes (Supplementary Data 7; Fig. 1d, e): for
example, in the shoots, genic H3K27ac is increased by N supply at
genes involved in photosynthesis and carbon metabolism, while
genic H3K36me3 is increased at gene loci involved in rRNA
metabolism (Fig. 1d), despite both marks having an accepted role
associated with gene activation.

We next asked whether these dynamic histone modification
changes are specific to one organ or shared between shoots and
roots. In general, the majority of DMGs with dynamic genic
histone modification (>91%) are organ specific, in that they are
significantly responsive to N supply only in shoots or in roots
(Fig. 1c). The comparison of DMGs with dynamic histone
modification in the promoter was less meaningful due to the
limited number of significant genes observed. Interestingly, we
observed varying levels of organ specificity for different histone
modifications. Dynamic change of H3K27me3 is highly specific to
roots, as hundreds of DMGs hyper- or hypo-methylated with
H3K27me3 are observed in the roots but a much more limited
number of DMGs are detected in the shoots (Fig. 1a). Indeed,
there was no overlap between the H3K27me3 DMGs in shoots
and those in roots (Fig. 1c). Similarly, the changes of H3K36me3
were also more prominent in the roots than in the shoots
(Fig. 1a). Genic H3K4me3 was more likely to increase than

decrease in roots in response to N supply while in shoots the
opposite pattern was observed (Fig. 1a). Finally, H3K27ac is the
least organ-specific of the four marks, in that it is dynamic at
hundreds of gene loci in both organs (Fig. 1a) with a significant
portion of overlapped DMGs observed in both shoots and roots
(Fig. 1c).

In summary, we observed dynamic and organ-specific changes
of histone marks in response to changing N supply occurring at
distinct functionally relevant gene loci for different marks.
Generally, these events were limited to either shoots or roots
and the level of response for different marks varied greatly.
Overall, our epigenomic data uncovered notably different
chromatin dynamics between the two organs in response to N
supply, indicating that distinct epigenetic machinery operates
downstream of nitrate signaling pathways to modify chromatin at
specific target genes and manifest proper response in each organ.

Integrating epigenome and transcriptome data provides insight
into the regulation of N regulatory and metabolic genes. To
understand how the observed epigenomic changes affect gene
expression, we profiled and analyzed the shoot and root tran-
scriptome of tomato plants treated with −N and +N conditions
from tissues harvested in parallel with the ChIP-Seq samples
(Supplementary Fig. 1). In total, we identified 1331 DEGs that are
up-regulated and 1304 down-regulated by a supply of N in roots,
and 2760 up-regulated and 1534 down-regulated DEGs in shoots
(Supplementary Data 2), using DEseq2. Concordant with the
observed organ-specificity of DMGs, the majority of DEGs were
also organ-specific in that 85% of up- and down-regulated DEGs
changed significantly in only one organ.

In the roots, up-regulated DEGs are enriched with functional
annotations for transmembrane transport (nitrate transport),
ribosome biogenesis, and negative regulation of peptidase activity,
indicating activation of N uptake and protein synthesis pathways in
response to increasing N supply (Supplementary Data 3a). These
include nitrate transporter NRTs (Solyc11g069760.1,
Solyc08g007430.2, Solyc05g006990.3, and Solyc11g069735.1), as well
as genes encoding enzymes for N assimilation and amino acid
biosynthesis such as NIA (Solyc11g013810.3), NIR (Solyc01g108630.3,
Solyc10g050890.2), and GS (Solyc04g014510.3) (Supplementary
Data 2). Interestingly, down-regulated DEGs are also enriched with
the biological process ‘transport’ (Supplementary Data 3b), including
transporters for other mineral nutrients such as manganese
(Solyc01g095510.3), magnesium (Solyc05g012220.3), calcium
(Solyc07g006370.1), and zinc (Solyc07g043200.2, Solyc07g043230.3)
(Supplementary Data 2). Therefore, the diverse mineral nutrient
uptake and transport processes in the roots seem to adjust in
response to the supply of N. In the shoots, the up-regulated genes
are enriched with GO terms ‘translation’, ‘chlorophyll biosynthetic
process’, and ‘nitrogen compound transport’ (Supplementary Data
3c), including genes encoding N transporters and N assimilation
enzymes such as NRT (Solyc06g074990.3 and Solyc05g006990.3),
NIA (Solyc11g013810.3), NIR (Solyc01g108630.3 and
Solyc10g050890.2), GS (Solyc01g080280.3 and Solyc04g014510.3),
and ASN (Solyc04g055200.3) (Supplementary Data 2). The down-
regulated DEGs in shoots are enriched with regulatory processes and
signaling pathways, as well as aging and leaf senescence (Supple-
mentary Data 3d). Overall, our transcriptome analyses suggested
that N assimilation and growth processes are activated and signaling
cascades are reprogrammed in response to N supply in the shoots.

Overlaying epigenomic and transcriptomic data generated
from the same samples provided insight to the complexity of
chromatin modification at responsive regulatory and metabolic
genes essential for N metabolism. TF families such as bZIPs22,
HHOs49, LBDs24, NLPs19, and WRKYs23 are known to be
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Fig. 1 Nitrogen treatment triggered organ-specific dynamic changes in various histone modifications at gene loci involved in distinct biological
processes. a Number of differentially modified genes (DMGs) with significantly different levels of H3K4me3, H3K27ac, H3K27me3, or H3K36me3 in
the transcribed regions of genes (i.e., genic region) in the +N treated samples compared to the −N controls. b Number of DMGs with significantly
different levels of histone modifications in the 5 kb upstream of TSS (i.e., promoter) in the +N treated samples compared to the −N controls. c The
percentage of DMGs with dynamic genic marks that are shared between shoots and roots (blue columns), unique to the shoots (green columns), or
unique to the roots (yellow columns). The significance of the overlap between shoots and roots was determined using hypergeometric distribution
against a whole genome background, and a significant overlap is indicated by asterisks: (•p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
d, e Heatmap depicting the fold enrichment of signaling GO terms significantly enriched among the DMGs identified in shoots (d) or in roots (e).
Significantly over-represented GO terms among individual groups of DMGs were first determined using ShinyGO (enrichment FDR < 0.05). Semantic
redundancy within a GO term list comprising all terms significantly over-represented in at least one set of DMGs was determined by ReviGO98. GO
terms with a dispensability score >0.5 in roots or >0.4 in shoots were removed to only keep representative GO terms. A selection of GO terms are
labeled in the figure, while the full list of GO terms are in Supplementary Data 7. The log2 value of enrichment level (representation of a GO term in the
group of DMGs vs the representation of this GO term in whole genome background) is shown, and the value is set to 0 if the GO term does not pass the
statistical cutoff in the corresponding gene sets.
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involved in regulating N responses. Our results showed that
members of these TF families are indeed regulated by N at both
epigenetic and transcriptional levels (Fig. 2a, b), with many
marked by complex histone codes that are specific to the
individual gene locus and organ context. For example,
Solyc01g112190.3, encoding an NLP family TF with similarity to
the master regulator NLP719, shows organ-specific regulatory
changes, being up-regulated in shoots but down-regulated in
roots, with distinct epigenetic dynamics in the two organs. The
gene is associated with increased H3K4me3, H3K27me3, and
H3K36me3 in shoots, but in roots decreasing genic H3K27ac is
observed (Fig. 2a, b, e). The different epigenetic states could
possibly mediate the organ-specific transcriptional regulation of
this NLP. We also investigated the epigenetic and transcriptional
regulation patterns of genes central to N transport and
metabolism22 (Fig. 2c, d). In roots, multiple genes encoding
nitrate transporter family proteins (NRTs and NPFs) are up-
regulated and associated with dynamic H3K27ac in the promoter
(Fig. 2d), a pattern not observed in the shoots (Fig. 2c). By
contrast, in both organs genes involved in nitrate reduction,
ammonium transport, and N assimilation and amino acid
biosynthesis are regulated at epigenetic and transcriptional levels.

