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p53 and p21 dynamics encode single-cell DNA
damage levels, fine-tuning proliferation and
shaping population heterogeneity
Nica Gutu1,2, Neha Binish 1,5, Ulrich Keilholz1,3, Hanspeter Herzel 1,2,4 & Adrián E. Granada 1,3✉

Cells must accurately and quickly detect DNA damage through a set of checkpoint

mechanisms that enable repair and control proliferation. Heterogeneous levels of cellular

stress and noisy signaling processes can lead to phenotypic variability but little is known

about their role in underlying proliferation heterogeneity. Here we study two previously

published single cell datasets and find that cells encode heterogeneous levels of endogenous

and exogenous DNA damage to shape proliferation heterogeneity at the population level.

Using a comprehensive time series analysis of short- and long-term signaling dynamics of

p53 and p21, we show that DNA damage levels are quantitatively translated into p53 and p21

signal parameters in a gradual manner. Analyzing instantaneous proliferation and signaling

differences among equally-radiated cells, we identify time-localized changes in the period of

p53 pulses that drive cells out of a low proliferative state. Our findings suggest a novel role of

the p53-p21 network in quantitatively encoding DNA damage strength and fine-tuning pro-

liferation trajectories.

https://doi.org/10.1038/s42003-023-05585-5 OPEN

1 Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany. 2 Humboldt-Universität zu Berlin, Berlin, Germany. 3 German Cancer
Consortium, Deutschen Konsortiums für Translationale Krebsforschung (DKTK), Berlin, Germany. 4 Institute for Theoretical Biology, Berlin, Germany.
5Present address: Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany.
✉email: adrian.granada@charite.de

COMMUNICATIONS BIOLOGY |          (2023) 6:1196 | https://doi.org/10.1038/s42003-023-05585-5 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05585-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05585-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05585-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05585-5&domain=pdf
http://orcid.org/0009-0001-1508-8186
http://orcid.org/0009-0001-1508-8186
http://orcid.org/0009-0001-1508-8186
http://orcid.org/0009-0001-1508-8186
http://orcid.org/0009-0001-1508-8186
http://orcid.org/0000-0003-0414-7889
http://orcid.org/0000-0003-0414-7889
http://orcid.org/0000-0003-0414-7889
http://orcid.org/0000-0003-0414-7889
http://orcid.org/0000-0003-0414-7889
http://orcid.org/0000-0003-0537-9091
http://orcid.org/0000-0003-0537-9091
http://orcid.org/0000-0003-0537-9091
http://orcid.org/0000-0003-0537-9091
http://orcid.org/0000-0003-0537-9091
mailto:adrian.granada@charite.de
www.nature.com/commsbio
www.nature.com/commsbio


The development of effective cancer treatments is hampered
by the variability of tumor cell subpopulations and their
divergent patterns of resistance and growth. A better

understanding of the processes driving tumor heterogeneity is key
to the development of new treatment strategies. Phenotypic
within-tumor growth differences are routinely quantified through
standardized methods such as immunohistochemistry staining of
proliferation markers (e.g., Ki67, PhosphoRB), cell-replating
assays, or estimations of cell-population growth through ATP-
based viability assays1,2. Bulk metrics, such as tumor proliferation
rate, are widely used in clinical practice to determine tumor
aggressiveness and guide treatment decisions. Highly proliferative
tumors are often associated with improved therapeutic outcomes
in chemotherapy and radiotherapy treatments3–5. However,
despite the success of proliferative signatures as predictors of
treatment response, there are unfortunately still many patients
with high-proliferative tumors that exhibit high levels of resis-
tance to treatment6–9. The mechanisms that underlie this para-
doxical resistance remain largely unknown.

Chemosensitivity in tumors is the result of heterogenous
concomitant proliferation-dependent and proliferation-
independent resistance mechanisms10,11. To understand the role
of heterogeneity in proliferation and resistance within a uniform
genetic background, recent works have analyzed the single-cell
behavior within genetically identical cell populations. These stu-
dies have revealed a widespread heterogeneity present in cell
proliferation with subpopulations of cells following very diverse
proliferation patterns. When cells are clustered by the total
number of divisions, their proliferative behavior is remarkably
similar within different clones and across cell line models from
very different tissues, such as bone, retina, lung, and breast,
suggesting a common mechanism behind it12–15. To test how
different proliferation behaviors affect sensitivity, in a previous
study we tracked hundreds of individual cells before and after
chemotherapy and showed that, contrary to expectation, high
proliferative cells were less susceptible to cell death12. Impor-
tantly, the underlying mechanism driving the heterogeneous
proliferation patterns and their differential sensitivity remains
mostly unknown.

