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Omics data integration suggests a potential
idiopathic Parkinson’s disease signature
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The vast majority of Parkinson’s disease cases are idiopathic. Unclear etiology and multi-

factorial nature complicate the comprehension of disease pathogenesis. Identification of early

transcriptomic and metabolic alterations consistent across different idiopathic Parkinson’s

disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron

vulnerability and primary disease mechanisms. In this study, we combine systems biology

and data integration approaches to identify differences in transcriptomic and metabolic

signatures between IPD patient and healthy individual-derived midbrain neural precursor

cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several

amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural

precursors. Furthermore, we show that IPD neural precursors endure mitochondrial meta-

bolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with

NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-

associated metabolic changes.
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Parkinson’s disease (PD) is a neurodegenerative disorder
with increased prevalence among elderly people. The main
cellular hallmarks of PD, such as selective loss of dopami-

nergic neurons and the presence of Lewy bodies in the PD
patient’s brain, have been well described; however, disease
molecular mechanisms are not yet clear. Moreover, approxi-
mately 90% of all PD cases are classified as sporadic or
idiopathic1. Investigation of idiopathic PD (IPD) cases is chal-
lenging due to unclear etiology and their multifactorial nature1,2.
One of the explanations of how the interaction between multiple
factors contributes to PD development is proposed by the
“multiple hit” theory3,4. It suggests that the risk to develop PD is
already determined at the early neurodevelopmental stage, where
the ‘first hit’ in the form of genetic mutation, exhausts compen-
satory mechanisms, modulating cell resistance to perturbations of
cellular homeostasis. The “second hit” as environmental or life-
style factors later leads to the disease onset and determines its
progression.

Changed cellular metabolism as a response to the ‘first hit’might
eventually lead to increased dopaminergic neuron vulnerability and
susceptibility to PD-related neurodegeneration. Lately, the role of
metabolic dysregulation has been highlighted in the context of
neurodegenerative diseases5–9. Moreover, diminished mitochon-
drial energy production capacity is among the most discussed
pathogenic mechanisms implicated in both familial and idiopathic
forms of PD development10–13. In addition to the deficient energy
metabolism, dysregulation in lipid metabolism has also been linked
to PD development14–18. Furthermore, other studies describe
impaired cofactor metabolism contribution to neurodegeneration
and amino acid concentration changes, the latter also having been
proposed as biomarkers of PD progression19–22.

In this study, we were interested in the initial metabolic changes
occurring even before neuronal differentiation, to understand the
basis of dopaminergic neuron vulnerability. Investigation of early
metabolic changes might provide a deeper understanding of IPD
pathogenesis and provide clues to disease-modifying strategies. We
used iPSCs-derived neuroepithelial stem cells (NESCs), which are
pre-patterned to midbrain/hindbrain identity and can give rise to
neurons, including midbrain dopaminergic neurons, as well as to
oligodendrocytes and astrocytes23–27. We analyzed NESCs from
three IPD patients and three healthy individuals at the tran-
scriptomics and metabolomics levels to obtain an overview of the
IPD-associated metabolic changes at the very early neurodevelop-
ment stage. In addition, we used the XomicsToModel pipeline28,29 to
extract context-specific models from the most comprehensive
genome-scale human metabolic network Recon 3D30. The flux dis-
tribution was further addressed using entropic flux balance analysis.
Additionally, predicted metabolic alterations we compared to PD-
associated metabolic biomarkers reported in clinical studies.

We here show that IPD NESCs have changed pyruvate, lipid
and amino acid metabolism. In addition, we demonstrate that
IPD NESCs have decreased mitochondrial respiratory capacity
and a NAD pool deficiency. Moreover, using NAD precursors, we
show rescue of decreased levels of ATP in IPD NESCs, high-
lighting role of NAD metabolism in energy generation sustain-
ability, and as a preventative PD therapeutic target. Finally, using
data integration analysis, we confirm the link between energy
generation, lipid metabolism and NAD regeneration, which leads
to the identification of glycerol-3-phosphate as the main inter-
mediate of metabolic pathways altered in IPD NESCs.

Results
Transcriptomic and metabolic profiles reveal neurodevelop-
mental and metabolic alterations in IPD neural precursor cells.
First, we compared transcriptomic and metabolic differences

between three female IPD patients and three age-gender matched
control NESC lines (Supplementary Fig. 1a, b). We identified
678 significantly differentially expressed genes (DEGs) (p < 0.05),
showing a strong transcriptomic difference between IPD and
control NESCs (Fig. 1a, Supplementary Data 1). The top sig-
nificant DEGs (FDR < 0.05) included the key regulator of the final
step of glycolysis—lactate dehydrogenase A (LDHA), being nearly
two-fold downregulated in IPD NESCs (Fig. 1b). Furthermore, all
other most significant DEGs (PCDH20, GRIK2, GRIP2, RGS7BP,
SMARCA1, SYT17, STAG2) are known to be involved in neuro-
developmental processes. Overall, a gene ontology enrichment
analysis showed that DEGs are involved in the regulation of cell
development, cell cycle, synapse membrane potential, as well as
metabolic processes particularly related to lipid metabolism
(glycerolipid and phospholipid biosynthetic processes, phospha-
tidylinositol metabolic process, lipase, and phospholipase activity)
and cofactor metabolic processes (Supplementary Fig. 2a). Next,
we functionally annotated DEGs using the KEGG database for
gene set enrichment analysis31. We found that 286 unique
pathways were associated with these DEGs. ‘Metabolic pathways’
was the most enriched functional term (Supplementary Fig. 2b).
Consistent with the most significant DEGs, relation to neurode-
velopment, neuroactive-ligand receptor interaction and neuro-
degeneration pathways were also found in the top 10 of the most
enriched KEGG terms (Supplementary Fig. 2b). The negative
average log2 fold change (FC) of DEGs annotated to metabolic
pathways, indicated a general negative regulation of metabolic
processes in IPD NESCs. As the most dysregulated metabolic
pathways, we selected the ones with the respective log2FC below
−1 or above 1. Following the observed two-fold downregulation
of LDHA, the lowest log2FC was detected for pyruvate metabo-
lism (Fig. 1c). Similarly a negative, nearly two-fold log2FC was
found for propanoate metabolism and cysteine and methionine
metabolism, while the highest log2FC of 1.6 was for butanoate
metabolism suggesting a particular role of short-fatty acid
metabolism in IPD NESCs. Furthermore, genes associated with
lipid metabolism-related pathways—linoleic acid, glyco-
sphingolipid and ether lipid metabolism also had a negative
log2FC.

