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Functional analysis of recurrent CDC20 promoter
variants in human melanoma
Paula M. Godoy1, Abimbola Oyedeji 2,3, Jacqueline L. Mudd 2,3, Vasilios A. Morikis4, Anna P. Zarov 1,

Gregory D. Longmore 3,4, Ryan C. Fields 2,3 & Charles K. Kaufman 1,3✉

Small nucleotide variants in non-coding regions of the genome can alter transcriptional

regulation, leading to changes in gene expression which can activate oncogenic gene reg-

ulatory networks. Melanoma is heavily burdened by non-coding variants, representing over

99% of total genetic variation, including the well-characterized TERT promoter mutation.

However, the compendium of regulatory non-coding variants is likely still functionally under-

characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions,

in melanoma containing putatively functional non-coding somatic variants that are located

within predicted melanoma-specific regulatory regions. We identified hundreds of statistically

significant hotspots, including the hotspot containing the TERT promoter variants, and

focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of

CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in

reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in

human A375 melanoma cell lines and observed decreased expression of CDC20, changes in

migration capabilities, increased growth of xenografts, and an altered transcriptional state

previously associated with a more proliferative and less migratory state. Overall, our analysis

prioritized several recurrent functional non-coding variants that, through downregulation of

CDC20, led to perturbation of key melanoma phenotypes.
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W ith the widespread availability of whole-genome
sequencing and fewer discoveries of novel functional
coding mutations, recent efforts have increasingly

focused on identification and characterization of variants in the
non-coding space of cancer genomes. Cis-regulatory variants
(CRV) modulate transcription by altering the regulatory landscape
of a gene, which in turn can lead to dysregulation of genes involved
in cancer-driving pathways. Identifying CRVs of interest is there-
fore, generally, a three-step process: (1) identification of variants by
whole-genome or targeted sequencing, (2) validation of variants
through reporter assays and/or precise genome editing, (3) and
characterization of the effect of the gene targeted by the CRV on
tumorigenesis or cancer cell biology. For example, TERT promoter
mutations were one of the earliest highly recurrent non-coding
mutations identified in melanoma and are remarkable due to both
a strong activating effect and prevalence in multiple cancers1–3.
Present in ~80% of cutaneous melanomas, the TERT promoter
mutation creates a novel ETS motif that leads to binding of
GABPA and de-repression of TERT4. The full extent of TERT’s
influence on tumorigenesis, particularly via this regulatory variant,
is still emerging, including its canonical role on telomere
maintenance3,5. Beyond TERT promoter variants, few other CRVs
have been identified and characterized in melanoma1,2,6–10. The
next most common mutations in cutaneous melanoma are coding
mutations in the MAPK pathway, predominantly BRAFV600E/K

and NRASQ61K, as well as loss of key tumor suppressors like TP53,
PTEN, and CDKN2A11,12, all with relatively clear canonical growth
regulatory and proliferative functions.

Taking a more global view of gene expression, numerous RNA-
sequencing studies, both from bulk and single-cell sources, have
detected distinct transcriptional states in various melanoma
populations13–16. For example, high levels of MITF are associated
with a more proliferative/melanocytic state, while high levels of AXL
are associated with increased invasive and drug resistant
capabilities13,15,17. Additionally, aspects of a neural crest transcrip-
tional program, present in the developmental precursors of mela-
nocytes, are frequently identified as distinct subpopulations within
tumors and are prominent in the first cells of melanoma13,15,18–22.
Aside from amplifications of MITF in 5-10% of melanomas, no
other recurrent protein coding mutations have been associated
with these distinct transcriptional subpopulations11,12, leading to
our hypothesis that CRVs could be a source of transcriptional
dysregulation.

Guided by the threefold process described above, we leveraged
whole genome sequencing of 183 melanomas from the Interna-
tional Cancer Genome Consortium and 69 melanoma-specific
chromatin functional datasets to identify recurrent non-coding
variants enriched in potentially functional enhancers/promoters.
We validated several variants in the CDC20 promoter which
decrease CDC20 promoter/enhancer-dependent reporter gene
expression. We went further to genome engineer a small (~10 bp)
and large (~90 bp) promoter indel using CRISPR/Cas9 at this
variant location in melanoma cell lines, which leads to decreased
CDC20 expression, and then characterize the potential effects of the
variant on in vitro and in vivo cell viability, migration, and global
gene expression changes.

