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Comparative analysis of syngeneic mouse models
of high-grade serous ovarian cancer
David P. Cook 1,2✉, Kristianne J. C. Galpin 1,2, Galaxia M. Rodriguez1,2, Noor Shakfa 3,

Juliette Wilson-Sanchez3, Maryam Echaibi1,2, Madison Pereira 4, Kathy Matuszewska4, Jacob Haagsma5,

Humaira Murshed1,2, Alison O. Cudmore1,2, Elizabeth MacDonald1, Alicia Tone6, Trevor G. Shepherd5,

James J. Petrik4, Madhuri Koti3 & Barbara C. Vanderhyden 1,2

Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical

models that recapitulate human disease are critical to develop new therapeutic approaches.

Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of

non-malignant cell types but have expanded in number, varying in the cell type of origin,

method for transformation, and ultimately, the properties of the tumours they produce. Here

we have performed a comparative analysis of high-grade serous ovarian cancer models based

on transcriptomic profiling of 22 cell line models, and intrabursal and intraperitoneal tumours

from 12. Among cell lines, we identify distinct signalling activity, such as elevated inflam-

matory signalling in STOSE and OVE16 models, and MAPK/ERK signalling in ID8 and OVE4

models; metabolic differences, such as reduced glycolysis-associated expression in several

engineered ID8 subclones; and relevant functional properties, including differences in EMT

activation, PD-L1 and MHC class I expression, and predicted chemosensitivity. Among

tumour samples, we observe increased variability and stromal content among intrabursal

tumours. Finally, we predict differences in the microenvironment of ID8 models engineered

with clinically relevant mutations. We anticipate that this work will serve as a valuable

resource, providing new insight to help select models for specific experimental objectives.
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Approximately 1% of North Americans born with ovaries
will lose their lives to ovarian cancer. Despite decades of
research, the standard treatment for many of these indi-

viduals remains unchanged. The discovery of synthetic lethality
upon exposure of homologous recombination-deficient (HRD)
malignant cells to PARP inhibition provided a targeted therapy
for approximately 50% of patients with high-grade serous ovarian
cancer (HGSOC)—the most common and most lethal form of
ovarian cancer1–3. However, many patients with HRD HGSOC
fail to respond to this treatment or develop resistance following
prolonged treatment4. Developing targeted therapies for the
remaining 50% of patients has been challenging due to both the
phenotypic and genetic diversity of malignant populations5,6.
This has put an increased demand on preclinical models to
faithfully recapitulate this complexity.

Preclinical models for HGSOC are fortunately abundant. Human-
derived models sample genetic diversity of the disease7,8 but are
incapable of being used to model tumours comprising the complete
repertoire of non-malignant stromal cells. Successful culture of
tumour explants can maintain malignant-stromal interactions ex vivo,
but these models are not amenable to long-term propagation9,10.
Establishing patient-derived xenografts in humanised mouse models
with adoptive transfer of autologous leucocytes restores components
of stromal interactions11, but it is unclear how accurately these models
mirror the progression and therapy response of the native tumour.
Thus, human-derived models may be ideal for cell autonomous
properties of the malignant population but are limited in their ability
to model cancer progression and the complex interactions within the
tumour microenvironment (TME).

Syngeneic mouse models are powerful resources that allow for
the generation of tumours in immunocompetent mice. Their
ability to model the genetics of human disease is limited, but gene
editing strategies can be used to engineer clinically relevant
mutations, such as the nearly ubiquitous TP53 mutation observed
in 96% of HGSOC tumours1. However, the complex genomic
rearrangements observed in HGSOC have been more challenging
to model. Despite this limitation, orthotopic tumours can be
generated from these models with histological features similar to
human disease, making them a prime resource for studying both
the evolution of a complex TME within the ovary and the testing
of therapeutics that depend on interactions within it.

Various syngeneic models of HGSOC have been developed, but
the strategies to establish them—the cell type of origin, the strategy
for malignant transformation, and the engineering of relevant
mutations—have varied. Differences in the experimental progres-
sion of these models have been reported, including differences in
growth rate, TME composition, and sensitivity to treatment12–16.
Thus, there is a need to comprehensively compare these models in
order to understand their inherent differences. In this study, we
have performed transcriptomic profiling of 22 syngeneic models, as
well as tumours derived from select models. We evaluate inherent
differences associated with cell type of origin, the phenotypic
divergence associated with spontaneous transformation from
prolonged in vitro culture, and the impact of engineering clinically
relevant mutations. We explore how these phenotypes give rise to
tumours with unique TMEs, such as intrabursal STOSE tumours
with low stromal content or the lymphocyte-rich ID8-Trp53−/−

model. Together, this work provides insight into the properties of
diverse syngeneic models that can inform the selection of appro-
priate models for subsequent research and therapeutic testing.