Next, we performed an untargeted gas chromatography-mass
spectrometry (GC-MS) analysis of the polar and non-polar-phase
intracellular metabolites. A principal component analysis (PCA)
showed a strong separation between IPD and control samples for
non-polar metabolites further suggesting alterations in lipid
metabolism in IPD NESCs (Fig. 1d). In contrast, there was no
clear separation between IPD and control sample groups based on
polar metabolite abundances, mainly because of the high
variability in the metabolic profiles between control NESCs
(Fig. 1e). However, the close proximity of all three IPD samples in
the PCA plot implies a similarity among the IPD metabolic
profiles, suggesting a disease-dependent metabolic signature.

IPD neural precursors show reduced ability to metabolize
various mitochondrial substrates and impaired mitochondrial
respiratory capacity. The negative regulation of several metabolic
processes and the downregulation of LDHA in IPD NESCs sug-
gest a dysregulation of ATP-producing pathways. Therefore, we
wanted to investigate the mitochondrial capacity to metabolize
various metabolic substrates and the ability to generate ATP.
First, we assessed mitochondrial functionality using MitoPlateS1,
which is a microplate pre-coated with various NADH and
FADH2-producing metabolic substrates32,33. We observed that
the variety of substrates metabolized by IPD NESCs is reduced
(Fig. 2a, Supplementary Fig. 3). The highest maximal metabolic
rate for IPD NESCs was observed for succinic acid, malic acid and
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tryptamine. However, the metabolic rate for these substrates was
about two times lower in IPD NESCs compared to control
NESCs. Cytoplasmic substrates, particularly, metabolites of gly-
cogenolysis, such as glycogen and glucose-1-PO4 were metabo-
lized at similar rates by IPD and control NESCs. For other
substrates, such as r γ-amino-butyric acid (GABA), palmitoyl DL-
carnitine chloride and L-leucine the maximal metabolic rate was

between 1.5 and 8 times higher for control NESCs compared to
IPD NESCs.

Next, we looked more specifically at mitochondrial respiration
efficiency using the Seahorse Extracellular Flux Analyzer. IPD
NESCs demonstrated a significant decrease in all parameters of
the mitochondrial stress test (Fig. 2b, c). Already basal respiration
was detected in significantly reduced levels. After the addition of

A

Fig. 1 Transcriptomic and metabolic profiles reveal neurodevelopmental and metabolic alterations in IPD neural precursor cells. a Heatmap of scaled
gene counts of significantly differentially expressed genes (p < 0.05) between IPD and control NESCs. b Log2FC of the top significantly expressed genes
(FDR < 0.05) displaying gene expression difference in IPD NESCs compared to control cells. c The most dysregulated metabolic pathways, selected by the
average of Log2FC <−1 or >1 of genes annotated in each pathway. The color represents the Log2FC. d Principal component scores plot of non-polar
metabolites detected by untargeted GC-MS analysis. e Principal component scores plot of polar metabolites detected by untargeted GC-MS analysis.
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Fig. 2 IPD neural precursors show reduced ability to metabolize various metabolic substrates and impaired mitochondrial respiratory capacity. a Scatter
plot of the maximal metabolic rate of different substrates. Each dot represents a unique substrate placed in the plot according to the metabolic rate by which it
has been metabolized by the IPD (y-axis) and control (x-axis) NESCs. The maximal metabolic rate is normalized by background subtraction and cell density in
the respective well. The median rate between the three lines of each condition is considered. Substrates metabolized with the normalized maximal rate above 1
are labeled. b Oxygen consumption rate (OCR) over time representing mitochondrial respiratory capacity. Basal respiration is measured until the injection of
oligomycin which inhibits complex V activity, resulting in a decrease in respiration, which is linked to ATP production. FCCP injection disrupts ATP synthesis
andmitochondrial membrane potential, allowing measurement of maximal respiration and spare respiratory capacity. The final injection is a mixture of complex
I and complex III inhibitors—rotenone and antimycin A. Here mitochondrial respiration is shut down, enabling the calculation of nonmitochondrial respiration.
Statistics: unpaired t-test. Significance asterisks represent *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent mean+ SD.N= 3 independent experiments.
c Bar graphs of mitochondrial respiratory capacity features. Statistics: non-parametric Mann-Whitney test. Error bars represent mean+ SD. N= 3 independent
experiments, each data point represents a measurement of a single well of the assay. d Extracellular acidification rate (ECAR) over time representing glycolytic
function. Before glucose injection, ECAR shows non-glycolytic acidification caused by processes in the cell other than glycolysis. The first injection of glucose
enables measurement of the rate of glycolysis under basal conditions. The second injection of oligomycin, a complex V inhibitor, enhances the energy
production via glycolysis, revealing the maximum glycolytic capacity. The final injection of 2-deoxy-glucose (2-DG), a glucose analog that inhibits glycolysis,
allowing to measure glycolytic reserve. N= 3 independent experiments. e Pyruvate dehydrogenase activity measured based on nmol of generated NADH from
NAD+ over time, which is proportional to enzyme activity. Statistics: non-parametric Mann-Whitney test. Error bars represent mean+ SD.N= 3 independent
experiments. f Total pool of NAD (NAD+ and NADH) concentration in pmol relative to the control samples. Statistics: non-parametric Mann-Whitney test.
Error bars represent mean + SD. N= 3 independent experiments. g NAD+/NADH ratio relative to the control samples. Statistics: non-parametric Mann-
Whitney test. Error bars represent mean + SD. N= 3 independent experiments.
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oligomycin, which is an inhibitor of ATP synthase, we observed
significantly decreased ATP levels. Finally, after the addition of
mitochondrial oxidative respiration uncoupler—carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), we
detected that maximal respiratory capacity is decreased as well.
Furthermore, we analyzed glycolysis efficiency using the same
Seahorse approach (Fig. 2d). After the addition of glucose, IPD
NESCs showed the same rate of glucose conversion to pyruvate as
control cells. Subsequent addition of oligomycin to detect the
maximum glycolysis capacity also did not show a significant
difference between IPD and control NESCs. Furthermore, the
glycolytic reserve was also equal between the conditions,
indicating that glycolysis is neither impaired nor significantly
overactivated in IPD NESCs.