Upon DNA damage induction, histone H2AX is phosphory-
lated (γH2AX) by Ataxia-telangiectasia mutated (ATM) initiating
the recruitment of DNA damage response proteins. ATM acti-
vates the transcriptional activity of p53 at its targets, such as the
cyclin-dependent kinase inhibitor p21 and the E3 ubiquitin ligase
Mdm2, a negative regulator of p5316,17. This leads to p53 accu-
mulation and subsequent generation of p53 pulses through the
p53-MDM2 negative feedback loop. Single cell studies have
demonstrated that incremental levels of radiation-induced DNA
damage increase the fraction of pulsating cells while keeping the
amplitude and width of p53 pulses relatively stable18–20. While
the mechanisms of p53 and p21 activation upon exogenous DNA
damage are qualitatively well understood, it remains unclear how
this network quantitatively encodes endogenous DNA damage
levels and its role in the heterogeneous proliferation patterns.

Here, we investigate at the single-cell level the interplay
between DNA damage, the long-term activity of the p53-p21
signaling, and the individual proliferation activity of previously
published datasets12,14. Our aim is to understand how these three
factors quantitatively relate to each other, and how they might
contribute to maintaining proliferation heterogeneity. We iden-
tified a gradual scaling law between DNA damage, cell pro-
liferation, and the activity of p53 and p21. Our analysis showed
unexpected changes in the p53 and p21 amplitude and the inter-
pulse p53 period that encode damage strength and changes in
proliferation. Furthermore, we identified a temporal switch in p53
oscillatory properties that allows a subpopulation of cells to

escape from a low proliferation to a high proliferation state,
highlighting the complex and dynamic interplay between these
factors.

Results
Endogenous DNA damage tunes proliferation activity. The
speed at which a population of cells grows is determined by how
quickly individual cells progress through their cell cycle, the
transition rate at which they enter or exit a quiescence state, and
the rate of cell death21. External and internal stress factors such as
exogenous and endogenous DNA damage as well as cellular
factors like genetic and epigenetic modifications contribute to
affecting these transition rates and consequently the outcome
growth patterns. Consequently, the heterogeneity underlying the
growth patterns’ mechanisms arises from different individual
proliferation behaviors.

To study how individual cells’ proliferation activity relates to
DNA damage levels we built up and expanded the analysis of a
single cell dataset from our group, originally published in12. The
experimental design combines a live recording with immuno-
fluorescent imaging of the same cells. For the analysis, hundreds
of individual cells were tracked for 52 h annotating the time of
each division event, and, at the end of the live recording, cells
were fixed and stained with a nuclear and DNA damage reporter
(Fig. 1a). The division profiles revealed very heterogeneous
proliferation behavior: one group of low proliferative cells
(arrested or dividing only once) and a main group of high
proliferative cells (2 to 3 divisions) (Fig. 1b). Note that these two
proliferative groups maintain their proliferative differences for
multiple days (see Fig. 1Sa, where we used the first two days to
quantify their proliferation identity and three days to evaluate the
posterior behavior). Next, we assessed the extent of DNA damage
in all monitored cells by measuring the average nuclear γH2AX
signal, a canonical marker for DNA double-strand breaks
(Fig. 1c)22. Our findings reveal that the majority of these cells
exhibit low mean nuclear GFP-γH2AX levels (as shown in
Fig. 1d). Moreover, we relate the division profile of each live
recorded cell with their corresponding GFP-γH2AX values
(Fig. 1e). This analysis shows that cells undergoing a higher total
number of divisions exhibit lower levels of DNA damage by the
end of the recording period (see Fig. 1f and Table 1 and also
Fig. 1Sb for alternative violin plots). We then asked if this
correlation resulted from a DNA damage-induced prolongation
of the time in between cell division events, referred to as the
intermitotic time, and the limited observational time of our
experiment. For this, we determined for every dividing cell the
intermitotic time and their level of DNA damage, which resulted
in a poor correlation with the cells’ DNA damage (Fig. 1g).

In Fig. 2 we explore potential scenarios behind the observed
poor correlation and the relationship with population growth.
Exponentially growing cell populations might result from
heterogeneous individual proliferation patterns (Fig. 2a). Cells
can proliferate at different rates ranging from high activity
(increased number of divisions) to low activity (reduced number
of divisions). We hypothesize two alternative scenarios that could
underlie such heterogeneous proliferation patterns. In the first
scenario, the number of divisions relates directly to the
intermitotic time of cells, so cells that divide more slowly will
experience fewer total divisions within a given time frame
(Fig. 2b). In the second scenario, cells have similar intermitotic
times, but the different number of division events (proliferation
patterns) arises from cells entering quiescence at earlier or later
time points.