Results
Transcriptomic profiling of syngeneic mouse models of high-
grade serous ovarian cancer. To develop a resource of tran-
scriptomic data that could provide further insight into models of

HGSOC, we performed RNA-seq on a collection of mouse
ovarian cancer cell lines (Fig. 1a). This collection comprises
models from both oviductal (OVE/MOE17) and ovarian surface
epithelium (OSE), spontaneously transformed (STOSE18 and
ID819) models, secondary lines derived from ascites, and deri-
vative lines engineered with clinically relevant mutations in
tumour suppressor genes or constitutive activation of
oncogenes20–22. For select models, we also sequenced RNA from
tumours derived from either intrabursal (IB) or intraperitoneal
(IP) injection of the cells, allowing us to evaluate how properties
of the models and TME may affect features of the resultant
tumours (Fig. 1a). All evaluated models were initially derived
from primary cultures of non-tumourigenic ovarian or oviductal
epithelium. Tumorigenicity was acquired spontaneously through
long-term propagation (STOSE and ID8) or repression of the
tumour suppressors Trp53 (OVE4 and OVE16 derivatives) or
Pten (MOE).

Across all models, we found transcriptional profiles of
biological replicates (n= 3–5/model) were strongly correlated
(Fig. 1b). Unsurprisingly, bulk profiles from tumour samples
shared little similarity to those of pure cell lines (Fig. 1c). They
did, interestingly, cluster according to whether they were
generated through IP or IB injection of cells, likely reflecting
inherent differences in TMEs of these models. In general, IB
tumours were more variable, even among replicates (Fig. 1b). To
evaluate differences in the TME between these two tumour sites,
we used CIBERSORTx23 to decompose the bulk RNA-seq profiles
and predict the relative proportions of malignant and non-
malignant cell types. The inferred contribution of non-malignant
stroma to IB tumours was higher than in IP tumours in all
models except STOSE IB tumours, which had notably high
malignant purity (Fig. 1d). As such, differences that emerge in
each tumour’s microenvironment during its development will
have a greater impact on the bulk profiles, contributing to the
increased variability among IB samples.

Cell line models exhibit distinct signalling, metabolic, and
functional properties. Principal component analysis (PCA) of
the cell line samples highlighted the impact of the models’ cell of
origin, with the first principal component (PC) separating OSE-
and OVE-derived models (Fig. 2a). Despite factors such as long-
term in vitro culture and genetic manipulation, an imprint of the
cells’ original identity persisted in culture: various genes uniquely
associated with OSE and OVE identity were among the top loa-
ded genes for PC1, including Pax8 and Krt7 in OVE lines and
Krt19 and Amhr2 in OSE-derived lines (Fig. 2b). This distinction
based on cell of-origin has also been previously observed in both
engineered organoid models from OSE and OVE tissue24 and
genetically engineered mouse models of HGSOC25, suggesting
that although models from both tissues can form tumours with
HGSOC characteristics, phenotypic differences of the malignant
compartment exist. We performed gene set enrichment analysis
(GSEA) on PC1 loading-ranked genes to identify such properties.
Consistent with their cell of origin, OVE lines appear more dif-
ferentiated, with elevated expression of epithelial signatures and
MAPK/ERK signalling (Fig. 2c)26. OSE-derived lines, however,
were associated with a more mesenchymal phenotype (Fig. 2c).

To further explore biological properties differing among the
various models, we collected transcriptional signatures associated
with multiple signalling pathways, biological function, and
metabolic processes (Supplementary Data 2)27–32. We calculated
rank-based signature scores for each gene set and compared the
relative activity between models (Fig. 2d). This revealed features
that are particularly relevant for the selection of appropriate
models for preclinical studies. For example, the ID8 models had
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higher proliferative activity (E2F targets), with elevated oxidative
phosphorylation activity and MTORC1 signalling, but they lacked
activity of various cytokine-associated pathways (TGFb, TNFa,
NFkB). These features may contribute to a predicted increase in
sensitivity to chemotherapy, but these cells also had reduced
expression of MHC class I components and expressed higher
levels of the immunosuppressive factor PD-L1, which may predict
poorer outcomes and/or decreased sensitivity to immunotherapy.
In contrast, JAK-STAT, TGFb, and TNF signalling are elevated in
OVE16 and STOSE cell lines, which may be ideal to model
tumours with high levels of inflammation and chemoresistance
(Fig. 2d). While these inferences are strictly based on expression
levels of relevant genes, the predicted decrease in chemosensitiv-
ity of the MOE (originally derived from OVE4) cell lines relative
to ID8 lines is consistent with survival data from carboplatin-
treated IP tumours (Fig. 2e). These findings are also in line with
previous work demonstrating that the ID8-Trp53−/−; Brca2−/−

model is more sensitive to chemotherapy than ID8-Trp53−/−

tumours21.

TP53R175H partially restores TP53 function and activates sev-
eral novel pathways. We next examined the impact of nonsense
or the common R175H missense mutations on the transcriptional
profiles of several models. All Trp53-null models were generated
by targeting the endogenous locus with CRISPR-Cas9. Trp53-null
OVE4 and OVE16 cells were additionally transduced with lenti-
virus carrying the human TP53R175H. We first applied PROGENy
to infer the activity of p53 signalling based on the expression of
perturbation-responsive genes27. As expected, relative p53 activity
was reduced in all models with null mutations (Fig. 3a).