Since we observed impairment in mitochondrial metabolism
but not in glycolysis, we examined the activity of pyruvate
dehydrogenase (PDH), which is at a transition step between
glycolysis and the TCA cycle. By, using NAD+ reduction to
NADH as a readout, we indeed found that the activity of PDH
was significantly downregulated in IPD NESCs (Fig. 2e). How-
ever, neither the protein levels of the PDH major subunit E1
alpha (PDHA1) nor the mRNA levels were significantly affected
(Supplementary Fig. 4a–c). Together this indicates an impaired
connection between glycolysis and mitochondrial metabolism
potentially due to the decreased levels of NAD. To further
investigate this, we measured the concentration of total NAD. We
confirmed that the NAD pool was decreased in IPD NESCs
(Fig. 2f), however, the NAD+/NADH was not altered signifi-
cantly (Fig. 2g). Since NAD is an essential cofactor in many
metabolic reactions, its deficiency would explain not only the
impaired activity of PDH but also the limited variability of
mitochondrial substrate metabolism and decreased respiration
capacity of IPD neural precursors.

Metabolic modeling reveals cholesterol and tyrosine metabo-
lism as the most dysregulated metabolic pathways in IPD and
confirms changed NAD metabolism. In addition to the dysre-
gulation of lipid, pyruvate and several amino acid metabolisms as
suggested by RNA sequencing and untargeted metabolomics, we
found that the NAD amount is reduced in IPD NESCs. To further
investigate the overall metabolic differences between IPD and
control NESCs, and to confirm the most dysregulated pathways,
we complemented our analysis with a constraint-based modeling
approach. Metabolic models were generated using XomicToMo-
del pipeline28. Using Recon 3D as a reference of human meta-
bolism, we extracted a unique context-specific metabolic model
for each IPD and control cell line and further constrained models
using bibliomic constraints regarding the dopaminergic neuron
metabolism and cell culture media composition29,34–36. First, we
performed a topological composition analysis of the generated
models by correlating genes, reactions and metabolites present in
each model (Supplementary Fig. 5a–c). Overall, we did not
observe a strong correlation pattern between model composition
(ρAv (genes) = 0.5; ρAv (reactions) = 0.4; ρAv (metabolites) =
0.45) of IPD models nor control models, suggesting that each
model represents a distinct, disease independent metabolic
network.

A mathematical modeling approach maximizing the entropy of
forward and reverse fluxes was employed for predicting reaction
fluxes within each generated model. The approach uses entropic
flux balance analysis (eFBA) to avoid thermodynamically
infeasible cycles in the metabolic network, being in accordance
with the first law of thermodynamics. The top 50 reactions with
the highest absolute FC for all models relative to the mean flux of
control models, separated IPD and control models using

unsupervised clustering (Fig. 3a, Supplementary Data 2). Control
models showed a similar flux pattern for the identified reactions,
while IPD models demonstrated a model-specific, distinct pattern
of flux change for the same reactions. We classified these top 50
reactions into metabolic pathways, such as transport reactions,
lipid metabolism and amino acid metabolism. Subsystems that
only had one reaction assigned, we defined as ‘others’ (Fig. 3b).
Further, we identified to which Recon 3D subsystems these
reactions belong. The top five subsystems from the defined
metabolic pathways with the highest reaction number assigned
were Cholesterol metabolism, Tyrosine metabolism, Mitochon-
drial transport, Extracellular Transport and Exchange/demand
reactions (Fig. 3c, Supplementary Data 2).

Next, we wanted to confirm altered NAD metabolism in IPD
NESCs. We analyzed the metabolic flux of reactions that belong
to the NAD metabolism subsystem in Recon 3D (Fig. 3d,
Supplementary Data 3). This subsystem mostly includes reactions
involved in NAD synthesis. We observed that IPD and control
models clustered separately due to the increase of flux in IPD
models relative to the control models. Additionally, we
investigated the flux distribution for the reactions where NAD
is involved in mitochondria or the cytosol (Fig. 3e, f,
Supplementary Data 4 and 5). We observed a strong flux increase
for one of the IPD models for the fatty acid oxidation reactions,
consuming NAD in the mitochondria, while there was no strong
flux difference for other reactions in any other IPD NESC model.
However, we noticed that there is a separation between IPD and
control models for the cytosolic NAD reactions. There the flux
pattern was also rather increased in IPD models compared to the
control models.

Glycerol-3-phosphate links altered pathways in IPD neural
precursor cells. We applied a supervised data integration
approach to transcriptomics, metabolomics and Seahorse
mitochondrial assay data to investigate a potential link between
dysregulated metabolic pathways. The top 10 polar and non-
polar metabolites, the top 50 gene transcripts and all six
mitochondrial respiration features measured by the Seahorse
assay were integrated. We applied a Partial Least Squares dis-
criminant analysis (PLS-DA) to these data features to assess the
separability between disease states of NESCs—IPD or healthy
control. All four datasets showed a separation between sample
conditions along the first component (Supplementary Fig. 6).
The top discriminative features after merging the datasets are
shown in Fig. 4a. Next, we looked at the correlation between
features contributing to the variance captured by the first
component (Fig. 4b). We observed a strong correlation (r= 0.9)
between all genes, four non-polar metabolites, one polar
metabolite and five mitochondrial respiration measurements.
Hence, we decided to increase the correlation threshold to
r= 0.95 in order to reduce the network (Fig. 4c). We observed
that non-polar metabolites mostly had a negative correlation
with genes, while pentose-5-phosphate, the only polar meta-
bolite in the network, showed a positive correlation with several
genes that further demonstrated a positive correlation with the
mitochondrial respiration. Further, we looked at GC-MS data-
sets to evaluate whether any of these metabolites present in the
correlation network are significantly differentially abundant
between IPD and control samples. We identified glycerol-3-
phosphate (G3P) as the most significantly differentially present
and upregulated in IPD samples (Fig. 4d). G3P is known to be
an intermediate metabolite in several metabolic pathways,
including NAD metabolism, glycolysis, lipid metabolism and
the electron shuttle between the cytoplasm and inner mito-
chondrial membrane (Fig. 4e). This means that G3P connects
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all metabolic pathways that we report as dysregulated in IPD
NESCs, and therefore might be a valuable biomarker for IPD-
associated early metabolic changes.

Furthermore, considering the essentiality of NAD as a cofactor
being involved in all metabolic pathways dysregulated in IPD
NESCs, we wanted to confirm that increasing NAD levels can

rescue IPD NESC energy deficiency. Therefore, we treated cells
with two different NAD precursors—quinolinic acid and
nicotinic acid. We observed a significant increase in intracellular
ATP levels in IPD NESCs, reaching ATP levels of the untreated
control cells (Fig. 4f). These results further suggest that NAD
deficiency might be the underlying cause of metabolic changes
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observed in IPD NESCs leading to the overall impairment of
energy generation.