Together this alludes that the levels of endogenous DNA
damage might stop individual cells’ dividing after a discrete
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Fig. 1 Endogenous DNA Damage tunes proliferation activity. a Experimental setup for determining cellular proliferation patterns and the corresponding
DNA damage levels in individual cells. Cells were seeded on day -1 and their proliferation behavior was tracked for 52 h. The top part of the scheme
represents the heterogeneous proliferation patterns present in the population and their possible outcomes: arrest, death, and proliferation. The
quantification of the division profile is projected in the bottom part. At the end of the recording cells were fixed and their levels of DNA damage were
measured, linking live metrics of proliferation with DNA damage. b Individual division profiles were obtained after tracking cells for 52 h and annotating
their division events. Each column represents the division activity of a single cell, with each mitotic event marked by a color transition (color code top right).
Cells in each panel are clustered by their total number of divisions and then sorted by their time of first mitosis. c Immunofluorescence detection of DNA
damage repair. Nuclei were identified by DAPI staining (left) and DNA damage repair activity by the phosphorylated H2AX (γH2AX—center) protein. The
right image shows the composite DAPI and GFP-γH2AX staining. d The distribution of γH2AX levels of the recorded cells (n= 278) with the corresponding
mean and standard deviation values in the upper right corner. e Snapshots of two representative cells with low and high proliferative behavior and their
DNA damage levels. A high proliferative cell undergoes 3 divisions within ~2 days (bottom row) while a low proliferative cell remains with 0 divisions (top
row). Top time labels show the timing of division events, and box numbers indicate recorded division events until that time point. Live single-cell tracking
images show cells with a nuclear fluorescent signal for single-cell tracking (nucleus of tracked cell marked in blue). Immunofluorescence images show
DAPI, GFP-γH2AX, and the composite of both channels at the end of the recording. f Boxplot of the DNA damage levels clustered according to the total
number of divisions vs. the mean DNA damage levels of the cells with the corresponding p-value. The correlation coefficient is shown in the upper right
corner. In the case of zero divisions, there were 33 recorded events, while for a single division, there were 44 events. In instances of two divisions, the
count was 131, and for three divisions, there were 70 events. g Scatter plot of mean DNA damage levels of the cells versus their corresponding mean
intermitotic time for each cell. The correlation coefficient is shown in the upper right corner.
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number of divisions, proportional to the levels of DNA damage,
rather than merely slowing down cell cycle progression (see
Fig. 2c, d). Furthermore, we calculated the intermitotic durations
for each proliferation subgroup categorized based on the total
count of division events, and our findings indicated a sustained
constancy in these intermitotic durations (see Fig. 2e untreated
U2OS cells). Nevertheless, these results do not provide tools to
discern a spurious from a causal correlation nor the causal
direction of the relationship between proliferation and DNA
damage. If DNA damage levels gradually drive proliferation
differences, then the intermediate signaling pathways that control
proliferation might quantitatively reflect this relationship.

Gradual proliferation changes tuned with p53 and p21
amplitude. To determine how the observed relationship between
endogenous DNA damage and the proliferation pattern of

individual cells was reflected in the activity of intermediate DNA
damage signaling factors, we focused on the response of p53 and
p21, one of p53’s main transcriptional targets involved in cell
arrest. For this, we analyzed one of the longest published datasets
of individual human RPE (retinal pigment epithelium) cells
treated with a gradient of radiation-induced DNA damage see
Fig. 3a and ref. 14. Cells were exposed to 0, 2, 4, and 10 Gy of
gamma radiation at time t= 0 and their proliferation, p53, and
p21 activities were tracked at the single cell level for over 5 days
(Fig. 3a, b and additional example traces in 2Sa). First, we
examined the overall impact of the incremental radiation doses
and confirmed an increase in the arrested fractions with 5%, 42%,
67%, and 98% respectively, and no cell death events (Fig. 2Sb). To
determine how differences in proliferation outcomes emerge over
time, we quantified the cumulative distribution of division events
for each treated group (Fig. 3c). The results revealed an evolution
of dose-dependent population responses throughout the whole
recording. Population growth changes could result from inter-
mitotic time prolongations driven by the initial DNA damage. To
evaluate this possibility, we calculated the mean intermitotic time
within each dose and observed that it remained relatively con-
stant across all conditions (see Fig. 2f RPE cells). Altogether, these
results suggest that contrary to the expectation, the population
growth effects of the radiation dose are not simply driven by
intermitotic time prolongations. To differentiate between sce-
narios involving intermitotic time prolongation (Fig. 2d scenario

Fig. 2 Population growth emerges from heterogeneous proliferative patterns of individual cells. Possible scenarios of how proliferation patterns of
individual cells can lead to population growth. a Untreated growth conditions. Sketch of cells’ population growth (left) and individual proliferation patterns
sorted by total number of divisions from low to high proliferation activity (right). b Sketch of two alternative proliferation scenarios. Scenario 1 (purple): low
to high proliferation groups have distinctive distributions of intermitotic time (IMT), whereas, in scenario 2 (yellow), both groups share the same IMT
distribution (left). Correspondingly, mean IMT decreases as mean proliferation activity increases (scenario 1) or remains constant (scenario 2). c DNA
damaged conditions: Sketch to explain how elevated radiation exposure causing DNA damage can decrease cell population growth. d Sketch showing how
the population growth reduction can result from two scenarios: DNA damage prolongs the IMTs in a dose-dependent manner (scenario 1: purple). IMTs
remain stable, but cells might enter quiescence earlier in a dose-dependent manner, reducing overall growth rates (scenario 2: yellow). e U2OS
experimental data: The left plot shows the intermitotic times of each group classified by the total number of divisions as a box plot with the corresponding
p-values. The right plot shows the distribution of the total number of divisions. Sample sizes for untreated U2OS cells were n= 37 (2 divisions), 94 (3
divisions), 114 (4 divisions), and 21 (5 divisions). f RPE experimental data: The left box plot represents the times for each subgroup, which are categorized
based on the total number of divisions with the corresponding p-values. On the right, we have the distribution of the total number of divisions. At the
bottom, the violin plot represents the intermitotic times of RPE cells under varying radiation conditions. For the upper plots, sample sizes are n= 44 (2
divisions), 86 (3 divisions), 170 (4 divisions), and 50 (5 divisions).