Specifically, genes encoding essential enzymes in nitrate reduction
and assimilation, such as nitrate reductase (Solyc11g013810.3),
nitrite reductase (Solyc01g108630.3 and Solyc10g050890.2), gluta-
mine synthetase (Solyc01g080280.3 and Solyc04g014510.3), and
glutamate synthase (Solyc03g083440.4) are up-regulated in both
shoots and roots (Fig. 2c, d). Some of these genes share dynamic
histone modification regulations between the two organs; for
example, NIA and NIR genes displayed increased H3K4me3 in
both shoots and roots (Fig. 2c, d). Other genes, such as GS
(Solyc01g080280.3), displayed discrete epigenetic modifications in
shoots vs roots despite being transcriptionally up-regulated in
both organs (Fig. 2c, d). These observations add complexity to
traditional views of gene regulation, revealing that seemingly
similar up-regulated genes can be under different chromatin
regulatory mechanism in different organs, possibly affecting the
duration, magnitude, memory, or transcriptional processing of
these gene activation events.

Global relationship between epigenome and transcriptome
responses. To investigate the global relationship between epige-
nomic and transcriptomic changes in response to N supply, we

Fig. 2 Nitrogen treatment causes complex changes in chromatin modifications and transcript levels of genes encoding known TF families, enzymes,
and transporters involved in nitrogen responses. Genes encoding TF families (a, b) or enzymes and transporters (c, d) are shown with their significant
changes in histone modifications and transcript levels. Green color indicates up-regulation of mRNA level or increased level of histone modification, while
magenta color indicates down-regulation of mRNA levels or decreased histone modifications. e Histone ChIP-Seq coverage showing dynamic histone
modifications along gene body of an NLP TF (Solyc01g112190.3) between −N and +N conditions. The sequencing depth was scaled to library size.
Representative results from one of three independent biological replicates are shown.
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compared the genes marked by dynamic histone modifications
(DMGs) with genes showing differential expression (DEGs)
(Fig. 3). We observed an overall pattern suggesting largely
canonical gene activation or repression events, i.e., a gene whose
transcript level is induced also displays increased permissive
histone marks or decreased repressive histone marks, or vice
versa. Indeed, for both shoots and roots, the permissive marks
H3K4me3, H3K27ac and H3K36me3 in genic regions (Fig. 3a) or
putative promoters (Fig. 3b) change concordantly with the
changes of transcript levels, indicated by the significant overlap
between up-regulated DEGs with genes showing increased
H3K4me3, H3K27ac, or H3K36me3 (Fig. 3). In agreement with
this, at whole genome level higher expressed genes are associated
with higher levels of H3K4me3, H3K27ac, and H3K36me3
(Supplementary Fig. 4). Unexpectedly, the H3K27me3 mark
displays both canonical and non-canonical patterns, depending
on the organ and positional context (presence in the promoter vs
the gene body). In the roots, increased H3K27me3 at the putative
promoter region is associated with decreased gene expression,
which is consistent with the notion that H3K27me3 functions as a
repressive mark (Fig. 3b). In accordance with this, at the whole
genome level, higher H3K27me3 around the promoter to TSS is

associated with lower gene expression (Supplementary Fig. 4). In
the shoots, however, a majority (34/57) of DMGs with increased
genic H3K27me3 surprisingly showed up-regulated transcript
levels in response to N (Fig. 3a). These 34 genes are enriched with
nitrogen metabolism related GO terms (Supplementary Data 4)
such as cellular amide metabolic process (adjusted p < 7E−11)
and cellular nitrogen compound biosynthetic process (adjusted
p < 5E−6) and include multiple ribosomal protein coding genes
and an NLP transcription factor gene (Solyc01g112190.3, Fig. 2e).
In comparison to the H3K27me3 hypermethylated genes that do
not exhibit significant mRNA up-regulation (23/57), these 34
genes with H3K27me3 hypermethylation and concurrent
N-induced mRNA expression showed a greater fold-change in
H3K27me3 increase (Fig. 4a). This set of genes also show sig-
nificantly higher levels of H3K4me3 and H3K36me3 (Fig. 4a),
possibly indicating that the combination of activation marks
(H3K4me3 or H3K36me3) and the repressive mark (H3K27me3)
specify the transcriptional states of these up-regulated genes,
though it is also possible that this epigenetic pattern is caused by
mixing distinct cell types constituting the organs. Moreover, the
increased genic H3K27me3 signal at up-regulated genes is located
at the gene body without spreading into the promoter (Fig. 4b),

Fig. 3 Overlapping differentially modified genes (DMGs) with differentially expressed genes (DEGs) uncovered canonical and non-canonical gene
regulatory patterns. The rows represent the number of DEGs up-regulated or down-regulated at the mRNA level in +N samples compared to −N controls
in shoots or roots. The columns represent the number of DMGs with increased or decreased histone modifications between +N and−N samples, in shoots
or roots, separately, for genic regions (a) or promoters (b). Each cell represents the overlap between the DMGs represented by the column and the DEGs
represented by the row. The top number in the cell represents the number of genes shared between the specific DMGs and DEGs, the bottom value
represents the significance of such overlap determined using hypergeometric distribution against a whole genome background. N.S. stands for not
significant (p > 0.05). A significant overlap, if occurring between up-regulated DEGs and DMGs with increased permissive marks (H3K4me3, H3K36me3,
H3K27ac), or decreased repressive mark (H3K27me3 or H3K9me2), is considered as canonical gene activation and the cell is colored with green. A
significant overlap, if occurring between down-regulated DEGs and DMGs with decreased permissive marks (H3K4me3, H3K36me3, H3K27ac), or
increased repressive mark (H3K27me3 or H3K9me2), is considered as canonical gene repression and the cell is colored with light pink. Otherwise, a
significant overlap is colored with yellow and represents a non-canonical gene regulatory event.
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and the DMGs that are most strongly up-regulated at the tran-
script level are associated with a dynamic H3K27me3 spreading
toward the 3’ end of coding region (Fig. 4b). Interestingly, this
non-canonical association of increased H3K27me3 with activated
gene expression is only observed in the shoots but not in the
roots. In the roots, the DMGs with increasing H3K27me3 at genic
regions are associated with both down-regulated and up-
regulated genes, while the increase of H3K27me3 levels is
observed over the entire gene body and extends into promoter
and downstream regions with no discernable relationship to the
direction or magnitude of transcript level changes (Fig. 4c).