Transcriptional changes associated with null mutations, however,
were quite variable among models, with many unique effects in
each line (Fig. 3b). For example, only 25% of downregulated
genes were shared between the two OVE models, and genes
upregulated in ID8 cells had a larger overlap with those down-
regulated in OVE cells than upregulated (Fig. 3b). Several genes
were implicated in all three models with null mutations, however.
Only Map1a, Rcn3, and Prr5l were upregulated in all three
models, whereas 24 genes were downregulated in all three,
including Ngf, Cdkn1a, Areg, Tspan7, Itgb6, and Cxcl17 (Fig. 3c,
d).

Hoadley et al.33 previously examined p53 signalling activity in
human tumours harbouring TP53 missense mutations and, using
the PARADIGM method to infer signalling activity, found that
the majority of missense mutations in HGSOC result in decreased
activity relative to several wild-type tumours. In contrast, we
observed that expression of TP53R175H in Trp53-null OVE4/16
cells restored the inferred p53 activity (Fig. 3a). As this may
reflect differences in the gene signatures and methods for activity
inference, we next evaluated the extent to which TP53R175H

restored effects caused by disrupting the endogenous Trp53 locus.
In both OVE4 and OVE16, TP53R175H recovered the expression
of a subset of the genes repressed following Trp53 deletion
(Fig. 3e, f). Just as Trp53 deletion has unique effects on the
various lines, the specific genes recovered by TP53R175H varied
between lines. OVE4 cells reactivated the expression of various
genes involved in damage responses (Fig. 3e), which may relate to
the previously observed relationship between the R175H muta-
tion and apoptosis signalling in these cells34. While the expression
of mutant p53 had minimal novel effects (ie. expression changes
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Fig. 1 Transcriptional profiling of diverse syngeneic mouse models of HGSOC. a Schematic of the study design. RNA-seq was performed on all listed
models and 3–5 replicates were included for each model. b Comparison of Spearman correlation coefficients of transcriptional profiles both within and
between models for cell lines, IB tumours, and IP tumours. Expression profiles of biological replicates (n= 3–5 per model) were averaged prior to
dimensionality reduction. c tSNE embedding of the replicated-averaged transcriptional profile of each model. d Tumour purity estimates from IB and IP
tumours based on the estimated proportion of malignant cells predicted by deconvolving bulk RNA-seq profiles with CIBERSORTx. Cell type profiles used
from deconvolution were derived from scRNA-seq data of STOSE and ID8 tumours13.
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of genes unaffected by Trp53 deletion in parental cells) in OVE4
cells, mutant expression activated various metabolic and
immune-related genes that were unaffected by deletion of wild-
type Trp53 (Fig. 3e). In both models, TP53R175H failed to recover
the expression of several hundred genes repressed following the
deletion of the endogenous Trp53 (Fig. 3e, f). While many of the
specific genes varied, failure to re-activate several features of
epithelial differentiation was common, such as the maintained
suppression of various cell adhesion genes (e.g., Cldn1, Cldn4,
Cdh1) or genes associated with EGF signalling (Fig. 3e, f). This
putative dedifferentiation may relate to the various phenotypic
properties of cells with TP53R175H mutations, including enhanced
metastatic capacity, stemness, and drug resistance35.

Spontaneous transformation leads to highly divergent pheno-
types in STOSE and ID8 models. The STOSE and ID8 models of
HGSOC were both derived from prolonged culture of OSE cells
that led to progressive aneuploidy and, ultimately, the capacity to
form malignant tumours18,19 (Fig. 4a). It has been demonstrated
that these models produce tumours with distinct
microenvironments13, but beyond each model having a unique
constellation of genomic aberrations, the phenotypic differences
of these lines have yet to be characterised. To begin to address
this, we evaluated genes differentially expressed in the STOSE and
ID8 cell lines. Despite being derived from the same cell type—
albeit different mouse strain—we observed massive divergence in

their phenotypes, with 5115 differentially expressed genes
(p < 0.05; |logFC| > 1) (Fig. 4b). We evaluated GO terms enriched
in the genes associated with each line and found that STOSE were
associated with mesenchymal [extracellular matrix (ECM) orga-
nisation, migration] and immunoregulatory terms, whereas ID8
cells were primarily characterised by higher expression of various
metabolic pathway components (Fig. 4c, Supplementary Fig. 1a).

Given the challenges of interpreting gene set over-
representation with such disparate expression profiles, we
evaluated several specific properties of these cells. First, we
inferred signalling and transcription factor activity in the two
models. Consistent with the mesenchymal and immunoregula-
tory GO term enrichment, conserved targets of many signalling
pathways were preferentially activated in STOSE, including
TGFb, TNFa, NFkB, and MAPK signalling (Fig. 4d). Supporting
the enriched GO terms and pathway activity inference, we found
that STOSE cells also had increased levels of phosphorylated
ERK, reflecting the higher activity of MAPK signalling (Supple-
mentary Fig. 1b). In a scratch wound assay, STOSE cells are also
more migratory than ID8 (Supplementary Fig. 1c). Related
transcription factors (e.g., Smad3/4, Stat3, Twist1, Zeb1) were also
predicted to have higher activity in STOSE (Fig. 4e). Evidence of
signalling patterns specific to ID8 cells was limited. Wnt targets
were more highly expressed, along with transcriptional activity of
the epithelium-associated transcription factors Foxa1 and Foxo1,
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and Srebf2, which controls cholesterol homoeostasis, in line with
metabolic changes we observed more globally (Fig. 4e).