Table 1 p-values to Fig. 1f.

#divisions 1 2 3

0 0.17936659 0.00014363 433E−06
1 0 0.00137446 923E−06
2 0.00137446 0 0.00349499
3 923E−06 000349499 0

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05585-5

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1196 | https://doi.org/10.1038/s42003-023-05585-5 | www.nature.com/commsbio

www.nature.com/commsbio


1) and DNA damage-level-dependent quiescence entry times
(Fig. 2d scenario 2), further experiments utilizing reporter cell
lines capable of detecting quiescence entry are necessary14,23,24.

Previous studies have shown that the activity of the p53
signaling network is capable of encoding the type as well as the
strength of the DNA damage. Short-term recordings indicated
that DNA damage doses are encoded through the total number of
p53 pulses without affecting the pulses’ amplitude or
duration18–20. To evaluate how the long-term signaling features
of the p53 network quantitatively relate to proliferation and DNA
damage doses, we parametrized a set of canonical time-series
signal metrics and three single cell proliferation metrics:
intermitotic time, cell age, and the total number of divisions

(see Fig. 3d and Methods). To confirm the amplitude derived
from the continuous wavelet transform, we conducted a
comparison with values computed through the pick-peaking
method, revealing a notable equivalence (for additional informa-
tion, refer to the Methods section and Fig. 2Sc). To analyze the
relationship between signaling and proliferation, we quantified
correlations among all metrics for each radiation dose (0 Gy in
Figs. 3e and 2, 4, and 10 Gy in Fig. 2Sd). These analyses revealed
that the p53 amplitude and p21 amplitude were the most
correlated with the proliferation metrics from all properties. In
comparison, the number of p53 pulses (calculated through peak-
picking) and the period of p53 pulses (calculated using
continuous wavelet transform) showed only poor correlations.
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We next explored how the most correlated metrics, i.e. p53 and
p21 amplitude, varied for untreated cells clustered by their total
number of divisions (Fig. 3f, g and Tables 2 and 3, alternative
violin plots can be found in Fig. 2Se). This bulk analysis showed
that as proliferating activity increases, cells progressively reduce
their p53 and p21 levels, in agreement with other recent studies25.
To assess if the number of pulsatile cells differed substantially
among doses, we calculated the fraction of pulsatile cells for each
condition and observed that 68, 99, 99 and 100% of cells
displayed pulsatile behavior for 0, 2, 4, and 10 Gy, respectively
(see Fig. 2Sf and Methods). Thus, the majority of cells pulse in all
conditions, an amount that remains constant for all treated
conditions. Taken together with Fig. 1 these results suggest a
scenario for untreated cells where endogenous levels of DNA
damage proportionally increase p53 amplitude and p21 expres-
sion and are in tune with gradual changes in proliferation (see
also Fig. 2Sg and h for radiation conditions and Table 1S and 2S).
Nonetheless, these correlative results do not provide causality
information, and alternative scenarios, such as replication-
induced DNA damage, which could also result in strong
correlations between DNA damage signal activation and
proliferation metrics26. To test the relationship between prolif-
eration, p53–p21 activation, and DNA damage, but to also
decouple potential proliferation-induced DNA damage effects, we
analyzed the signaling effects of exogenous DNA damage. For
this, we evaluated how p53 and p21 amplitude changed for cells

treated with 0, 2, 4, and 10 Gy. Our analysis of long-term
recordings unveiled unexpected modulation of p53 and p21
amplitude, gradually encoding radiation dose strengths (Fig. 3h, I
and Tables 4, 5, alternative violin plots can be found in Fig. 2Si).