To determine whether this unexpected association between
repressive histone mark and activated genes observed in shoots is
specific for H3K27me3 or involves other repressive marks, we
performed a follow-up ChIP-Seq for H3K9me2, a mark

associated with transcriptional repression that can dynamically
regulate genes under stress conditions50. The same shoot tissue
samples as the previous ChIP-Seq analyses were used. We focused
on the shoot based on the observation of non-canonical
association only in this organ, as well as availability of tissue.
We found that H3K9me2 signal was very low in genic space and
mostly associated with unexpressed genes (Supplementary Fig. 4),
in agreement with its known role in gene silencing and
heterochromatin formation51. While N-responsive H3K9me2
regions were found to be associated with hundreds of genes,
there was no significant overlap with differentially expressed
genes (Fig. 3), which is distinctly different from H3K27me3.
Additionally, there was no overlap between genes that gained
H3K27me3 and those that gained H3K9me2 in response to
nitrate supply. These results indicate that the association of
repressive histone modifications with highly expressed genes in
the shoots likely reflects a specific role for H3K27me3.

Machine learning uncovers organ-specific rules for how the
histone code can be used to predict changes in gene
expression level. The concept of the histone code proposes that
distinct combinations of histone modifications act together to
direct downstream events that affect the transcriptional activity of
associated genes26. With the recent growth of epigenomic data
and availability of machine learning algorithms to interpret
observations from complex biological systems, it is now feasible
to investigate the rules of histone code by testing whether histone
modification data could be used to train machine learning models
to predict gene expression levels52–56. Here, we tested if the five
histone modifications, individually or in combination, could be
used to predict whether a gene is up-regulated, down-regulated,
or non-responsive to a supply of nitrate. Moreover, we were
interested in distinguishing the relative contribution of each

Fig. 4 Up-regulated genes associated with increased H3K27me3 also
show increased H3K4/K36 methylation, with H3K27me3 changes
spreading over the transcribed region. a The log2 fold change of histone
ChIP-seq coverage between +N conditions and −N conditions are plotted
for the 57 genes with increased H3K27me3 in the shoots, specifically
comparing between the 34 genes with increased mRNA levels and the
remaining 23 genes that are not up-regulated. The log2 fold changes are
plotted as violin plot using the R package ggplot2, and the statistical
significance of differences between the two gene sets were determined
using Student’s t-test. The p-value of the significant difference is indicated
by asterisks: (•p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
Overall, the up-regulated genes showed higher increases of H3K27me3, as
well as increased H3K4me3 and H3K36me3. b, c Heatmaps showing the
positional profile of changes of H3K27me3 from 1 kb upstream of
transcription start site (TSS) to 1 kb downstream of transcription
termination site (TTS) for genes with increased H3K27me3 at genic region
in shoots (b) or in roots (c). Log2 fold change of H3K27me3 ChIP-Seq
sequencing depth between +N and −N samples were plotted as heatmap
with green color representing increased H3K27me3 in +N samples
compared to −N controls and magenta representing decreased H3K27me3
in +N samples compared to −N controls. Each row in the heatmap
represents one gene, and the expression level change of the gene is
indicated by the color in the column on the left of the heatmap. Blue color
represents up-regulation of transcript levels in +N samples compared to
−N controls, while red color represents down-regulation. The genes are
ranked with the most up-regulated genes at the top. Overall, the increased
H3K27me3 is observed only in transcribed region in the shoots, while it
spreads into the 1 kb promoter region in the roots. In the shoots, the most
up-regulated genes are more likely associated with increased H3K27me3
distributed across the gene body from TSS to TTS.
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histone mark in such predictions, and whether the observed rules
are organ-specific or conserved between shoots and roots.

To this end, we first focused on the four histone marks assayed
for both shoots and roots and calculated the following set of 16
epigenetic feature measurements (four values for each of the four
histone marks) for every gene in the genome: (i) the level of the
histone modification (i.e., normalized ChIP-seq signal) present in
a genic region under −N conditions; (ii) the same measurement
for +N conditions; (iii) the histone modification’s fold change in
the genic region in +N relative to −N conditions; and (iv) a
binary indication of presence or absence of dynamic histone
modification in the 5 kb upstream sequence (putative promoter).
In parallel, we classified all expressed genes in an organ into one
of three gene sets: up-regulated, down-regulated, or unchanged.
To achieve a more balanced classification that is desired in
machine learning, we relaxed the statistical cutoff for detecting
DEGs, for machine learning purpose only, to FDR < 0.05 without
fold change cutoff. This led to classification of 6797 up-regulated
and 6548 down-regulated genes in shoots, and 5724 up-regulated
and 5362 down-regulated genes in roots, within a background of
all genes tested by DESeq2 (i.e., ~24k genes with a measurable
level of expression). Next, the 16 epigenetic features were used to
train a random forest model to learn whether a gene is up-
regulated, down-regulated, or unchanged by a supply of N using
XGBoost57. Specifically, 80% of genes were used for training and
20% were used for testing in a rotating block round robin fashion.
Over sufficient iterations, each gene was tested ten times and the
mean prediction score for the probability of a gene being in the
up- or down-regulated gene classes was calculated. The precision-
recall curve and maximum F1 scores were calculated from the
testing sets to measure the performance of the machine-learning
models. The precision-recall curve and maximum F1 scores from
a model trained with random predictors (i.e., randomly
permutated epigenomic features) were also generated as a
baseline.

Our results showed that the combination of all four histone
marks was able to predict the regulation of genes with a precision-
recall curve that greatly outperformed the model trained with
random predictors (Fig. 5a, b, d, e), with the best performance of
AUPR= 0.74 and max F1 score = 0.66 for up-regulated genes in
the shoots (Fig. 5a). In practical terms, of the top 1000 genes
predicted by the machine learning approach to have the highest
probability of being up-regulated in shoots, 955 were indeed up-
regulated as supported by the RNA-seq data. This result could be
explained by the histone code functioning as a causal factor to
direct gene regulation, or by histone marks being modified co-
transcriptionally as a result of gene regulatory events, or a
combination of the two scenarios. The predictions in the shoots
(Fig. 5a, b) performed better than in the roots (Fig. 5d, e), while
the predictions for up-regulated genes (Fig. 5a, d) performed
better than that for down-regulated genes (Fig. 5b, e).