The observation of mesenchymal properties in STOSE cells led
us to evaluate the expression of ECM components in the two
models (Fig. 4f). Many components were reliably detected but
were not differentially expressed between the two models.
However, STOSE cells had elevated expression of a variety of
collagens (Col1a1, Col5a3, Col4a4, Col3a1, and others) and ECM
glycoproteins, including the canonical mesenchymal marker Fn1.
Notably fewer ECM components were preferentially expressed in
ID8 cells (e.g., Col11a1, Col17a1, Igfbp7, Fbln2) (Fig. 4f).

To further explore differences in the expression of immunor-
egulatory factors, we evaluated the expression of cytokines,
chemokines, and their receptors in the two models (Fig. 4g).
STOSE cells expressed higher levels of diverse chemokines and
cytokines, including Il6, Il18, Tgfb1, Ccl7, and Csf1. Similar to
ECM components, fewer factors were more dominantly expressed
in ID8 cells. They did, however, express higher levels of Il15,
Cxcl16, and various cytokine/chemokine receptors (Ccr7, Ccr4,
and Il3ra) (Fig. 4g). We predicted that the imbalanced expression
of immunoregulatory factors may lead to differences in the
immune infiltration. Using the estimated cell-type proportions
from the deconvolution of bulk RNA-seq from the tumours of

these cells, we found that intrabursal injection of STOSE cells
yielded higher purity tumours with a reduced proportion of
immune cell infiltration (Fig. 1d). Among the non-epithelial
fraction in both models, macrophages were more prevalent in
STOSE (Fig. 4h), consistent with their elevated chemokine
expression. These inferences about the TME of STOSE tumours
and their more immunoregulatory phenotype compared to ID8
cells also match the recent flow cytometry-based immunophe-
notyping and cytokine profiling of these models13.

Secondary cell lines derived from ascites stably activate
mesenchymal programs. Collecting metastatic cells from mouse
tumour models for the purpose of deriving aggressive sub-lines is
a common strategy. Tumours from these sub-lines often progress
more rapidly and are more metastatic than parental models. In
our cohort of samples, we have included ascites-derived lines
from both STOSE and ID8 intrabursal tumours to evaluate how
they deviate from their parental lines and to determine if inde-
pendent lines derived from ascites acquire common traits
(Fig. 5a).

We used PCA to evaluate the relationship between ascites lines
and their parental cell lines. For both STOSE and ID8 lines, the
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first PC reflected a differentiation axis that separated ascites-
derived lines from the parental model (Fig. 5b, c). Ascites lines
from the ID8 model (28-2, 30-2) lose activity in biosynthetic
pathways (e.g., cholesterol, ribogenesis, and isoprenoid path-
ways), activating canonical EMT features, including signatures
associated with ECM organisation, cytoskeleton remodelling, and
TGFb signalling (Fig. 5d, Supplementary Fig. 2a). Notably, there
was no particularly striking reduction in epithelial features in
these ascites lines, consistent with a hybrid epithelial-
mesenchymal phenotype26, 36. The activation of EMT features
in STOSE ascites was less evident, perhaps due to the more-
mesenchymal features of the parental lines, but a suppression of
genes associated with epithelial morphogenesis was a prominent
trend (Fig. 5e). Greenaway et al.37 previously demonstrated that
the ID8-derived ascites lines have an enhanced rate of migration
compared to ID8 cells. Using a scratch wound assay, we
demonstrated that the STOSE-A2 line also migrates more quickly
than the parental STOSE line and produces abundant ascites in
orthotopic tumour models (Supplementary Fig. 2b, c). Interest-
ingly, STOSE-A3/4 did not migrate faster than STOSE cells,
though we note that their position along the first principal
component was less extreme than the A2 line (Fig. 5c), which
may reflect a more epithelial phenotype. Despite resulting in
more aggressive tumours, markers of proliferation were less
abundant in ascites lines from both models (E2F Targets; Fig. 2d).

Engineering mutations in tumour suppressor genes produce
novel phenotypes that affect the TME. Despite modelling var-
ious histological and molecular features of HGSOC, STOSE and
ID8 models lack mutations commonly observed in the disease,
such as Trp53, which is mutated in 96% of HGSOC cases1. To

better recapitulate the genetics of the disease, various clinically
relevant mutations have been engineered into the ID8 model
using the CRISPR-Cas9 system20,21. In our cohort of samples, we
have included the ID8-Trp53−/− model along with four lines
with a second inactivating mutation in either Brca1 (23% of
HGSOC cases), Brca2 (11%), Nf1 (12%), or Pten (7%)1 (Fig. 6a).