Cross-match analysis with diagnosis-related metabolites. We
wanted to confirm that the specific metabolic signature demon-
strated in our work is consistent with PD prognostic metabolites
reported in clinical metabolic studies. A meta-analysis of 74 clinical
metabolic studies of PD by Fleming and colleagues revealed 928
metabolites associated with PD, of which only 21% (190/928)
showed the same trend of qualitative change with respect to mat-
ched controls in more than one study37. We found that from 66
metabolites involved in the top 50 most differently behaving
metabolic reactions in IPD metabolic models (Fig. 3a), 28 meta-
bolites were associated with PD diagnosis matching 928 metabo-
lites from the meta-analysis. 54% of those metabolites (15/28) were
replicated in more than one clinical metabolomic study, matching
190 metabolites reported in the meta-analysis (Fig. 5a, b). The
number of clinical studies reporting changes in each of these 15
replicated metabolites is shown in Fig. 5b and Table 1.
Norepinephrine38,39 and citrulline40–42 were exclusively decreased
in the plasma and serum of PD patients, respectively. Inosine was
found decreased in both plasma42 and cerebrospinal fluid43 of PD
patients, while glycine38,44–48 and GABA38,45–47 were increased in
both plasma, urine and saliva of PD patients. Although the other 10
replicated metabolites showed an inconsistent concentration
change in different studies, the levels of glutamine, aspartic acid,
tyrosine, citric acid and isoleucine were significantly increased in
the blood of PD patients in most of the studies. Methionine was
identified as significantly changed in concentration over time in the
plasma of PD patients49, while dopamine concentration change
was observed in PD patient plasma, serum and CSF [35.39, 47, 48].
These results confirm that IPD has a complex pathogenesis, which
is reflected in a specific metabolic signature and can be captured by
a panel of metabolic biomarkers in various patient biospecimens. In
this study, we show that NESCs can closely reproduce this specific
signature.

Discussion
In the present study, we investigated primary metabolic changes
in IPD patient-derived neural precursor cells. The transcriptomic
data analysis confirmed significant metabolic alterations in IPD
NESCs, specifically, in lipid, amino acid and pyruvate metabo-
lism. Untargeted metabolomics suggested a particularly strong
difference between IPD and control NESC lipid profiles. Along
with metabolic pathways, many important biological processes
were also significantly altered at the transcriptomics level,
including cell cycle, RNA binding, regulation of membrane
potential and neurodevelopment, emphasizing the tight crosstalk
between metabolism, cellular functionality and developmental
state.

We found that pyruvate metabolism is negatively regulated by
the decreased expression of LDHA. Downregulation of LDHA in
IPD NESCs might indicate the regulation of a metabolic shift,
which is forcing pyruvate to enter the oxidative metabolism, and
not be converted to lactate in order to continue anaerobic

glycolysis. Additionally, LDHA has been described as a regulator
of the cell cycle and proliferation state of cells50. Unrestricted
neural stem cells initially rely on glycolysis; however, it has been
shown that fate-restricted, mature progenitors, such as NESCs,
undergo a metabolic shift, becoming dependent on oxidative
metabolism51–53. However, we found that PDH activity was sig-
nificantly decreased, suggesting an impairment of pyruvate
involvement in TCA. Moreover, Seahorse extracellular flux ana-
lysis revealed that IPD NESCs have decreased respiratory capa-
city, mitochondrial ATP levels, and the ability to metabolize a
variety of mitochondrial substrates. Further, we demonstrated
significantly decreased NAD levels in IPD NESCs, which poten-
tially is the primary cause of mitochondrial enzyme inactivity,
since most of the reactions require NAD as a cofactor, including
the PDH complex for pyruvate conversion to Acetyl-CoA. NAD
has an essential role in cellular bioenergetics, mitochondrial
health and cell survival21,22,54. Furthermore, NAD depletion has
been observed in aging and neurodegenerative diseases, including
PD54–56. Our results suggest that IPD neural progenitors might
not be able to undergo the metabolic shift from glycolysis to
oxidative metabolism due to the cofactor imbalance.

We complemented our analysis with metabolic modeling and
data integration to have a deeper overview of genotype-phenotype
relationships. We generated context-specific models applying
media and bibliomic constraints using the XomicToModel
pipeline28. Since in this study, we used NESCs that are precursors
of midbrain dopaminergic neurons, bibliomic data specific for
dopaminergic neuron metabolism was a great advantage and
allowed us to investigate metabolic alterations relevant to dopa-
minergic neurons. For flux distribution prediction we used
maximization of flux and concentration entropy, which was the
best performing objective regards of flux prediction accuracy as
reported by Preciat et al.28. Entropy is a measure of energy dis-
tribution in the system. Maximizing for entropy, the system tends
toward a state at which the usage of energy is minimal. We
observed that IPD metabolic models compared to control models
showed mostly increased flux for the analyzed reactions. This
might suggest that control models are already in an energetically
favorable state, while IPD models present less energetically stable
metabolic networks, and they have to increase fluxes through
many metabolic pathways to reach an energetically optimal state.
Metabolic shift accompanied by changes in entropy has been
observed in many diseases and aging57,58. Furthermore, modeling
confirmed a changed NAD metabolism in cytosolic reactions in
IPD models. This was consistent with increased levels of G3P in
IPD cells as G3P biosynthesis replenishes the cytosolic NAD pool
to ensure the activity of metabolic pathways in the cytosol and
allows energy generation via glycolysis. Since NAD cannot be
transported between cytosol and mitochondria, both NAD pools
are considered relatively independent but linked with the electron
shuttles that allows regeneration of NAD59,60. We observed a
decreased activity of mitochondrial respiration and impaired
pyruvate oxidation by PDH, suggesting that particularly the
mitochondrial NAD pool might be affected in IPD NESCs.
Accordingly, treatment of NAD precursors increased the ATP
generation capability of cells, allowing IPD NESCs to reach the

Fig. 3 Metabolic modeling. a Unsupervised clustering of the top 50 reactions with the greatest fold change of flux relative to the mean flux of control
models. Flux distribution was determined using eFBA. b Metabolic pathways to which the top 50 reactions are assigned, demonstrating the percentage of
the top 50 reactions belonging to each pathway. c The top five subsystems with the highest reaction count were determined by assigning the top 50 most
changed reactions to the Recon 3D subsystems. d Unsupervised clustering of NAD+ metabolism reactions based on the fold change of flux relative to the
mean flux of control models. Flux distribution was determined using eFBA. e Unsupervised clustering of estimated flux for the NAD+ involving reactions in
the mitochondria. Flux distribution was determined using eFBA. f Unsupervised clustering of estimated flux for the NAD+ involving reactions in the cytosol.
Flux distribution was determined using eFBA.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05548-w ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1179 | https://doi.org/10.1038/s42003-023-05548-w |www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


ATP levels observed in control NESCs. Following this observa-
tion, we suggest that restoring NAD levels as early as possible
might be an efficient preventative strategy for PD.