Intriguingly, the four histone marks made unequal contribu-
tions to predicting gene regulation. Dynamic H3K27ac, canoni-
cally associated with gene activation, might be expected to
perform as the best predictor for gene regulation in N response,
based on the large number of DMGs (Fig. 1) and significant
overlaps with DEGs (Fig. 3). However, the machine learning
algorithm surprisingly arrived at a different conclusion: H3K27ac
was not the best predictor of gene regulatory events at a genome-
wide level (Fig. 5). In shoots, the genic H3K36me3 level and its
fold change were the most important epigenetic features in
predicting gene regulation (Fig. 5c), based on the feature
importance score determined by XGBoost; in the roots, the
fold-change of genic H3K4me3 was the most important
component in predicting gene regulation (Fig. 5f). Indeed, in
shoots, removing H3K36me3 from the epigenetic predictors had

the biggest impact on the performance of prediction (Fig. 5g, h,
green columns), while H3K36me3 as the sole epigenetic feature
could predict gene regulation (Fig. 5g, h, pink columns) with a
performance comparable to when the other three marks are used
without it, for both up- (Fig. 5g) and down-regulated genes
(Fig. 5h). In the roots, similarly, removing H3K4me3 from the
epigenetic inputs had the largest effect in compromising the
power of predictions (Fig. 5i, j, green columns), while H3K4me3
shows the best performance of the four when a single mark is
used (Fig. 5i, j, pink columns). One possible explanation is that
H3K4me3 and H3K36me3 are deposited co-transcriptionally with
Pol II, thereby functioning as an informative proxy for predicting
gene regulation. However, it is notable that one activation histone
mark outperforms the others in predicting changes in gene
expression depending on the organ, indicating that specific
histone modifications (H3K36me3 in shoots and H3K4me3 in
roots) may play vital roles in orchestrating gene regulatory
mechanisms in an organ-specific manner.

Next, to determine the combinatorial effect of histone
modifications, we tested all pairs of histone marks in their ability
to predict gene regulation. As expected, the combination of
H3K4me3 and H3K36me3 is the most powerful in predicting
gene regulation (Fig. 5g–j, yellow columns). H3K27ac, although
not the best performing predictor of gene regulation when used
individually, performs reasonably well in combination with
H3K4me3 or H3K36me3 (Fig. 5g–j). One possibility is that
H3K27ac leads to a relaxed chromatin status which provides
access to DNA for gene regulatory events to occur58, thus
providing additional predicting power together with either
H3K4me3 or H3K36me3.

To investigate which subgroup of DEGs could be best predicted
using specific epigenetic marks, we identified the top 10% true
positive DEGs that are correctly predicted by individual
epigenetic marks based on mean prediction score. We found
that the DEGs that could be best predicted using H3K4me3 and
those that could be best predicted using H3K36me3 are
overlapping yet largely unique (Fig. 6). In the shoots, the top
10% of DEGs that could be best predicted by H3K4me3 or those
by H3K36me3 share only 32–38% overlaps (Fig. 6a, b). In the
roots, the overlapping sets are even lower, with 26% for up-
regulated genes and 17% for down-regulated genes (Fig. 6c, d).
These distinct gene groups share many similar enriched GO
terms (Supplementary Data 5). For example, for up-regulated
DEGs in the shoots, where the prediction performs the best
(Fig. 5a), the ‘translation’ related GO terms are significantly
enriched among the top 10% DEGs uniquely predicted by
H3K4me3, as well as among the top genes uniquely predicted by
H3K36me3 (Fig. 6a). On the other hand, some biological
processes are only enriched among genes that are uniquely
predicted using H3K4me3, but not among the top DEGs uniquely
predicted by H3K36me3, and vice versa. For example, in the
roots, up-regulated genes best predicted by H3K4me3 only are
enriched with signal transduction, while up-regulated genes best
predicted by H3K36me3 only are enriched with plastid RNA
metabolism and plastid organization (Fig. 6d). Overall, we found
that during a global reprogramming of gene expression, different
histone marks function as the best indicator of gene regulation for
distinct sets of genes, indicating gene specificity for different
activation histone modifications.

We noticed that using our ChIP-Seq data for prediction of
down-regulated genes did not perform as well as for up-regulated
genes (Fig. 5) and wondered if the prediction was limited by
incorporating information from only one repressive mark. To
address this, the additional H3K9me2 ChIP-Seq data generated
from shoot tissues were incorporated alongside data for the other
four histone marks assayed in shoots in our machine learning
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Fig. 5 The combinatorial histone code was used to train machine learning models to predict gene regulation. Precision-recall curves were plotted for the
prediction of up-regulated genes (a, d) or down-regulated genes (b, e) for shoots (a, b) or roots (d, e) using XGBoost machine learning models. Max
F1 score [2 × (precision × recall)/(precision + recall)] and Area Under Precision-Recall curve (AUPR) were calculated as assessment of the performance of
the machine learning models. The model trained with random predictors (i.e., randomly permutated epigenomic features) was also generated to provide a
background for comparison (in blue curves). The feature importance scores for individual epigenetic features were plotted and ranked with the most
important features at the top for shoots (c) and roots (f) separately. FC stands for fold change between+N samples and−N samples. g–j To determine the
contribution of individual histone marks or combinations of histone marks in prediction gene regulation, the model training and testing was performed with
predictors as: (i) all four histone marks; (ii) any three histone marks; (iii) any two histone marks; (iv) any one histone mark; or (v) random background with
permutated epigenomic features, and the AUPR values were plotted and compared.
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approach to predict changes in gene expression in response to
nitrate supply. The addition of H3K9me2 had a negligible effect
when added to the other four marks for predicting up-regulated
genes (Supplementary Fig. 5a; AUPR 0.736 vs 0.738) and only a
slight improvement for down-regulated genes (Supplementary
Fig. 5b; AUPR increases from 0.647 to 0.655). It also performed
much worse than the other marks when used as the only
information input for prediction (Supplementary Fig. 5, green
lines). Given these observations alongside its low association with

expressed genes and enrichment at silenced genes (Supplemen-
tary Fig. 4), it is possible that this mark is largely associated with
non-expressed genes and thus has limited predicting power on
dynamic gene expression.