PCA of the cell line gene expression profiles highlighted the
phenotypic divergence following the introduction of tumour
suppressor mutations (Fig. 6b). Similar to the analysis of ascites-
derived lines, the first PC seemed to reflect an axis of
differentiation, with control, Trp53−/−, and Trp53−/−;Nf1−/−
ID8 cells having evidence of elevated cholesterol biosynthesis and
fructose 6-phosphate metabolism. The expression of these factors
is suppressed in the Trp53−/−;Pten−/−, Trp53−/−;Brca1−/−,
and Trp53−/−;Brca2−/− cells, which preferentially activate
mesenchymal signatures (Fig. 6b). Among these less differen-
tiated lines, we found that the Trp53−/−;Brca1−/− model
expressed higher levels of monocyte chemotaxis factors whereas
the Trp53−/−;Pten−/− model expressed inhibitors of chemo-
taxis, along with various ECM remodelling factors (collagen
organisation, positive regulation of angiogenesis) (Fig. 6b).

We next evaluated whether these features may lead to distinct
features in the TME of each model. Evaluating the bulk RNA-seq
profile from whole tumour lysate for each model (Supplementary
Fig. 3), we identified genes differentially expressed among the
models and clustered genes based on their expression across
models. Many clusters contained markers highly specific for non-
malignant cell types, reflecting differences in the relative
abundance of those cell types across models (Fig. 6c). Generic
immune/defence signatures—likely associated with total immune
infiltration—were notably deficient in the Pten−/− models
(Fig. 6c). The Brca1−/− cell line expressed various monocyte
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Fig. 4 Divergence of spontaneously transformed ovarian surface epithelium. a Schematic demonstrating the establishment of two spontaneously
transformed models of HGSOC (STOSE and ID8). b Differentially expressed genes between STOSE and ID8 cells. The x-axis reflects the average
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recruitment factors in vitro and the Brca1−/− and Brca2−/−

tumours had evidence of antigen processing expression in their
bulk RNA profiles (Fig. 6c). Increased chemokine expression and
macrophage infiltration in BRCA-mutant tumours is consistent
with recent observations following the addition of a Brca1−/−

mutation to an OVE-derived model engineered with Trp53R172H,
Pten−/−, Nf1−/−, and MycOE mutations15. Pten−/− tumours, and
to a lesser extent the Nf1−/− model, had increased expression of
angiogenic signatures, further matching in vitro expression
patterns (Fig. 6c). The absence of expression patterns suggestive
of immune infiltration in Pten−/− tumours also supports the
observation that human HGSOC tumours with intact PTEN have
an increased abundance of intraepithelial M2-like macrophages38.
Finally, the Nf1−/− model had a unique enrichment of diverse
immunoglobulins, reflecting an abundance of B cells (Fig. 6c).

Discussion
Preclinical models are an invaluable resource to further our
understanding of ovarian cancer, enabling the development of
strategies to improve patient care. The number of ovarian cancer
models is expanding and it has become increasingly unclear
which models are most appropriate for specific experimental
objectives. Here, we have focused on cataloguing and comparing
transcriptomic data from a cohort of syngeneic mouse models
of HGSOC.

Just as the molecular features of human tumours are diverse,
these models displayed remarkable variation. While there has

been a great focus on deriving models with mutations that
recapitulate the genetics of human HGSOC, the lack of recurrent
mutations (beyond Tp53) and the diverse copy number altera-
tions observed in human tumours make this goal intractable and
perhaps irrelevant. This also raises the question of whether it’s
feasible to develop therapies that are selective to the genetics of
the ~50% of tumours that are HR proficient. Effort in this
direction is certainly critical and it is possible that a collection of
targeted therapies could be utilised in conjunction with genetic
screening to deliver personalised treatments to these patients.
However, the challenges introduced by these complex genetics
could be curtailed by focusing on developing therapeutics that are
not dependent on them. For example, perturbations to signalling
pathways may be used to sensitise chemoresistant phenotypes39,
or immunotherapies may be delivered to rejuvenate immune
activity within the TME. Certainly, there has been an increased
effort in this direction over the recent years. Therefore, there is an
urgency to prioritise models based on their ability to recapitulate
the general phenotypes and structural properties of human dis-
ease rather than the specific genetics.

OSE-derived models have received criticism for not reflecting
the likely cell of origin for the majority of HGSOC. While this
criticism is valid, it should not discount the information that
these models have provided or the applicability of these models in
future research. Both STOSE and ID8 are capable of producing
ovarian tumours with histological features similar to human
HGSOC18,19, and so they—like all models—exhibit various
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features that are consistent with human disease and others that
are not. Importantly, they produce tumours with distinct prop-
erties (e.g., the characteristically low stromal content of STOSE IB
tumours), providing an opportunity to test therapeutics against
diverse TMEs similar to those seen in human tumours. Similarly,
although clinically relevant mutations have been engineered into
the ID8 model, it is unclear if the phenotypic differences are
strictly related to specific mutations that have been engineered or
if they reflect divergence that occurred throughout the engi-
neering process. It is perhaps more relevant that this has pro-
duced distinct sub-models with unique TME properties, such
as the vascular rich Pten−/− model or the macrophage-rich
Brca1/2−/− models.