Using a data integration approach, we sought to identify a
molecule that connects all altered metabolic pathways in IPD
NESCs. All of the top discriminant gene transcripts showed a

high degree of correlation with metabolites and Seahorse data,
suggesting that the genetic signature plays an important role in
disease development. However, in this analysis, we focused on
metabolites since they might show higher specificity toward
correlation with other features. We identified G3P as one of the
highly correlating non-polar metabolites with genes and
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Fig. 4 Data integration. a Heatmap of the top discriminant features between the IPD and control NESCs. b Circos plot showing the correlation between
features contributing to the variation of the component 1. Correlation threshold: r= 0.9. c Correlation network of features contributing to the variation of
the component 1. Correlation threshold: r= 0.95. d Relative abundance of glycerol-3-phosphate. Statistics: Welch’s t-test. Error bars represent mean + SD.
N= 3 biologically independent samples. e Graphical representation of glycerol-3-phosphate (G3P) as an intermediate metabolite in glycolysis, lipid
metabolism and oxidative phosphorylation and its role in NAD metabolism. G3P synthesis from dihydroxyacetone phosphate (DHAP) by cytosolic
glycerol-3-phosphate dehydrogenase (cGPDH) regenerates cytosolic NAD+ from the NADH that is generated by glyceraldehyde-3-phosphate
dehydrogenase in glycolysis. The G3P shuttle also facilitates electron transport between cytosol to mitochondria. Flavin linked mitochondrial glycerol-3-
phosphate dehydrogenase (mGPDH) oxidases G3P at the same time reducing flavin adenine dinucleotide (FAD) to FADH2 and transferring electrons to
ubiquinone pool of the electron transport chain (ETC). ETC oxidazes NADH generated in TCA to replenish the mitochondrial NAD+ pool. G3P can also be
produced from glycerol, which is the end product of lipolysis. f Intracellular ATP levels measured in relative light units (RLU) and normalized to the cell
number in samples treated with vehicle, 20 nM quinolinic acid (QA) and 5mM nicotinic acid (NA). Statistics: non-parametric Mann-Whitney test. Error
bars represent mean + SD. N= 3 independent experiments.

Fig. 5 Metabolites corresponding to significant IPD model reactions compared with metabolites associated with PD diagnosis from a meta-analysis of
clinical metabolomic studies. a The proportion of metabolites with changes reported in more than one study (replicated metabolite). b The number of
studies reporting increased or decreased concentrations for replicated metabolites.

Table 1 Summary of the matched replicated metabolites.

VMH ID Common name # Increased # Decreased Inconsistent Increased samples Decreased samples

nrpphr Norepinephrine 0 2 0 – Plasma38,39

dopa Dopamine 2 2 1 Plasma69; CSF70 Plasma38; Serum42

ins Inosine 0 2 0 – Plasma42; CSF43

gly Glycine 6 0 0 Plasma38,48; Serum44; Urine45,46; Saliva47 –
citr_L Citrulline 0 3 0 – Serum40–42

gln_L Glutamine 8 1 1 Plasma48,71,72; Serum44,73; Putamen74; CSF70;
Urine75

CSF76

asp_L Aspartic acid 3 1 1 Plasma38; Urine45; Serum77 Serum44

ile_L Isoleucine 6 1 1 Serum73; CSF72; Fecal78; Urine45,75; Saliva47 Fecal79

met_L Methionine 3 2 1 Plasma49,76; CSF70 Plasma49,80

ser_L Serine 2 2 1 Plasma49; CSF76 Serum41,44

tyr_L Tyrosine 10 3 1 Plasma39,48,81; Serum44,74,77,82; Urine45,75; Saliva47 Fecal79,83; Plasma84

val_L Valine 2 1 1 Serum73; Saliva47 Fecal79

4abut GABA 4 0 0 Plasma38; Urine45,46; Saliva47 –
cit Citric acid 4 2 1 Plasma85; Serum73,86; CSF70 Plasma87; Serum44

crn Carnitine 1 2 1 Plasma88 Plasma89; CSF70

Metabolites identified in metabolic modeling to be changed in IPD cells and also associated with PD diagnosis in more than one clinical study. VMH ID: metabolite name in Recon 3D.
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mitochondrial respiration features and the top significantly dif-
ferentially abundant metabolite between IPD and control NESCs.
Since we show that most dysregulated pathways in IPD NESCs
include pyruvate metabolism, oxidative phosphorylation, NAD
metabolism and lipid metabolism, G3P might have a biomarker
potential since it is at the crossroads of these pathways and
therefore, could indicate their changed activity.

In summary, our results show that IPD NESCs undergo spe-
cific metabolic changes at early neurodevelopment and their
metabolism seems to be less optimal in terms of energy dis-
tribution. Moreover, we confirm that a large part of metabolites
involved in the predicted dysregulated metabolic reactions using
the modeling approach was consistent with the metabolites
reported with a concentration change in PD patient biological
samples37. This suggests that predicted metabolic changes using
metabolic modeling have a high degree of accuracy and are
comparable to the clinical data. Additionally, we identify G3P as a
metabolite connecting observed IPD-associated metabolic chan-
ges and NAD as a potential early disease-modifying agent.
Overall, we show that experimental and computational methods
can be combined to better elucidate molecular causes and asso-
ciations of observed phenotypes. It was particularly interesting to
see that it is possible to distinguish IPD samples from healthy
control samples by using complex signatures.