P53 period drives populational growth rate transition. The
above results indicate how amplitude rather than the p53 period

Fig. 3 Gradual proliferation changes tuned with p53 and p21 amplitude. a Workflow describing the experimental setup of the analyzed dataset. RPE cells
were damaged with different radiation strengths at t= 0. The signaling pathway responsible for the cell response to DNA damage is shown together with
the corresponding outcome. b p53 and p21 activity together with single-cell division events were recorded for 5 days. c Cumulative distribution of division
events for cells within each radiation dose (see Methods). d Representative single-cell p53 raw signal (dark green line with dots) showing different
components analyzed (top panel): amplitude envelope (yellow dashed line), trend (pink continuous line), and area under the curve (A.U.C.) in gray. The
bottom panel illustrates the intermitotic time and age of a representative cell. e Heatmap of the mean single-cell correlation coefficients of p53 (yellow),
p21 (green), and proliferation metrics (gray) for the untreated cells. A positive high correlation is shown in green and a negative correlation in purple. The
correlation coefficients are shown in the respective boxes (see Methods). f Boxplot of the median p53 amplitude of cells in each condition using the
continuous wavelet transform (see Methods), with the corresponding p-values between consecutive groups and the correlation coefficient. The sample
size is the following: n= 9 (0 divisions), n= 24 (1 division), n= 44 (2 divisions), n= 86 (3 divisions), n= 170 (4 divisions), and n= 50 (5 divisions).
g Boxplot of the median p21 amplitude of cells in each condition using the continuous wavelet transform, with the corresponding p-values between
consecutive groups and the correlation coefficient. The sample size is the same as for (f). h Boxplot of median p53 amplitude for cells grouped by the
received radiation, with the corresponding p-values between consecutive groups and the correlation coefficient. In each group, we had n= 383, 892, 739,
and 842, respectively. i Boxplot of median p21 amplitude for cells grouped by the damaging dose, with the corresponding p-values between consecutive
groups and the correlation coefficient. The same number of cells as in (h) was considered for this plot.

Table 2 p-values to Fig. 3f.

#divisions 1 2 3 4 5

0 4500E−02 1030E−04 2520E−05 2030E−05 1310E−05
1 0000E+00 2500E−03 1200E−05 4050E−06 1230E−06
2 2500E−03 0000E+00 7080E−05 1330E−06 2760E−08
3 1200E−05 7080E−05 0000E+00 4400E−02 6670E−05
4 4050E−06 1330E−06 4400E−02 0000E+00 5400E−03
5 1230E−06 2760E−08 6670E−05 5400E−03 0000E+00

Table 3 p-values to Fig. 3g.

#divisions 1 2 3 4 5

0 1300E−02 1500E−03 5100E−04 3800E−04 3370E−04
1 0000E+00 3321E−04 5827E−07 1051E−07 5803E−08
2 3321E−04 0000E+00 3049E−09 7331E−13 5533E−14
3 5827E−07 3049E−09 0000E+00 9116E−06 7284E−09
4 1051E−07 7330E−13 9116E−06 0,000E+00 1727E−02
5 5803E−08 5533E−14 7284E−09 1727E−02 0000E+00

Table 4 p-values to Fig. 3h.

#dose 2 Gy 4 Gy 10 Gy

0 Gy 490E−146 6720E−196 7850E−293
2 Gy 0000E+00 4750E−21 2590E−95
4 Gy 4750E−21 0000E+00 1580E−31
10 Gy 2590E−95 1580E−31 0000E+00

Table 5 p-values to Fig. 3i.

2 2 Gy 4 Gy 10 Gy

0 Gy 7230E−96 2330E−157 0000E+00
2 Gy 0000E+00 6390E−32 9030E−201
4 Gy 6390E−32 0000E+00 5490E−87
10 Gy 9030E−201 5490E−87 0000E+00
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best correlates with gradual proliferation differences within cells.
Using a peak-finding algorithm, we noticed a gradual association
between the number of pulses, and the radiation doses (Fig. 3Sa),
suggesting that the damaging dose might have an influence on the
p53 period. Given the previously established strong correlation
between DNA damage levels and proliferation, we sought to
determine further whether collective proliferation differences in
untreated cells have a distinctive p53 period. To accomplish this,
we classified cells into two groups (low and high proliferative)
and calculated their mean p53 period (Fig. 4a). This classification
indicated that highly proliferative cells pulse on average with a
longer period than their lower proliferative counterpart (p-
value= 2e−09). Consistent with previous works indicating that
the number of p53 pulses encodes DNA damage (see Fig. 3Sa),
our results suggest that low proliferative cells, potentially carrying
higher endogenous levels of DNA damage, oscillate more
frequently.

Time-averaged measurements, such as e.g. autocorrelation and
Fourier transform, provide robust metrics especially suited for
signals’ properties that remain constant in time, so-called
stationary signals. Testing stationarity in this dataset, using the
robust Augmented Dickey-Fuller test revealed a proportion of
cells with non-stationary p53 signals highlighting the need for
time-dependent signal analysis (Fig. 3Sb). Thus, we analyzed the
time evolution of signals’ parameters, for cells within each