Given the importance of recapitulating the TME of human
disease, the experimental strategy for generating tumours is parti-
cularly relevant. We demonstrated that orthotopic tumours gen-
erated from intrabursal injection have more abundant tumour
stroma than solid masses collected following intraperitoneal
injection. This may simply be due to differences in tissue properties
(e.g., stiffness, adiposity, etc.) between the ovary and sites within the
peritoneal cavity (e.g., omentum). IP injection is experimentally
convenient and often justified as a model of metastatic disease, but
it is unclear if the resultant lesions faithfully recapitulate those
emerging from the natural metastatic cascade from the ovary to
these sites. Specifically, IP injection fails to impose the selective
bottleneck that enriches for cells capable of leaving the adnexa.
Rather, it gives the entire malignant population the opportunity to
seed metastases, including cells that may not be capable of dis-
semination from a primary tumour. In our analysis, we demon-
strated that ascites-derived cells are quite distinct from the parental
population. It is unclear if this suggests that phenotypic selection is
critical to metastatic dissemination or if the peritoneal cavity
simply promotes phenotypic reprogramming.

While we present a relatively large cohort of syngeneic models,
this list is by no means exhaustive and further work is required to

examine additional models. The addition of other data modalities
(e.g., epigenetic profiling, deeper genetic characterisation, scRNA-
seq of tumour models, etc.) would also provide valuable infor-
mation about these models. Together, these initial comparisons
have provided insight into phenotypic differences between the
various models that ultimately affect the properties and pro-
gression of the tumours they make. Further validation of specific
functional properties is certainly critical; however, we anticipate
that this data will be particularly useful to aid in the selection of
appropriate models for specific experimental aims.

Methods
Cell lines. Unmodified ID8 cells were provided by Kathy Roby19.
ID8-Trp53−/− F3, ID8-Trp53−/−Brca1−/−, ID8-Trp53−/−Brca2−/−,
ID8-Trp53−/−Nf1−/−, ID8-Trp53−/−Pten−/−, were generated by
CRISPR-Cas9 mediated knockout, and ID8-C3 (CRISPR control)
were generously provided by Dr. Iain McNeish (Imperial College
London)20,21. ID8-WT and its derivatives were maintained in Dul-
becco’s Modified Eagle Medium (DMEM, Corning)+ 4% fetal bovine
serum (FBS, Hyclone) and 0.01mg/mL insulin-transferrin-sodium-
selenite solution (ITSS; Roche) as previously described20,21. As pre-
viously described37, ID8 ascites-derived lines (28-2, 30-2) were gen-
erated by culturing adherent cells from ascites formed in tumour-
bearing mice approximately 60 days following orthotopic injection of
parental ID8 cells. Cells were passaged 4–6 times to stabilise in vitro
before being used for subsequent experiments.

STOSE cells were generated previously18 and STOSE ascites-
derived (STOSE-A2, A3, A4) cells were derived from ascites
collected from three STOSE-tumour-bearing mice at the endpoint
following intrabursal injection (approximately 74 days). STOSE-
A cells were cultured for 20 passages to stabilise in vitro before
being used for subsequent experiments. STOSE and STOSE-A cell
lines were maintained in a-MEM (minimal essential media) + 4%
FBS and ITSS and 2 μg/mL epithelial growth factor (EGF, R&D).
OVE4 and OVE16 were oviductal epithelial cell lines generated
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previously17. OVE4 were modified by Dr. Joanna Burdette
(University of Illinois, Chicago) to generate MOE-PtenshRNA,
MOE-PtenshRNA:TP53R273H, and MOE-PtenshRNAKRASG12V, and
were maintained in a-MEM+ 4% FBS, ITSS, 2 μg/mL EGF,
and 18.2 ng/mL β-estradiol as previously described22. OVE4 and
OVE16 with Trp53−/− or TP53R175H modifications were
previously described34. Briefly, OVE4 and OVE16 cells were
transfected with two pSp-Cas9 vectors each harbouring
unique sgRNAs targeting the wild Trp53 locus. Effective knockout
was confirmed by both Sanger sequencing and Western blot34.
The TP53R175H modification was added to Trp53−/− cells by
transducing lentivirus containing an expression vector for human
TP53R175H. Cells were incubated at 37 °C with 5% carbon dioxide.

To ensure the validity of cell lines, we employ several practices.
First, the capacity to form tumours in immune-competent mice
ensures that the cells are of the appropriate strain. Engineered
modifications can be directly assessed by genotyping or Western
blot. Finally, only low passage cells(split fewer than approximately
10 times following their receipt) are used for experiments,
reducing the effects of phenotypic or genetic drift.