Discussion
Distinct behaviors of different histone modifications during
dynamic environmental responses. Our genome-wide analyses

Fig. 6 Partly overlapping but distinct sets of genes are best predicted by H3K4me3 or H3K36me3. The top 10% true positive genes that are correctly
predicted by H3K4me3 or H3K36me3 as ranked by predicted probability score are represented by circles and venn diagrams are plotted to show the
overlaps between gene sets, for shoots (a, b) and roots (c, d), and for up-regulated DEGs (a, c) and down-regulated DEGs (b, d), separately. The
representative GO terms significantly enriched in the overlapped or distinct gene sets were determined with FDR adjusted p < 0.05 and trimmed using
ReviGO to remove redundant GO terms. The GO terms in green highlights the specific biological processes uniquely identified for top 10% genes best
predicted using H3K4me3 but not among the top 10% genes best predicted using H3K36me3, while GO terms in brown highlights the specific biological
processes uniquely identified for top 10% genes best predicted using H3K36me3 but not among the top 10% genes best predicted using H3K4me3.
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of histone modifications in tomato shoots and roots in response
to N uncovered that each histone mark showed distinct dynamic
behaviors in a variety of aspects: (i) the level of the dynamicity;
(ii) the scope of gene targets; (iii) preference for transcribed vs
regulatory regions; and (iv) association with gene activation or
repression. H3K27ac is highly dynamic, affecting many gene loci
in our study (Fig. 1a, b), which is in agreement with its fast
turnover time59. H3K27ac changes are observed at both genic and
intergenic regions in response to N supply (Supplementary
Fig. 3), consistent with a role in facilitating transcription as well as
marking enhancer regions as previously described60,61. The
increase of H3K27ac is largely associated with gene activation
(Fig. 3), which supports its canonical role in regulating actively
transcribed genes58.

The repressive mark H3K27me3, which works in antagonistic
manner with H3K27ac62,63, is also responsive at both genic and
intergenic regions (Supplementary Fig. 3) and is more dynamic in
roots than in shoots (Fig. 1c). While it is in general considered as
a repressive mark associated with gene silencing64, which was
confirmed by our analysis of this mark at the promoter regions
(Fig. 3b, Supplementary Fig. 4), the genic H3K27me3 showed a
surprising pattern of increasing at up-regulated gene loci in the
shoots (Fig. 3a). This unconventional hypermethylation of
H3K27me3, associated with gene activation events, showed many
distinct features: (i) highly responsive H3K27me3 level in
response to N evidenced by the greater fold-change (Fig. 4a);
(ii) concurrent increases in activation marks H3K4me3 and
H3K36me3 at the same loci (Fig. 4a); and (iii) spreading of
H3K27me3 signal across the gene body from TSS to TTS while
avoiding the promoters (Fig. 4b). This uncharacteristic enrich-
ment of H3K27me3 at up-regulated gene loci was previously
reported for nitrate transporter NRT2.1, possibly to restrict its
high expression level43. In support of this, several NRTs
(Solyc05g006920.4, Solyc08g007060.4, Solyc08g077170.3, and
Solyc05g006990.3) are also marked with increased H3K27me3 in
our dataset (Supplementary Data 1). Our genome-wide analysis
thus expanded the previous report focused on a single gene
locus43 to a genome-wide level and uncovered that in shoots six
hours after a N-supply, increased H3K27me3 is largely observed
at up-regulated gene loci. These genes include potential master
regulator of N response (NLP; Fig. 2e), as well as genes involved
in protein synthesis. Interestingly, the effect of H3K27me3 on
gene expression in shoots appears to be highly positional, as
higher H3K27me3 levels in the promoter region were associated
with decreased gene expression (Supplementary Fig. 4). We
speculate that the increased genic H3K27me3 may function as a
mechanism to prevent over-induction of genes by N supply; it is
also possible that H3K27me3 is deposited along the gene body of
highly induced genes to repress ambiguous transcription initia-
tion in the middle of the gene, or to place a limit on the rate of
transcription occurring at the gene locus to minimize possible
transcription errors. It is also possible that genic H3K27me3
affects transcript processing events such as RNA splicing, as
proposed for another repressive epigenetic modification, DNA
methylation65. A follow-up investigation of another repressive
mark, H3K9me2, did not reveal a similar pattern, indicating that
H3K27me3 may behave differently in some contexts than other
marks associated with gene silencing. Indeed, it is known that the
presence of bivalent H3K4me3 and H3K27me3 marks poises
expression of development genes in animals66 and is associated
with the transcriptional activation of stress-responsive genes in
plants67,68.

Finally, H3K4me3 and H3K36me3 are observed to significantly
change at a smaller set of gene loci (Fig. 1), which is consistent
with their relative stable nature at this time scale48. Dynamic
H3K4me3 and H3K36me3 marks, in contrast to H3K27me3/ac,

are mostly limited to genic regions (Supplementary Fig. 3) and
strictly associated with active gene transcription (Fig. 3),
concordant with their known roles in marking genes actively
transcribed by Pol II69,70 (Fig. 3, Supplementary Fig. 4).
Interestingly, dynamic changes of different histone modifications
are targeted to genes involved in vastly different biological
processes (Fig. 1d, e). This invites an intriguing question of how
the target specificity is achieved. It could be speculated that
downstream of N signaling, various TF partners recruit different
epigenetic regulators (for example, a bZIP transcription factor
interacts with a HAT71) to direct them to the specific set of target
gene loci relevant to a particular biological process (e.g.,
photosynthesis) to regulate their transcriptional states, thus
impacting the activity of the specific biological processes.

Examining the epigenetic and transcriptional regulation of
N-relevant TF and enzymes revealed complexity of how multiple
histone marks work in concert to regulate gene activity72,73.
When examining a specific and well-studied biological process, N
assimilation (Fig. 2), we found that the binary classification of
gene regulation events into up-regulated or down-regulated
classes is further complicated by order-of-magnitude higher
diversity of histone code. For example, an up-regulated N
assimilation gene could be marked with increased H3K27ac (e.g.,
GS2 and GSR2 in the shoots [Fig. 2d]), or increased H3K36me3
(GLT1 [Fig. 2d]). Across the genes analyzed (Fig. 2), ~40% are
regulated by more than one dynamic histone modification. The
multiple dynamic chromatin modifications observed at a given
gene locus could result from recruitment of distinct epigenetic
regulators by the same or different transcriptional regulation
pathways, all of which act downstream of N signaling. Those
genes that are a target of multiple histone modifications, such as
NIA and NIR, may reflect hotspots of regulation from multiple
transcriptional regulatory inputs, though it is also possible that
this observation could result from heterogeneity of cell types, with
the changes of different histone marks occurring in different
subpopulations of cells in the organ sampled.

In our study, we focused on analyzing the histone marks at the
promoter and genic regions. For the histone marks in down-
stream and intergenic regions, the signals appear to be noisier.
Moreover, the dynamic islands at the 5 kb downstream regions
displayed little relevance to changes in gene expression. The
dynamic islands at the intergenic regions on the other hand,
could be highly interesting as it might be relevant to enhancers or
long-range interactions, however, it is in generally challenging to
assign intergenic regions to genes that they should influence.
Further investigation is needed to dissect the effects of intergenic
histone marks on the transcriptional regulation of genes.