Results
Putative regulatory regions in melanoma are enriched for
hotspot mutations. To identify recurrent non-coding mutations
in human melanoma, we used variants called from whole genome
sequencing (WGS) data from the International Cancer Genome
Consortium (ICGC), the largest collection of WGS for melanoma
to our knowledge, including 183 melanoma samples made up of
75 primary tumors, 93 metastases, and 15 human melanoma cell

lines, as exome sequencing does not include full promoters or
distal regulatory elements. The bulk of these tumors are cuta-
neous (140) but includes 35 acral and 8 mucosal melanomas. A
total of 20,894,255 substitutions and 96,467 indels were identified
from the ICGC Melanoma cohort12.

To refine our search space, we collated 69 previously published
ChIP-seq and ATAC-seq datasets that were specifically per-
formed on melanoma or melanocyte samples18,23–41 (Supple-
mental Data 1). We reasoned these regions of the genome are
more likely to bind transcription/chromatin factors and refer to
them as putative melanoma regulatory regions (pMRRs),
thousands of which have been functionally validated in a previous
report42. Genomic regions outside the pMRRs (red box, indicated
by the lack of peak, Fig. 1a) serve as an empirical null distribution
but still have large numbers of recurrent mutations.

pMRRs account for only ~12% of the genome and harbor
2,142,063 variants (~10% of total variants detected in the ICGC
cohort). Of these, 444,161 variants are merged into 118,741
hotspots (3 or more variants within 25 bp are merged). Our
empirical null distribution accounts for 5,478,131 variants within
1,462,992 hotspots. The remaining variants are isolated (i.e. not
within 25 bp of another variant) and thus were not designated as
hotspots.

All hotspots are also scored based on recurrence (donor score)
and the average predicted impact of all variants within a hotspot
as computed by the FunSeq2 algorithm, which weighs attributes
such as evolutionary conservation and likelihood of TF motif
creation/destruction (Funseq2 score, Fig. 1a’)43. Hotspots in
pMRRs have higher hotspot scores (product of donor score and
FunSeq2 score) than those in null regions (Fig. 1b). While donor
scores are 4.9-fold higher in hotspots within pMRRs than those in
null regions, FunSeq2 scores are 6.7-fold higher, drastically
reducing the hotspot scores in regions outside of pMRRs and
therefore potentially reducing false positives (Fig. 1c).

Promoter regions are enriched in statistically significant test
hotspots, while top-scoring null hotspots are commonly found in
intergenic regions (Fig. 1d). We identified 140 hotspots with
FDR-adjusted p-values < 2.2 x 10−16 encompassing 2,631 muta-
tions, notably including the known TERT promoter variant which
has the 13th highest hotspot score (Supplemental Data 2,
Supplemental Data 3).

In order to evaluate for enrichment of putative TF binding site
motifs, we used Homer analysis of pMRRs which identified
motifs for TFs known to play prominent roles in melanoma,
including SOX1018,44,45 (p-value= 1 × 10−472) and ETS family
factors46, as well the multifunctional chromatin regulator CTCF
(p-value= 1 × 10−6092, Supplemental Fig. 1a). However, pMRRs
that encompassed statistically significant hotspots are only
enriched in ETS motifs and are linked to a signature of UV
damage, as previously observed47 (Supplemental Fig. 1a). ETS
factor motifs are not enriched in the mutant sequences,
suggesting that most mutations break ETS transcription factor
motifs (Supplemental Fig. 1a). We found an almost identical
distribution of mutations around the canonical GGAA ETS
motif within the significant hotspots identified in our pipeline as
previously reported47 (Fig. 1e).

To focus our efforts on a candidate(s) among the top scoring
hotspots (i.e. those with scores higher than TERT, encompassing
thirteen candidates), we evaluated gene expression for the gene
most proximal to the hotspot between WT and mutant samples
(Supplemental Fig. 2). We only considered variants that were
present in at least three samples and observed statistically
significant (t-test p-value < 0.05) changes in expression between
WT and mutant variants in hotspots near CANX, CDC20, TERT,
DPH3, PES1, RPS27, SLC30A6, RPL13A, and HNRNPUL1
(Supplemental Fig. 2). To refine our focus, we also looked for
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consistent changes in gene expression for the gene nearest the
recurrent variants between different stages of melanomagenesis
(Supplemental Fig. 1b). We used RNA-sequencing from five
studies to calculate the fold change of the genes nearest to the
hotspot between primary and metastatic tumors (The Cancer
Genome Atlas, TCGA-SKCM11 and ICGC-MELA12), nevi and
melanoma (Kunz48), engineered melanocytes capable of forming