Generation of tumours with syngeneic models. Animal
experiments to generate orthotopic tumours were carried out
using protocols approved by the Animal Care Committee at the
University of Ottawa and conforming to the standards defined by
the Canadian Council on Animal Care (CCAC). FVB/N mice (for
STOSE and MOE cell lines) were acquired from Charles River
Laboratories and C57BL/6 mice (for ID8 and derivatives) were
purchased from The Jackson Laboratory. Orthotopic intrabursal
(IB) tumours were generated by injecting 1.5 × 105 cells (ID8-
WT, ID8-C3,ID8-p53−/−, STOSE, MOE-PTEN/p53, or MOE-
PTEN/KRAS) under the ovarian bursa in 2 μL phosphate-
buffered saline (PBS) as previously described18. Primary
tumours were collected when mice reached humane endpoint,
snap-frozen in liquid nitrogen, and stored at −80 °C until RNA
extraction.

Procedures to generate IP tumours were approved by the
University Animal Care Committee (UACC) at Queen’s Uni-
versity and the CCAC. The various modified ID8 cell lines
(5–6 × 106, n= 5–10 per genotype) in 350 μL of PBS were
transplanted via intraperitoneal injections into C57BL/6 female
mice aged 8 to 10 weeks (Charles River Laboratories). Given the
diffuse spread of the tumours, differences associated with the
anatomic site were controlled for by selecting masses from the
uterine horn for all models. Small miliary masses throughout the
peritoneal cavity were not isolated. Adipose tissue was removed
prior to dissociation.

All mice were maintained in specific pathogen-free conditions.
Mice were left untreated until they reached their endpoint, which
for IP tumours was deemed the point at which their abdominal
diameters were approximately 34 mm. The tumours were snap-
frozen in liquid nitrogen and stored at −80oC until RNA
extraction.

In vivo carboplatin sensitivity. Mice were injected intraper-
itoneally with 5 × 106 tumour cells resuspended in 100 μL PBS.
Then, after 25% of the median survival times for each murine
model (MOE-PtenshRNA;TP53R273H treated at day 24; ID8-
Trp53−/− at day 14; ID8-Trp53−/−;Brca2−/− at day 14), mice
received bi-weekly injections of carboplatin (Accord Healthcare
Inc; provided by The Ottawa Hospital Pharmacy) at 20 mg/kg per
mouse for a total of 4 weeks (8 doses). Control groups received
saline. Mice were followed up for survival assessment until they
reached humane endpoint.

Western blot. Cell suspensions were pelleted by centrifugation
(5 min at 400 × g) after being washed two times with phosphate-
buffered saline (PBS). They were then lysed with a master mix
made of RIPA buffer (ThermoFisher, 89901), protease inhibitor
(Sigma-Aldrich, P8340) and phosphatase inhibitor (Sigma-
Aldrich, P0044) on ice for 15 min, then centrifuged at 15,000 rpm
for 15 min at 4 °C. The supernatant was collected and quantified
using Bio-Rad Protein Assay Dye Reagent concentrate diluted in
water at a ratio of 1:5. A mixture of the concentrated protein,
water and loading buffer with β-mercaptoethanol was prepared
for each sample in order to have an equal amount of protein, and
was then boiled for 5 min. Samples were separated on a NuPage
4–12% Bis-Tris gel (ThermoFisher, NP0336BOX) and then
transferred into a PVDF membrane. After blocking using bovine
serum albumin (BSA) for 1 h, the membrane was probed for ERK
2 (1:2000, SC-154, SantaCruz) and phosphor-ERK (1:2000, SC-
7383, SantaCruz) antibodies overnight at 4 °C. The membrane
was washed in TBST and then incubated for 1 h at room tem-
perature in anti-mouse (1:10,000, ab6728, Abcam) and anti-rabbit
(1:10,000, 711-035-152, Jackson Immunoresearch) secondary
antibodies. The membrane was incubated for 1 h at room tem-
perature in the loading control α-Tubulin (1:1000, 2144S, Cell
Signaling). The relative abundance of protein was visualised using
clarity western ECL (1705061, Bio-Rad).

Quantitative reverse transcription polymerase chain reaction
(RT-qPCR). Cells were released from adherent cultures using
trypsin (0.05% trypsin, 0.53 mM EDTA) and washed with PBS
before lysis in RLT Plus Lysis buffer (Qiagen) RNA was extracted
according to manufacturer’s instructions with the RNeasy Plus
Mini Kit (Qiagen). RNA was then quantified, and cDNA was
prepared with LunaScript RT SuperMix Kit (NEB), using 1 μg of
RNA. Relative gene expression using primers (Invitrogen) specific
to the genes of interest (Supplementary Table 1) was subsequently
determined by qPCR using the SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad) on an Applied Biosystems 7500 Fast
Real-Time PCR instrument. Gene expression was calculated as
fold increase over untreated cells and normalised to the house-
keeping genes Ppia and Rplp0.

Migration. For migration assays, cells were plated at confluence
(8000 STOSE and ascites-derived cells or 4000 ID8 cells) in each
well of a 96-well plate (IncuCyte™ 96-Well ImageLock™ Plates,
Essen Bioscience). Identical scratch wounds were made in every
well using the IncuCyte WoundMaker (Essen BioScience, USA).
Images were taken every 2 h with the IncuCyte automated
monitoring system (Essen BioScience, USA), and IncuCyte
ZOOM software was used to calculate wound confluence.