Machine learning as a tool to interpret the complex relation-
ship between epigenetic states and transcriptional regulation.
Recently, with the increasing amount of publicly available epi-
genomic data and advances in applying machine learning algo-
rithms to decipher complex biological systems, histone
modifications have been used to train machine learning models to
predict gene expression levels in different cell types in mamma-
lian systems52–56. Our study is unique in that: (i) it focuses on
predicting dynamic changes in response to environmental sti-
mulus rather than steady state gene expression; (ii) it uses in
planta data; and (iii) machine learning models were built for
shoots and roots separately, using epigenomic and transcriptome
data generated from the same organs, thus providing interesting
yet otherwise hidden insights such as the organ specificity of the
machine learning predictions. The machine learning approach
showed great potential to provide a new perspective by helping to
interpret the complex relationship between epigenetic state and
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dynamic gene regulation. While H3K27ac has a dramatic
dynamic change in response to N at specific gene loci (Fig. 1) and
is well associated with gene regulation (Fig. 3), it performs poorly
as a predictor of gene activation or repression at the level of the
whole genome. It could be that H3K27ac primes genes to enable
their activation as previously described for light response74,
therefore being a required but not sufficient mark for gene acti-
vation, which might have limited its predicting power. H3K4me3
and H3K36me3, while showing less dramatic changes compared
to H3K27ac at specific gene loci, are more accurate at a genome-
wide level in predicting whether a gene is up-regulated or down-
regulated. The limitation of our study lies in the fact that the
machine learning models, while rather powerful in discerning
hidden patterns that are not easily detected by correlation or
regression, do not necessarily inform causal relationship between
histone modifications and gene transcriptional regulation.
Therefore, our results could be explained in both directions of
cause-effect relationships: (i) this could reflect that H3K4me3 and
H3K36me3 directly affect gene regulation; indeed, it has been
observed that the loss of H3K36me3 and the related histone
methyltransferase led to altered transcriptional response to N in
Arabidopsis46; or (ii) H3K4me3 and H3K36me3 are deposited co-
transcriptionally with Pol II in roots and in shoots, respectively,
thereby functioning as an effective proxy for gene regulation69,70.

In our study, the prediction of up-regulated genes was more
successful than prediction of down-regulated genes. Incorporat-
ing data from an additional repressive mark, H3K9me2, did not
notably improve the prediction of down-regulated genes
(Supplementary Fig. 5). It is possible that the regulation events
are better explained by another mark, such as DNA methylation,
which we did not assay; many important genes involved in DNA
methylation are differentially expressed in response to N supply
(Supplementary Data 6), including CMT3 which has previously
been connected to regulation of NIA2 in Arabidopsis75. It is also
possible that down-regulation is more dependent on events
occurring outside of nuclear transcriptional activity, such as
regulation of mRNA degradation.

Organ specificity of dynamic histone modifications. It is well
known that histone modifications are associated with cell identity
and differentiation during and after organ development76–78. Our
study now adds new dimensions in the organ specificity of epige-
netic modifications by revealing that dynamic changes in histone
modifications in response to an external signal are also organ-
specific (Fig. 1c). The difference observed between roots and shoots
are most likely due to functional difference between the two organs,
rather than merely a time lag of signaling between the two organs.
Indeed, it was shown previously that within two hours of nitrogen
treatment, the shoots and roots have almost equal numbers of
genes differentially regulated16. In fact, genes involved in nitrate
response and nitrate transport are induced within 5 min of roots
experiencing a difference in N levels16. Therefore, at our timing of
sampling (6 h after treatments), it is unlikely that the transcrip-
tional difference between shoots and roots is purely due to time lag,
as opposed to being governed by the different roles of shoots and
roots in N uptake, assimilation, and signaling. Moreover, our epi-
genomic data showed that shoots and roots have similar numbers
of genes displaying dynamic histone acetylation in response to N
treatment at the time point we sampled, and that shoots and roots
share N assimilation genes that are dynamically modified, but N
transporter genes are specifically modified in the roots, which also
supports an organ functional difference with roots being the main
organ for nutrient uptake.

In addition, our study found that different marks have different
levels of organ specificity in response to N supply, with H3K27ac

being the least organ-specific, and H3K27me3 being the most
organ-specific (Fig. 1c). It is possible that histone acetylation is
more likely to occur at housekeeping genes whose regulation is
less organ-specific, while H3K27me3 occurs at genes that are
expressed and regulated in an organ-specific manner74. Overall, it
is reasonable to speculate that perceived and transduced signals
(in this case, perception of N supply by roots, which is known to
induce systemic signals79) cause different epigenetic machinery in
the two organs to direct changes at the chromatin level.
Alternatively, the signaling cascade and the responsive epigenetic
machinery could be similar between shoots and roots, with
existing baseline differences in the chromatin landscape between
shoots and roots contributing to the organ-specific chromatin
changes we observed. A combination of the above two models—a
different universe of epigenetic regulators active in each organ
working on the organ-specific basal chromatin landscape at target
loci—could also be the case. Indeed, in our transcriptome dataset,
we observed a group of epigenetic regulator genes that are
regulated by N supply in either shoots, or roots, or in both organs
(Supplementary Data 6).

Our most surprising observation, however, was that the specific
crosstalk between histone modifications and gene regulation, i.e.,
the rules of how histone modification influences gene regulation,
or vice versa, are also heavily dependent on the organ context. We
uncovered an association between increased genic H3K27me3
with up-regulated genes as a unique phenomenon observed in the
shoots but not in roots (Figs. 3, 4). Moreover, using a machine
learning approach to discern the genome-wide relationship
between dynamic histone modifications and gene regulation, we
found distinct rules governing this relationship in the two organs;
in the shoots, H3K36me3 is the most informative in predicting
gene regulation and is dominant over other marks in power of
prediction to the degree that using only this mark performs
similarly to using the other three combined (Fig. 5c, g, h). In the
roots, however, H3K4me3 is the most informative in predicting
gene regulation events (Fig. 5f, i, j). It is possible that in the
shoots, histone methyltransferases responsible for H3K36me3
(like SDG8) are recruited alongside transcription initiation and
elongation machinery while in the roots the predominant
recruited histone methyltransferases catalyze H3K4me3 deposi-
tion in transcribed regions. Whether this is a feature unique to
response to N or a more universal mode-of-action underlying
organ-specific transcriptional reprogramming in response to
environmental stimuli requires further study. Further, whether
these rules translate to other flowering plants outside of tomato
remains to be determined. Moreover, our approach for prediction
of gene regulation performed better in shoots than that in the
roots. This may indicate that additional histone marks beyond
those we measured make important, non-redundant contribu-
tions to root response to N supply and would be needed to
predict gene expression more accurately. It could also reflect
differing degrees of post-transcriptional regulation affecting
mRNA stability and turnover in the two organs, which might
impair the ability of epigenetic marks to predict transcript levels.
Overall, when one talks about the general rules of how a specific
histone modification affects gene transcription, it is important to
note that the specific mode of regulation—when and where it is
added or removed as well as how it is perceived or acted upon by
downstream regulators—are likely dependent on organ- or tissue-
specific contexts.