There are some limitations of this study that have to be
considered. This study was performed with a relatively small
sample size (3 IPD vs 3 CTRL). Most of the experiments, par-
ticularly, untargeted metabolomics would benefit from a larger
sample size, allowing better discrimination between the IPD and
CTRL groups and an increase of statistical power. Furthermore,
although we show decreased levels of NAD, we were not able to
experimentally distinguish between cytosolic and mitochondrial
NAD pools. However, we were able to separate mitochondrial
and cytosolic metabolic NAD reactions in silico to estimate flux
differences between the IPD and control NESCs. Nevertheless,
modeling has rather a predictive value and for a definite result,
all findings should be further validated experimentally. Non-
polar or lipid metabolites were analyzed in an untargeted manner
to achieve high coverage of metabolites and have a general
overview of cellular metabolic profiles. In this case, most of these
metabolites were not identified due to the limitations of the
available library. Metabolites with no clear identity were not
excluded from the study, however, they limit the interpretation
of our data regarding specific lipid contributions to the disease
phenotypes.

Methods
Ethical approval. The work with iPSCs has been approved by the
Ethics Review Panel (ERP) of the University of Luxembourg and
the national Luxembourgish Research Ethics Committee (CNER,
Comité National d’Ethique de Recherche). CNER No.
201901/01; ivPD.

Human neuroepithelial cell culture. NESCs were derived from
iPSCs as described in ref. 27 from three female IPD patients and
three female healthy controls (Supplementary Fig. 1a). NESC
derivation from iPSC was achieved via embryonic body formation
and expansion of neuroepithelium using small molecules
CHIR99021 (CHIR, 3 μM) and purmorphamine (PMA, 0.5 μM).
NESCs were cultured in N2B27 maintenance medium on 6-well
plates (Thermo Scientific) pre-coated with Matrigel (Corning).
N2B27 medium is composed of DMEM-F12 (Invitrogen) and
Neurobasal (Invitrogen) 1:1 and supplemented with 1:200 N2
(Invitrogen), 1:100 B27 without vitamin A (Invitrogen), 1%
Glutamax (ThermoFisher) and 1% penicillin/streptomycin

(Invitrogen). For NESC maintenance, the N2B27 medium was
freshly supplemented with small molecules—3 µM CHIR (Axon
Medchem), 0.75 µM PMA (Enzo Life Science) and 150 µM
ascorbic acid (Sigma). The medium was changed every second
day and cells were routinely passaged at 80–90% confluence.
Splitting was performed with Accutase (Sigma). Cells were kept in
the incubator under constant conditions of 37 °C and 5% CO2.
Cells were characterized by the expression of typical neural
progenitor markers SOX2 1:100 (R&D Systems #BAF2018; RRI-
D:AB_356217), PAX6 1:300 (Biolegend #901302; RRI-
D:AB_2749901), Nestin 1:200 (BD Bioscience #611659;
RRID:AB_399177) (Supplementary Fig. 1b).

RNA sequencing and analysis. Total RNA was prepared using
the Allprep DNA/RNA mini kit (QIAGEN #80204) following the
supplier’s instructions. RNA-seq library was prepared from 1 μg
of total RNA, using the NEBNext Ultra Directional RNA Library
Prep Kit for Illumina (E7420L). Libraries were quantified with the
KAPA Library Quantification Kit (Illumina GA/Universal,
#KK4824). Samples were multiplexed and adjusted to 2 nM
concentration, and 75-bp paired-end sequencing was performed
by Nextseq 2000. Reads were mapped with Bowtie2 using hg19 as
the reference genome. Gene differential expression analysis was
performed in R (version 4.0.2) using the Biocundoctur package
EdgeR with default parameters61. The significance for differential
expression was adjusted for multiple hypothesis testing using the
Benjamini and Hochberg method62. Gene enrichment analysis of
significantly differential expressed genes (p < 0.05) was performed
in R (version 4.0.2) using the Human Molecular Signatures
Database (version 6.2.)63,64. Genes annotated to ‘Metabolic
pathways’ were further assigned to specific pathways using the
KEGG database31. The average log2FC was determined among all
genes annotated in each pathway to determine the most dysre-
gulated pathways.

Derivatization and GC-MS measurement. Metabolite derivati-
zation was performed by a multi-purpose sample preparation
robot (Gerstel). Dried cell polar extracts were dissolved in 20 µl
pyridine, containing 20mg/ml methoxyamine hydrochloride
(Sigma-Aldrich), for 90 min at 45 °C under shaking. After adding
20 µl N-methyl-N-trimethylsilyl-trifluoroacetamide (Macherey-
Nagel), samples were incubated for 30 min at 45 °C under con-
tinuous shaking. Dried non-polar extracts were only dissolved in
30 µl N-methyl-N-trimethylsilyl-trifluoroacetamide and incu-
bated for 60 min at 45 °C under continuous shaking.

GC-MS analysis was performed using an Agilent 7890B GC
coupled to an Agilent 5977A inert XL Mass Selective Detector
(Agilent Technologies). A sample volume of 1 µl was injected into
a Split/Splitless inlet, operating in splitless mode at 270 °C. The
gas chromatograph was equipped with a 30 m (I.D. 0.25 mm, film
0.25 µm) ZB-35ms capillary column (Phenomenex) with 5 m
guard column in front of the analytical column. Helium was used
as carrier gas with a constant flow rate of 1.2 ml/min. The GC
oven temperature was held at 90 °C for 1 min and increased to
270 °C at 9 °C/min. Then, the temperature was increased to
320 °C at 25 °C/min and held for 7 min. The total run time was
30 min. The transfer line temperature was set to 280 °C. The MSD
was operating under electron ionization at 70 eV. The MS source
was held at 230 °C and the quadrupole at 150 °C. Mass spectra
were acquired in full scan mode (m/z 70 to 700).

All GC-MS chromatograms were processed using Metabolite-
Detector, v3.22019070465. Compounds were annotated by
retention index and mass spectrum using an in-house mass
spectral library. Retention index calibration was based on a
C10–C40 even n-alkane mixture (Sigma-Aldrich). The internal
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standards, U-13C–Ribitol (Omicron Biochemicals), Pentanedioic-
d6 acid (C/D/N Isotopes) and Tridecanoic-d25 acid (C/D/N
Isotopes) were added at the same concentration to every sample
to correct for uncontrolled sample losses and analyte degradation
during metabolite extraction. The dataset was normalized using
the response ratio of the integrated peak area analyte and the
integrated peak area internal standard. Data were analyzed using
RStudio (R version 4.0.2). Results were visualized using tidyverse
package and factoextra package for the multivariate analysis.