radiation dose. To minimize amplitude fluctuation effects that
could result in period detection artifacts, for this analysis all
signals are detrended and amplitude normalized (see Methods).
Contrary to the observations in short-term recordings, our
analysis revealed that radiated cells show an unexpected trajectory
of p53 periods prolonging in a time- and dose-depended manner
while untreated cells’ period fluctuated around 7.5 h (Fig. 4b). To
test whether the collective period prolongation of radiated cells
resulted from a population-average effect of cells increasingly
pulsing with longer circa 7.5 h period or from individual cells
prolonging their period at different rates, we classified all radiated
cells based on their period evolution (Fig. 4c). This resulted in
three groups: cells with stable periods (49% of all damaged cells),
period-switchers (36% of all damaged cells), and those who failed
to be categorized (15% of all damaged cells) (Fig. 4d, 3Sc for a
classification by dose). Computing the period evolution of cells
classified as stable or period-switchers for each radiation group
indicated a time window between 50 and 75 h for the period
transition (Fig. 4e). Since the period of switcher cells, within each
dose group, approached progressively the characteristic period of
untreated cells, we hypothesized that the period transition of
individual cells could be accompanied by a corresponding
increase in the proliferation pattern. To test this hypothesis, we
computed the cumulative division events for cells clustered as in
Fig. 4d and found that cells that maintained a stable period

Fig. 4 P53 period drives populational growth transition. a Left: a sketch of the definition of low (up to 2 divisions) and high (more than 2 divisions)
proliferative cells for a time frame of 5 days. Right: violin plots of mean p53 period for untreated cells (0 Gy) grouped corresponding to the low (n= 33) and
high (n= 350) proliferative groups with the corresponding p-value. b Median instantaneous p53 period (dark line) of the population at each radiation
condition with the corresponding quartiles (shaded area, see Methods). c Two representative p53 traces: left side with a stable period (stable) and right
side with a prolonging period (period-switcher). The bottom panels show the corresponding wavelet power heatmap (see Methods). The dominant period,
ridge frequency, is shown in red. The intervals of confidence (cone of confidence) are represented by the dashed gray lines. d Classification strategy for
p53-period trends pooling all irradiated cells: 49% are ‘stables’ (<1.2 h trend over 5 days, orange), 36% are ‘period-switchers’ (>1.2 h trend over 5 days,
blue), and 15% are ‘irregulars’ (unclassifiable, labeled in gray). e Median p53 period of each period-stability group of cells: cells with relatively stable p53
period (continuous line) and cells with increasing p53 period (dashed line). f Cumulative distribution of division events for cells that prolong their p53
period (dashed line) and cells that keep their p53 period relatively stable (continuous line). g The difference between the period of stables and period
switchers is depicted with a continuous line (left axis) for each condition. The dashed line represents the difference between the cumulative distribution of
division events of stables and period switchers (right axis).
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proliferated less, while cells that prolonged their period diverged
into a higher proliferative group (Fig. 4f). The differences in
proliferation activity between groups are synchronized with the
period divergence and became more pronounced as the radiation
dose increased (Fig. 4g). Calculating proliferation rate differences
between stables and switchers after the bifurcation time of around
60 h indicates a dose-dependent boost effect with a 1.68, 1.84, and
4.49 fold-increase in proliferation for 2, 4, and 10 Gy respectively
(see rates estimations in Table 6 and Methods Section). It is
important to note that these results represent variations in the
rate of division events between the stable and period-switchers
subpopulations within each dose and do not reflect the relative
effect between doses nor indicate the proportion of cells entering
cell cycle arrest. Moreover, randomly clustering cells in similar-
sized groups resulted in no significant period nor proliferation
differences (Fig. 3Sd). Our findings suggest that the oscillatory
rate of p53 modulates cell growth programs. Further research is
needed to elucidate the specific mechanisms by which the p53
period switch regulates growth.

Discussion
In this study, we quantitatively characterize the functional rela-
tionship between DNA damage levels, key signaling players of the
DNA damage response, and the proliferation behavior of indi-
vidual cells. We found that in a population of cells DNA damage
levels are quantitively encoded in the amplitude of p53 and p21
regulating proliferation in a gradual manner. Our results suggest a
model where the p53 network is capable of sensing different levels
of DNA damage and gradually fine-tuning proliferation at the
populational level. A direct consequence of such a model is that a
population of cells with a heterogeneous distribution of endo-
genous DNA damage results in a heterogeneous distribution of
proliferation patterns, as is observed in cells from very diverse
tissues such as the retina, breast, lung, and bone. This positions
endogenous DNA damage as a fundamental source of prolifera-
tion heterogeneity, with important potential implications for the
growth and homeostasis of tissues, as well as for the formation of
tumors. Moreover, by studying the relationship between endo-
genous DNA damage, p53 activation, and proliferative signatures,
our work provides a framework where individual proliferation
signatures can be disentangled from non-genetic priming differ-
ences, and so help understand the paradoxical cases where highly
proliferative cells exhibit resistance to treatment8,9. Our findings
showing strong relationships between DNA damage, signaling,
and proliferation do not offer means to determine causality, nor
do they establish the causal direction of the relationship between
proliferation and DNA damage. Further research is needed to
validate this model and, more importantly, to understand the
mechanisms driving the heterogeneity of endogenous DNA
damage while establishing a connection to p53 dynamics and cell
proliferation at the single-cell level.