Conclusions
Our analysis of epigenomic data from shoots and roots uncovered
organ-specific chromatin dynamics associated with transcrip-
tional reprogramming, indicating that downstream of nitrate
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signaling distinct epigenetic machinery functions in each organ to
modify histones at functionally relevant gene loci and manifest
proper transcriptional response. We found a non-canonical role
of H3K27me3 in modifying a group of actively transcribed genes,
possibly to prevent over-expression. Using machine learning
approaches, we found that while gene regulation could be best
predicted using the combination of all four histone marks
assayed, H3K36me3 and H3K4me3 are the most informative in
predicting gene regulation, in shoots and roots respectively. In
summary, our integrated epigenomic and transcriptomic study
provides evidence to support the organ specificity of chromatin
modifications during plant environmental response: most
dynamic histone modifications we observed are organ-specific in
nature, and the relationship between the histone code and tran-
script level changes are also governed by organ-specific rules.

Methods
Plant growth and nitrogen treatment. Tomato (Solanum lyco-
persicum; cultivar M82) seeds were first sterilized with 20% bleach
and then sown on plates (1% agar; ½ MS) to germinate in a
growth chamber with 16 h day (100 µmol/s/m2; 24 °C) and 8 h
night (0 µmol/s/m2; 20 °C) cycle for eight days (Supplementary
Fig. 1). Germinated seedlings were then transferred to a hydro-
ponic system to allow convenient treatment with nitrogen and
sampling of shoot and root tissues (Supplementary Fig. 1). Spe-
cifically, the seedlings were grown in 1 L plastic container with
hydroponic growth medium80 (1.2 mM KNO3, 0.8 mM
Ca(NO3)2, 0.2 mM KH2PO4, 0.2 mM MgSO4, 50 µM KCl,
12.5 µM H3BO3, 1 µM MnSO4, 1 µM ZnSO4, 0.5 µM CuSO4,
0.1 µM H2MoO4, 0.1 µM NiSO4, and 10 µM Fe-EDDHA, pH 6.0)
under common greenhouse conditions. The growth medium was
renewed every 2–3 days. After 14 days, the plants were treated
with N-free starvation medium, wherein the KNO3 and Ca(NO3)2
in growth medium were replaced with equimolar KCl and CaCl2,
respectively (Supplementary Fig. 1). After 4 days in the starvation
medium, the plants were either treated with fresh starvation
medium (−N treatment) or treated with fresh growth medium
(+N treatment) (Supplementary Fig. 1). Six hours after the +N/
−N treatments, root and shoot tissues were harvested and flash
frozen in liquid nitrogen for total RNA extraction, as well as fixed
in 1% formaldehyde and flash frozen in liquid nitrogen for ChIP
analysis, in three biological replicates with tissues from four
plants pooled as one biological replicate. Additionally, plants were
grown in the +N/−N treatment medium for 6 days for physio-
logical phenotyping (Supplementary Fig. 1).

Chlorophyll analysis. Leaves from individual seedlings were
frozen in liquid nitrogen and ground to fine powder using MiniG
(SPEX, Metuchen NJ). 15 to 45 mg of powdered tissue was
weighed and then suspended in 1 ml methanol, and the suspen-
sion was rotated for 10 min at room temperature to extract
chlorophyll. The suspension was centrifuged for 5 min at
14,000 rpm, and 800 µl supernatant was transferred to a 1.5 ml
tube for measurement. Absorbance at 750 nm, 665 nm, and
652 nm was measured using Nanodrop One (Thermo Fisher
Scientific, Wilmington DE). The chlorophyll content was calcu-
lated following the protocol of Porra et al.81.

Chromatin immunoprecipitation sequencing (ChIP-Seq). The
chromatin immunoprecipitation (ChIP) was performed accord-
ing to previously published protocols82,83 with modifications for
tomato roots and shoots. Briefly, two grams of tissue were fixed
with 1% formaldehyde by applying vacuum at 700 mmHg for
25 min. Fixation was terminated by adding 2M glycine to a final
concentration of 0.125M and vacuum application for 5 min.

Formaldehyde-fixed tissues were ground in liquid nitrogen and
nuclei were isolated following the protocol of Gendrel et al.82.
Isolated nuclei were sonicated using a Bioruptor Pico on high
power setting (Diagenode, Denville NJ) for at least ten sonication
cycles (each cycle includes 30 s of sonication followed by a minute
of break) to prepare chromatin samples. An aliquot of the
chromatin samples was kept as input DNA to provide a back-
ground of chromatin samples without immunoprecipitation; it
has been reported that using input DNA and using H3 as controls
are comparable84. The rest of chromatin samples were immu-
noprecipitated using Protein A dynabeads (Life Technologies,
Carlsbad CA) coated with antibodies against H3K4me3 (Milli-
pore Sigma 07473), H3K27ac (Millipore Sigma 07360),
H3K27me3 (Millipore Sigma 07449), or H3K36me3 (Abcam
ab9050), to pull down genomic DNA associated with specific
histone modifications. Immunoprecipitation with no antibody
was included as a negative control to measure the level of non-
specific pull down. The precipitated chromatin fragments were
reverse-crosslinked, and the associated DNA was purified. As
internal quality control, we performed ChIP-qPCR to measure
the fold enrichment of ChIP DNA over the no antibody control at
select gene loci; all ChIP DNA were enriched >50-fold over the no
antibody control in our study, indicating satisfactory ChIP
quality. Using NEBNext dual index library kit (New England
Biolabs, Ipswich MA), next-gen sequencing libraries were gen-
erated for ChIP DNA samples and corresponding input DNA
samples as background controls. A total of 60 libraries, consisted
of two treatments (+N and −N), two organs (shoots and roots),
for four histone marks plus input DNA, and in three biological
replicates, were sent to Novogene (CA, USA) for paired-end
150 bp sequencing in NovaSeq platform (Illumina, San Diego
CA) to generate an average yield of 40 million read pairs per
library. H3K9me2 (ab1220) ChIP-Seq was performed similarly to
above, with 12 total libraries for two treatments (+N and −N) in
shoots for input chromatin and H3K9me2 pulldown.