RNA collection and library preparation. Total RNA was
extracted according to the manufacturer’s instructions with the
RNeasy Plus Mini Kit (Qiagen) for the majority of samples. IP
tumours collected from mice injected with ID8-Trp53−/−, ID8-
Trp53−/−; Brca1−/−, ID8-Trp53−/−; Brca2−/−, ID8-Trp53−/−;
Nf1−/−, and ID8-Trp53−/−; Pten−/− cells were isolated at end-
point using the total RNA Purification Kit (Norgen Biotek Cor-
poration, ON, Canada) as per the manufacturer’s instructions.

RNA-Seq libraries were generated from 250 ng of total RNA as
follows: mRNA enrichment was performed using the NEBNext
Poly(A) Magnetic Isolation Module (New England BioLabs).
cDNA synthesis was achieved with the NEBNext RNA First
Strand Synthesis and NEBNext Ultra Directional RNA Second
Strand Synthesis Modules (New England BioLabs). The remain-
ing steps of library preparation were done using and the NEBNext
Ultra II DNA Library Prep Kit for Illumina (New England
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BioLabs). Adaptors and PCR primers were purchased from New
England BioLabs.

The libraries were normalised and pooled and then denatured
in 0.02 N NaOH and neutralised using HT1 buffer. The pool was
loaded at 200pM on an Illumina NovaSeq S4 lane using Xp
protocol as per the manufacturer’s recommendations. The run
was performed for 2 × 100 cycles (paired-end mode). A phiX
library was used as a control and mixed with libraries at a 1%
level. Base calling was performed with RTA v3. Program
bcl2fastq2 v2.20 was then used to demultiplex samples and
generate fastq reads.

RNA-seq transcript quantification and processing. Pseudoa-
lignment and transcript quantification for each sample were
performed using Kallisto (v0.45.0)40 with the GRCm38 build of
the mouse genome. The R package tximport (v1.24.0) was used to
load transcript quantifications, converting to gene-level transcript
estimates. Principal component analysis (PCA) was performed on
zero-centred normalised counts from DESeq2’s variance stabi-
lising vst() transformation. For each independent PCA, only the
top 2000 variable genes were used as input. A t-distributed sto-
chastic neighbour embedding (tSNE) was generated for the whole
dataset using the top 10 principal components as input into the
Rtsne() function provided by the Rtsne R package (v0.16).

Differential gene expression. All differential gene expression
analysis was performed using DESeq2 (v1.36.0)41. To compare
STOSE and ID8 cell lines, the Wald test was used to compute p-
values and log fold change shrinkage was performed using the
apeglm estimator42. To evaluate differentially expressed genes
among more than two samples (e.g., the collection of modified
ID8 lines), a likelihood ratio test was used. Genes with a p-value
less than 0.05 and a standard deviation across all tested samples
of greater than 0.5 (effectively providing an effect size threshold)
were then clustered based on their relative expression levels
across samples.

GO Term over-representation analysis. Over-representation
analysis of GO terms among differentially expressed genes was
performed using the topGO (v.2.48.0) wrapper topGOtable()
provided in the pcaExplorer R package (v2.22.0)43. The elim
method implemented in topGO was used to reduce redundancy
in the list of enriched gene sets.

Gene set scoring and inference of signalling and transcription
factor activity. The R package singscore (v1.16.0)44 was used to
compute gene set activity scores for individual samples. Scores
reflect a rank-based statistic from genes comprising each set
similar to the Wilcoxon rank sum test. Relative scores between
samples were calculated by standardising scores across samples
with a Z-score transformation.

Signalling activity for STOSE and ID8 models was calculated
using the R package PROGENy (v1.18.0)27 based on the
package’s pretrained regression models of gene activity associated
with 14 different signalling pathways. The top 500 genes of each
model were used for calculating scores.

Transcription factor activity was inferred using the database of
transcription factor targets in the DoRothEA package (v1.8.0)45,
only including associations with a confidence level of “A” or “B”.
The viper method (v.1.30.0)46 was used to compute activity scores
for each individual sample. To compare activities between STOSE
and ID8 samples, a general linear model was used for each factor.
Only factors with a Benjamini–Hochberg-adjusted p-value of less
than 0.05 were used.

Bulk RNA-seq deconvolution using scRNA-seq. Cell type
deconvolution was performed using publicly available reference
scRNA-seq data of primary orthotopic tumours from both
STOSE and ID8 models13 (NCBI GEO Accession: GSE183368).
The annotated scRNA-seq data was first used to generate cell type
references with CIBERSORTx23, which was then used to decon-
volve the normalised (TPM) quantifications for each bulk RNA-
seq tumour sample using the default parameters. Predicted cell
type proportions were then compared between samples.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All RNA-seq data is available at the NCBI GEO Accession GSE242835. The source data
behind the graphs in the figures can be found in Supplementary Data 1.

Code availability
All code required to reproduce the analysis and figure production is available at https://
github.com/dpcook/rna_seq_ovcan47.
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