The dynamics of signaling molecules in mammalian cells are
capable of encoding features of stimuli as well as activating
downstream response programs27–29. Previous studies have
identified global changes in the p53 signaling dynamics, e.g.
pulsatile versus sustained, as the determinants of the individual
cell responses upon genotoxic stress28,30,31. Here we identified
quantitative changes of a specific parameter of p53 signaling, i.e.

the p53 inter-pulse period, as a regulator of growth rate changes.
Around 60 h post DNA damage, a sudden prolongation in the
period of p53 boosts proliferation in a subpopulation of cells, e.g.
a 4.5-fold proliferation boost for 10 Gy radiated cells (Fig. 4e–g).
This suggests novel perspectives on the fundamental mechanisms
of proliferation and emphasizes a new function of p53 in gov-
erning cell growth. Thus, complementing previous studies on
qualitative differences in signaling dynamics our work highlights
the importance of considering quantitative changes over an
extended period to understand the emergence of resistance sub-
populations. Faster MDM2-mediated degradation of p53 has
been recently indicated as the main regulator of the p53
period32,33. Identifying specific MDM2 and p53 mutations that
affect the signaling dynamics or pharmacologically targeting the
p53 period might provide new therapeutic avenues to control the
re-growth of radiated cells. Additional investigation is essential to
comprehend the mechanism by which the p53 period controls
downstream programs that affect cell growth and the potential
implications for new therapeutic targets.

In this study, we draw conclusions integrating observations
from a cancer and a non-cancer cell line model. Future research
within a single cell line and across various cell lines will clarify
whether the observed correlations between DNA damage, pro-
liferation, and p53/p21 is a general trend or if different rela-
tionships govern the responses to DNA damage in other cell lines.
Furthermore, our assessment of intermitotic times is constrained
by the duration of our recordings, which could introduce a bias
favoring shorter IMT, potentially obscuring the genuine cell cycle
durations. To address this concern, extending recording dura-
tions and implementing statistical models that consider various
influencing factors could yield more accurate estimations of the
underlying cell cycle lengths.34,35

Proliferation heterogeneity is ubiquitous in mammalian cells
and its regulation and functional significance remains unclear.
Predicting such fundamental behavior as individual cell pro-
liferation behavior, remains a complex fundamental problem in
biology, even in well-controlled constant in-vitro conditions. Our
work highlights the importance of studying long-term cell
responses at the single-cell level through continuous recordings of
cell growth and signaling dynamics. To fully capture the features
of such complex signals and determine their functional role, a
systematic quantification of non-stationary time-series analysis
metrics is essential. Such recording and analysis approaches may
accelerate the identification of specific signal parameters to
understand how molecules dynamically encode information in
the context of DNA damage response.

Methods
Histogram plots. Histogram plots were computed using the
Python function histplot from seaborn package36.

Correlation coefficients. Correlation coefficients were calculated
using the Python function corrcoef from Numpy37 and
pearsonr from SciPy38, while accounting for the medians of
p53 and p21 dynamics, or the levels of DNA damage, within
distinct groups characterized by varying total numbers of divi-
sions. For the error calculation, we used the standard error
formula.

Cumulative distribution of division events. To calculate the
cumulative distributions (CMs), we implemented the Python
script cumdistr_all_divisions.py. In this script, we
condensed all divisions across all cells into a single temporal
vector and subsequently applied the cumsum function from
Python to do an accumulative sum of the division events. To

Table 6 slope to Fig. 4f.

2 Gy 4 Gy 10 Gy

Stables 0.0065 0.0072 0.0041
Switchers 0.0109 0.0133 0.0178

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05585-5

8 COMMUNICATIONS BIOLOGY |          (2023) 6:1196 | https://doi.org/10.1038/s42003-023-05585-5 | www.nature.com/commsbio

www.nature.com/commsbio


mitigate potential sample size effects among different radiation
doses, a reference number of cells was randomly selected from the
condition with the smallest sample size (383 cells for the 0 Gy
condition) and used to randomly select the same number of cells
from larger sample size conditions. This process was repeated
iteratively 10 times to obtain the average cumulative distributions
presented in the main text, Fig. 3c. Finally, we normalized all the
conditions to the maximum of the cumulative distribution of the
untreated condition.

Violin plots. Violon plots were calculated using the Python
function violinplot from the seaborn package36 with the
following parameters showfliers = False and cut=0.

Box plots. Box plots were calculated using the Python function
boxplot from the pandas package39 with the parameter
showfliers = False. The correlation coefficients were cal-
culated with the function corrcoef from Numpy37 of the
median values of each group, as explained in the point “Corre-
lation coefficients” from this section.

Detrending. Raw data were detrended using pyBOAT software
package for Python (v0.9.2) function sinc_detrend using a
cut-off period of 50 h40, in particular pyBOAT uses a sinc filter
that removes the periods larger than a certain cut-off.

P-values. p-values were computed using the Python function
ttest_ind with Welch’s t test to compare two datasets with
different sample sizes from the package stats of Scipy38.