ChIP-seq data analysis. Raw ChIP sequencing reads were trim-
med using Cutadapt85 and aligned to Solanum lycopersicum
genome build 4.0 (International Tomato Genome Sequencing
Project) using Bowtie286. The resulting BAM files were sorted by
read name using SAMtools87 and converted to BED format using
the bamtobed command of BEDTools88. SICER89 was used to
detect genomic regions with significant enrichment of histone
mark compared to the input DNA control. SICER-df was used to
identify genomic regions (islands) that are differentially marked
between nitrate-treated samples and controls, with the following
options: window size = 200 bp, gap size = 200 bp (except for
H3K27me3: gap size = 600 bp), effective genome fraction = 0.9
and false discovery rate (FDR) threshold = 0.05. Significant
dynamic islands in response to N were then filtered for fold-
change of at least 1.5 between the +N and −N conditions and
used for further analysis. We used this cutoff, similar to other
studies39,46,64,90, because: (1) compared to RNA-Seq analysis that
samples multiple copies of a transcript in a cell, histone ChIP-Seq
samples only one copy of genomic DNA from a cell, therefore a
smaller dynamic range is expected; (2) the nitrate treatment is a
transient treatment of only six hours, therefore, we expect to
capture minor but dynamic changes in epigenome; and (3) his-
tone methylation compared to histone acetylation is relatively
stable during the time frame of our treatment (in hours48). Next,
the “closest” tool in the BEDTools was used to locate dynamic
islands to gene bodies, upstream promoter (5 kb), or downstream
(5 kb) of annotated genes or classify them as intergenic (none of
the above). Differentially modified genes (DMGs) were defined as
genes with a significantly dynamic island for at least two of three
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biological replicates. The “genomecov” tool in BEDTools was
used to calculate the genome coverage from ChIP-seq data, which
was then processed with a custom python script to generate
positional ChIP-Seq depth along genes. Specifically, each gene
was partitioned into 80 bins, including 20 bins representing the
1 kb promoter sequence upstream of the transcription start site
(TSS), 40 bins representing the transcribed region of gene from
the TSS to transcription termination site (TTS), and 20 bins
representing 1 kb sequence downstream of TTS. ChIP-seq depth
for each bin was summarized by calculating the average and then
normalized as the number of fragments per million for visuali-
zation. Reproducibility in the ChIP-Seq replicates (Supplemen-
tary Figs. 6, 7) was measured using the cor() function in R to
determine the genome-wide Pearson correlation for normalized
genic histone mark signal which was plotted using corrplot91.

Arabidopsis homologs for S. lycopersicum proteins were
determined by BLAST against Araport11 annotations with an
E-value cutoff of 1e-07 for significance. ShinyGO92 was used to
identify significantly enriched gene ontology (GO) terms in each
gene set with an FDR cutoff of 0.05.

RNA-Seq. Tomato root and shoot tissues were ground in liquid
nitrogen and total RNA was extracted using mirVana kit (Invi-
trogen, Carlsbad, CA) following the manufacturer’s protocol for
total RNA extraction. Turbo DNase (Invitrogen, Carlsbad, CA)
was used to remove contaminating DNA and then the quality of
extracted total RNA was analyzed using Bioanalyzer (Agilent,
Santa Clara, CA) at the Purdue Genomics Core. The RNA
integrity numbers (RINs) of total RNA samples were generally
>9.1 for root samples and >7.3 for shoot samples, indicating high
quality of total RNA. In total, 12 RNA samples (three biological
replicates for two treatments in two organs) were sent to Novo-
gene (CA, USA) for sequencing in paired-end 150 bp format
using NovaSeq platform (Illumina, San Diego CA) to generate
~20-25 million read pairs per library. Cutadapt85 was used to trim
adaptors and low-quality bases, and to discard short reads.
Trimmed reads were then mapped to the S. lycopersicum genome
build 4.0 using Tophat293,94. The gene counts were generated
from mapped reads using htseq-count95. Finally, differentially
expressed genes (DEGs) were determined using DESeq296 to
compare +N samples with −N controls in either shoots or roots
with statistical cutoffs of FDR < 0.015 and fold-change >2.
Functional enrichment of DEGs were determined by gene
ontology enrichment analysis using ShinyGO92.

Machine learning. All expressed genes (~24k genes in shoots and
roots, separately) were assigned to up-regulated, down-regulated,
or unchanged gene groups based on a cutoff of FDR < 0.05
determined by DESeq2. This led to 6797 up-regulated and 6458
down-regulated genes in shoots, and 5724 up-regulated and 5362
down-regulated genes in roots. For each gene, the following
epigenomic features were included as predictors: (i) twelve
quantitative predictors: levels of each histone mark under −N or
+N conditions were calculated as the mean of three biological
replicates of average ChIP-seq coverage depth through the gene
body along with the fold-change between the two conditions; (ii)
four qualitative predictors: dynamic histone modifications at the
putative promoter regions (5 kb upstream of TSS) were indicated
by binary values (presence vs absence). These 16 values were used
to predict gene regulation (up-regulated, down-regulated, or
unchanged) using XGBoost57 with the “gbtree” booster and
“multi:softprob” objective for multiclass prediction. 80% of genes
were used for training while 20% were used for testing in a
rotating block fashion across multiple gene matrices with ran-
domly permutated gene order. Each gene is present in the testing

group 10 times, and the mean prediction value for probability
that the gene was up-regulated or down-regulated was deter-
mined. To measure the performance of the prediction, an in-
house python script was used to determine precision, recall, and
F1 score (the harmonic mean of precision and recall) at a stepwise
descending cutoff of prediction value. The observed true positive
(TP), false positive (FP), and false negative (FN) genes at each
cutoff were used to calculate the performance metrics as follows:
precision = TP/(TP+ FP), recall = TP/(TP+ FN), and
F1= 2⋅(precision·recall)/(precision+ recall). The area under the
precision recall curve (AUPR) was determined using the “AUC”
function of DescTools (https://cran.r-project.org/web/packages/
DescTools/index.html). The above approach was also used across
various input datasets with omission of data for one or more
histone modifications. The top 10% of DEGs predicted by a mark
were determined from predictions made using only H3K4me3 or
H3K36me3 data, ranking all true positive up-regulated or down-
regulated genes by the determined probability from the machine
learning they belonged to that regulated gene classification. The
exclusive and overlapped gene sets for DEGs associated with the
two marks in each organ were used for GO term enrichment
using a GO term background populated from the closest A.
thaliana homolog for each tomato gene using an in-house python
script97 adapted for S. lycopersicum with an FDR < 0.05 cutoff for
term enrichment.

Statistics and reproducibility. All RNA-Seq and ChIP-Seq
experiments were performed using three independent biological
samples. Specific FDR and fold-change cutoffs are described in
the relevant subsections. For significance testing of gene set
overlaps, p was determined using a hypergeometric test in R.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All raw and processed sequencing data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE196887.
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