Metabolic microarray. Mitochondria substrate preferences were
assessed using MitoPlate S-1 (Biolog) following the manu-
facturer’s instructions. The MitoPlate S-1 assay is a colorimetric
assay and measurement is based on the electron flow rate through
the mitochondrial respiratory chain. Tetrazolium redox dye MC
acts as the final electron acceptor changing a color proportional
to the rate of substrate metabolization, which is recorded as
Omnilog units. 96-well microplate MitoPlate S-1 is pre-coated
with 31 different NADH and FADH2- producing metabolic
substrates. Plate layout allows measurements in triplicates,
therefore each IPD and control cell line was seeded in 32 wells of
the plate (31 substrates + blank). Before cell seeding, substrates
were incubated for 1 h at 37 °C with the assay mix containing
assay buffer, redox dye, water and permeabilization reagent
saponin (100 µg/ml per well). Then, 20,000 cells were seeded per
well and directly loaded in OmnilogLog (Biolog) for kinetic
reading every 5 min for 10 h. After measurement, plates were
centrifuged and cell density was measured with CyQUANT Cell
Proliferation Assay (Invitrogen). CyQUANT GR solution was
prepared following the kit protocol. Fluorescence was measured
at 520 nm on a cell imaging system Cytation5M. Kinetic data was
analyzed with Data Analysis software (version 1.7.). The maximal
metabolic rate for each substrate between the initial and 8 h
measurements was calculated by background subtraction and
normalization to cell density in the respective well. Negative
values were replaced with 0. A median of the normalized maximal
rate between three IPD and three control samples for each sub-
strate was visualized as a scatter plot using RStudio (R version
4.0.2).

Cellular metabolism analysis. A day before the experiment, the
XFe96 sensor cartridge (Agilent) was filled with Seahorse XF
Calibrant Solution (Agilent) (200 µl per well) and kept at 37 °C
overnight. Before the experiment, the Seahorse XFe96 Spheroid
Microplate (Agilent) was coated with Cell-Tak (Corning) coating
diluted in 0.2 M Sodium bicarbonate solution (1:50) (coating
30 µl per well). After 1 h of incubation at 37 °C, the plate was
washed twice with filtered MiliQ. 100 000 were cells seeded per
well; each cell line in 8 replicates (wells). To ensure the complete
attachment of cells, the plate was incubated at 37 °C for 3–4 h.
After the incubation time, cells were washed twice with Seahorse
media (for Mito stress test: DMEM Sigma D5030 + 21.25 mM
glucose and 1 mM pyruvate; for glycolysis stress test: DMEM
Sigma D5030 without glucose and pyruvate). All wells were filled
with 180 µl of Seahorse media and incubated for 1 h at 37 °C. For
Mito Stress analysis XFe96 sensor cartridge was filled with drugs
as follows: Port A: Oligomycin 1 µM, Port B: FCCP 1 µM, and
Port C: Antimycin 1 µM + Rotenone 1 µM (1:1). For the Gly-
colysis stress test XFe96 sensor cartridge was filled with drugs as
follows: Port A: Glucose 10 mM, Port B: Oligomycin 1 µM, Port
C: 2-deoxyglucose (2DG) 50 mM. Analysis was performed using
the XFe96 Cell Metabolism Analyzer. The obtained data was
normalized to the cell density measured with CyQUANT Cell
Proliferation Assay (Invitrogen). CyQUANT GR solution was
prepared following the kit protocol. Then, 200 µl of the solution

was added to each well of the Seahorse microplate (including
empty wells). After 2 min of incubation, the content of the
microplate was transferred to the imaging microplate (Perkin
Elmer) compatible with the available cell imaging system Cyta-
tion5M. Fluorescence was measured at 520 nm.

Both assays were performed three times using three different
cell passages. Each well of the assay was represented as a separate
data point. Wells with negative values or aberrant OCR or ECAR
patterns were excluded from each of the individual experiments.
Data was analyzed with GraphPad Prism version 9.

Western blot. Cells were collected at 80% confluency and lysed
using RIPA buffer (Abcam). Protein was quantified using BCA
assay (ThermoFisher). Then, 20 µg of protein was loaded per
sample in 4–12% NuPAGE Bis-Tris polyacrylamide gel (Ther-
moFisher). Gel was run using MES SDS running buffer (Ther-
moFisher), following dry transfer on polyvinylidene difluoride
membrane using iBlot (ThermoFisher). The membrane was
blocked for 1 h in 5% BSA in PBS+ 0.02% Tween solution fol-
lowing overnight incubation with primary antibody for PDHA1
1:500 (Cell Signaling Technology #3205; RRID:AB_2162926). The
membrane was washed 3 times for 5 min with PBS+ 0.02%
Tween. After washing membrane was incubated for 1 h with a
secondary anti-rabbit, HRP-linked antibody (VWR). After 3
washing steps for 10 min, a signal was developed using a che-
miluminescent substrate (Life Technologies) and imaged with
STELLA 8300 imaging system (Raytest). After the reveal of the
PDHA1 protein signal, the membrane was stripped for 15 min
with a stripping buffer (ThemoFisher) to remove the signal. The
membrane was washed 3 times for 10 min following blocking and
overnight incubation with β-actin primary antibody 1:10,000
(Cell Signaling Technology #3700, RRID:AB_2242334). β-actin
protein was analyzed following the same procedure as described
for PDHA1 protein. The experiment was performed three times
for different NESC passages. Band intensity was quantified using
ImageJ and PDHA1 relative abundance was estimated by nor-
malizing the PDHA1 protein signal to the β-actin signal. Original
blot images of one of the experiments are shown in Supple-
mentary Fig. 7.

ATP assay. Intracellular ATP was measured using CellTiter-Glo®
Luminescent Cell Viability Assay (Promega). Cells from three
different passages were seeded in a Geltrex (ThermoFisher) pre-
coated 96-well imaging plate (Perkin Elmer). The next day after
seeding, cells were treated with 20 nM quinolinic acid (Sigma
#P63204), 5 mM nicotinic acid (Sigma #N0761) or ultra-pure
water as vehicle. After 24 h, the media was replaced by 50 µl of
ATP assay reagent. After 10 min of incubation in the dark,
luminescence was read with the cell imaging system Cytation5M.
After luminescence recording, the ATP assay reagent was
removed and the cell count in each well was determined using
CyQUANT Cell Proliferation Assay (Invitrogen). The lumines-
cence signal of ATP was normalized to the cell count.