Continuous p53 and p21 amplitude calculation. Continuous
amplitude envelope calculation was obtained using continuous
wavelet transform implemented in the open-source software
package pyBOAT through the functions compute_spectrum,
get_maxRidge, and ridge_data. We computed the con-
tinuous wavelet transform, implemented in pyBOAT, to identify
the predominant oscillatory elements characterized by the highest
power through ridge detection for individual signals. Then, from
the wavelet power spectrum, we estimated the amplitude spec-
trum using the Morlet Wavelet scaling factor40. To consider the
consistency in amplitude derived from pyBOAT refer to Fig. 2Sc,
where we contrasted amplitude values obtained using two dif-
ferent methods: continuous wavelet transform (pyBOAT) and
peak picking (Scipy). For the amplitude computation from
pyBOAT, we considered detrended signals where the trend with
periods larger than 50 h was subtracted. For each cell, we
obtained the median amplitude from the ridge detection after
applying the continuous wavelet transform as explained above.
Conversely, we computed the peak heights using the Python
function find_peaks from Scipy with the following para-
meters (height=50, distance=7, prominence=50).
For comparison, a scatter plot of the median values for the
amplitude obtained with the different methods for each condition
is presented, along with the corresponding correlation coefficient
computed using the Pearson correlation.

Correlation coefficients heatmap. Pairwise correlation coeffi-
cients for several metrics were calculated for each individual cell
using the corr function from the pandas package of Python.
We calculated the intermitotic intervals by measuring the time
between successive division events and subsequently determined
the median values for each cell. The calculation of the area under
the curve (AUC) involved determining the mean value resulting
from two distinct methods, namely the trapezoidal and Simpson
methods. As previously described, we obtained the amplitude as a

continuous curve from pyBOAT (a vector with the heights of the
peaks). The standard deviation, on the other hand, was computed
based on the detrended signal obtained from pyBOAT as well. For
each continuous metric, we extracted the median value per cell
and subsequently conducted calculations to determine the cor-
relation coefficients across all individual cells.

Bar plot. The bar plot was computed using the Python function
barplot from seaborn36. To compute the fraction of arrested
cells, we calculated how many cells divided zero or one time
during the first 48 h of the experiment.

Number of pulsatile cells. The number of pulsatile cells was
computed with the Python function find_peaks from Scipy
with the following parameters (height=50, distance=7,
prominence=50). A cell was considered pulsatile when it
exhibited at least 10 pulses in 120 h (the recording duration).

Instantaneous period calculations. Instantaneous periods from
individual cells are calculated from detrended raw data using the
functions compute_spectrum, get_maxRidge, and rid-
ge_data from pyBOAT with a cut-off period of 50 h and an
amplitude normalization with a time window of 50 h. The
amplitude normalization was done by taking the inverse of the
envelope of the detrended signal.

Mean period calculations. In detrended p53 raw data, the period
of individual p53 traces is calculated using the pyBOAT function
compute_spectrum, get_maxRidge, and ridge_data
to obtain instantaneous values, and then with the NumPy func-
tion mean we get the mean values. Instantaneous periods and
then time-averaged for each individual cell and then all individual
cell periods are plotted.

P53 period stability classification. To estimate the period sta-
bility over time, the instantaneous period of the main signal
component was calculated using ridge analysis (from
pyBOAT), and a linear fit was implemented to estimate the slope
of the instantaneous period trend. A slope threshold of 0.01 [1/h]
was used to classify cells as period stable or period switchers.
Slopes between 0 and 0.01 [1/h] are classified as stable whereas
slopes above 0.01 [1/h] are classified as period switchers. Using a
5-h period signal as a reference, cells were further classified as
stable (period changes less than 5% within a cycle), prolongers
(higher period changes), or irregular (period changes outside
these two categories).

Difference between period/cumulative distribution of division
events of stables and period-switchers. The period of the stables
was subtracted from the period-switchers and smoothed using the
sinc_smooth function of pyBOAT with a cut-off period
of 10 h.

Proliferation slope. The proliferation rate of the stables or
period-switchers population was estimated through a linear fit-
ting of the increasing part using the Python function fit from
NumPy (see Table 6).

Peak picking of the pulse number. The number of peaks per cell
within a particular condition was computed using the Python
function find_peaks from SciPy. A signal was passed to this
function with the following parameters: (height=50, dis-
tance=8, prominence=50). The cells that had more than
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two peaks were collected and plotted using the violinplot
function from seaborn.

Augmented fully Dickey test. To compute how many signals
were non-stationary we used the Python function adfuller
from statsmodels41 and classified as non-stationary those
that had a p-value higher than 0.05.

Random p53 period classification. Within a certain radiation
condition, 300 cells were chosen randomly for each group using
the Python function sample from the random package. This
process was iterated 20 times to minimize the bias between
iterations (see Fig. 3Sd).

Data availability
All data supporting the findings of this investigation are available in the previously
published papers12, 14.

Code availability
The code implemented for the above analyses can be found here: https://github.com/
Granada-Lab/proliferation-p53-p21 or from the authors upon request.
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