Pyruvate dehydrogenase activity assay. Pyruvate dehydrogenase
activity was detected using the PDH activity assay kit (Sigma
MAK183) following the manufacturer’s instructions. Kit mea-
sures generated NADH amount which is proportional to enzyme
activity. One million cells were pelleted and then resuspended in
an ice-cold PDH assay buffer. After 10 min of incubation on ice,
samples were centrifuged at 10,000×g for 5 min. Then, 10 µl of
supernatant in duplicates were collected in a 96-well flat bottom
plate (Corning) for each sample and mixed by shaking with the
PDH assay substrate and developer. Samples were then incubated
at 37 °C. Absorbance at 450 nm was measured after 3–5 min of
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incubation, following further incubation at 37 °C. The absorbance
reading was repeated until the highest sample values reached the
linear range of the standard curve. PDH activity was calculated as
NADH amount in nmol generated between the initial and final
absorbance reading. The assay was repeated three times for three
different NESC passages. The results of each run were normalized
to the mean of control samples of the respective run. Data were
visualized using GraphPad Prism version 9.

NAD+/NADH quantification. The NAD+/NADH ratio was
measured with a Sigma kit (MAK037) following the manufacturer’s
instructions. One million cells were pelleted by centrifugation. After
the removal of the media, the pellet was washed with cold PBS.
Total NAD+ and NADH were extracted by cell incubation with
extraction buffer during two freezing–thawing cycles of sample
incubation in dry ice for 20min following incubation at room
temperature for 10min. Samples were then vortexed and cen-
trifuged to remove insoluble material. For detection of NADH only,
samples were further incubated at 60 °C for 3min and cooled on ice
afterwards. The concentration of the total NAD and NADH were
calculated using the NADH standard curve. The NAD+/NADH
ratio was estimated by subtracting NADH concentration from the
total NAD and dividing by NADH. Each experiment was normal-
ized to the median of the control sample results. The assay was
repeated three times for three different NESC passages.

Constraint-based metabolic modeling. For each IPD patient-
derived and each control NESC line, a separate metabolic model
(IPD1, IPD2, IPD3 and CTRL1, CTRL2, CTRL3) was generated.
Model extraction was performed using the XomicsToModel
pipeline28 within the COBRA Toolbox v3.466 on MATLAB
version 2021b.

Context-specific models were extracted using:

1. The thermodynamic, stoichiometrically and flux consistent
subset of Recon 3D as a generic model, a genome-scale
model for human metabolism.

2. Context-specific data from transcriptomic and cell culture
data. Normalized counts to Transcripts Per Kilobase
Million (TPM) were transformed to log2 scale. The genes
above a selected threshold were considered active and
included in the model. Additionally, cell culture data
provided the uptakes for each of the models based on Eq. 1
where cell DW for a single cell was calculated considering
that the total protein fraction within the dopaminergic
neurons is 55.93%67 and protein concentration in each
NESC line was determined using BCA kit (ThermoFisher).

uptake ¼ metabolite concentration ðμmol=LÞ´media volume ðLÞ
cell dry weight gDW

� �
´ protein concentration ´ interval ðhrÞ

ð1Þ
3. Literature curation on dopaminergic neuron metabolism

including dopamine metabolism, mitochondrial and central
carbon metabolism, biomass precursors and media meta-
bolites, presented in ref. 29 for setting reaction rates, and
identifying active and inactive reactions, metabolites
and genes. The literature curation used in ref. 29 was
modified by excluding genes whose expression in the brain
was referred only to animal models.

4. Same XomicsToModel parameters were used for the
generation of the iDopaNeuro model29 including thermo-
Kernel as the tissue-specific solver; at least one active
reaction per active gene as the method includes reactions
corresponding to active genes, two TPM mapped reads as
the transcriptomic threshold, below which genes were

designated as inactive, closing the ion exchange and
prioritize experimental data over literature curation.

Flux distribution was determined by eFBA simultaneously
maximizing the entropy of forward and reverse flux with the
objective shown in Eq. (2) using the Mosek version 9.3.20
entropic programming solver.

Ψv ¼ vTf lnvf þ vTr lnvr ð2Þ
Where Ψv represent the objective, v the fluxes in

μmol=gDW=hr and the subindices f and r indicate forward and
reverse, respectively. The fold change was calculated between
shared reactions in all models based on Eq. (3)

fold change ¼ reaction flux � control mean flux
control mean flux

ð3Þ

Data integration analysis. Experimental datasets of TPM nor-
malized RNA expression, polar-phase and non-polar-phase
metabolites from untargeted GC-MC analysis and mitochon-
drial phenotypes from Seahorse mitochondrial metabolism assay
were integrated using Data Integration Analysis for Biomarker
discovery using latent components (DIABLO)68 within the R
software (version 4.0.2.). DIABLO aims at using combined
metabolomic, transcriptomic and phenotypic data to separate
healthy from IPD NESCs. The separation between sample groups
was assessed using the correlation of the top 50 genes with the top
10 metabolites per dataset and 6 mitochondrial phenotypes from
the first component of PLS-DA68. Heatmap visualization was
used to demonstrate the top feature (gene, metabolite and
mitochondrial phenotype) expression profile responsible for
cluster separation between conditions. Pearson correlations
(abs(r) = 0.9) between features were further visualized in a circus
plot. Features with the highest correlation degree (abs(r) = 0.95)
are represented as a network using Cytoscape (version 3.8.2.).

Statistics and reproducibility. All experiments were performed
with all three cell lines per condition representing biologically
independent samples. All experiments were independently repe-
ated three times using different cell passages. Except for RNA
sequencing and metabolomics, which were repeated once. For
statistical analysis, GraphPad Prism version 9 was used. Data
were tested for outliers with the ROUT method (Q= 1%) and for
normality with the Shapiro-Wilk test. For data of non-normal
distribution statistical significance was determined by a two-tailed
non-parametric Mann-Whitney test. For data of normal dis-
tribution, statistical significance was determined by unpaired two-
tailed t-test if not stated differently. Significance asterisks repre-
sent *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error
bars represent mean + SD.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All related data supporting the findings of this study are publicly available at https://doi.
org/10.17881/v8jg-pw83. RNA sequencing data are deposited to the Gene Expression
Omnibus database under accession number: GSE207088. Metabolomics data are
deposited to the EMBL-EBI MetaboLights database with the identifier MTBLS7740.

Code availability
All custom Matlab code for metabolic model generation and R scripts for data analysis
and visualization are available on GitHub: https://gitlab.lcsb.uni.lu/dvb/zagare_2022.
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