tumors and those incapable of forming tumors upon subcuta-
neous injection into immunocompromised mice (Hodis5, see
Methods for description of samples), and hPSC-derived melano-
blasts with (KO melanoblasts) and without (WT melanoblasts)
deletions in key tumor suppressors (Baggiolini49, see Methods for
description of samples). CDC20 (gene associated with the 8th
highest-scoring hotspot) is consistently upregulated in expression
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between melanoma and nevi (Kunz) and the KO and WT
melanoblasts (Baggiolini, Supplemental Fig. 1b). We observe a
small increase in metastatic tumors compared to primary tumors in
the ICGC cohort and no change between primary and metastatic
tumors in the TCGA. The only other log2 fold-change greater than
1 is seen in the ICGC cohort for TERT expression (increase in
metastatic melanoma, Supplemental Fig. 1b). We did not observe
any statistically significant associations with overall survival
between tumors with and without hotspot mutations (Supple-
mental Fig. 3). Therefore, we stratified survival by expression and
observed that low levels of RPL18A (3rd highest-scoring hotspot),
HNRPNUL1 (6th), and CDC20 (8th) tumors have higher survival
rates than tumors with high expression of these genes (Supple-
mental Fig. 1c). Taking expression changes between mutation
status, differential gene expression of the nearest gene, and
association with survival rates for those with melanoma into
consideration, we specifically focus on characterizing the CDC20
promoter in melanoma.

Variants in the CDC20 promoter have different effects on its
transcriptional regulatory activity. The CDC20 promoter is
mutated in 39 of 183 donors in the ICGC dataset, 38 of which are
skin cutaneous melanomas (27.9% of cutaneous melanomas) and
one acral melanoma sample (2.9% of acral melanomas). The most
common single-nucleotide variants (SNVs) are at adjacent posi-
tions chr1:43,824,528 (G > A, hereinafter termed G528A, mutated
in 10 donors) and chr1:43,824,529 (G > A, G529A, 16 donors) as
well as a SNV at position chr1:43,824,525 (G > A, G525A, 4
donors) and a multi-nucleotide variant (MNV) at positions
chr1:43,824,528-43,824,529 (GG > AA, GG528AA, 4 donors) and
are located within an ETS motif (Fig. 2a). While at adjacent
positions, G528A and G529A have different FunSeq2 scores
(second number) and Genomic Evolution Rate Profiling (GERP)
scores (third number) suggesting different degrees of purifying
selection50. The singular acral melanoma with a CDC20 promoter
hotspot mutation contained the G529A variant. G525A is located
within the core ETS motif, at the position that is most often
mutated when taking all variants within all statistically significant
hotspots into consideration (Fig. 1e) but is not the most recurrent
variant in the CDC20 promoter hotspot, occurring only in 4/39
donors. Like G528A, G525A has both a high FunSeq2 score and a
high GERP score.

Samples from the ICGC-MELA cohort that were RNA-
sequenced containing the GG528AA CDC20 promoter mutation
had a significant reduction of overall CDC20 expression compared
to WT (p-value= 0.05, Student’s t-test) while samples with the
G529A mutation were not significantly different (p-value= 0.14,
Student’s t-test, Supplemental Fig. 2). We note that due to low
sample size there were not enough samples containing the G525A
and G528A mutations to assess variant-specific changes in CDC20
expression. As previously observed in the TCGA-SKCM cohort11,
only samples containing the C228T TERT promoter mutations

were statistically significantly associated with increased expression
(Supplemental Fig. 2).

CDC20 promoter hotspots are not more likely to co-occur with
pathogenic BRAF mutations than NRAS (p-value= 0.85, Fisher’s
Exact Test, Supplemental Fig. 4a) nor were they more likely to co-
occur with pathogen mutations compared to wild-type for both
BRAF and NRAS (BRAF p-value= 0.28, NRAS p-value= 0.81,
one-sided Fisher’s Exact Test, Supplemental Figs. 4b, c). However,
the presence of a CDC20 promoter hotspot mutation or a TERT
promoter hotspot mutation was significantly associated with UV
signature (p-value= 2.244 x 10−7 for CDC20 and p-value=
5.039 x 10−14 for TERT promoter, Wilcoxon Test, Supplemental
Figs. 4d, e). Although not conclusively caused by UV irradiation,
this is in line with statistically significant hotspots frequently
occurring at actively bound ETS motifs as they are particularly
susceptible to UV irradiation47,51.

Overlaying chromatin-related assessments of the locus, the
CDC20 promoter is accessible in 4/7 datasets that assay genome-
wide chromatin accessibility (Supplemental Data 1). BRG1,
CTCF, and TFAP2A are among the chromatin/transcription
factors that have binding activity at the CDC20 promoter, as
detected by ChIP-seq. ETV1, the only ETS factor with ChIP-seq
data in our collation of melanoma-specific functional datasets, did
not have binding activity at the CDC20 promoter in the 2 cell
lines assayed (A375 and COLO-800, Supplemental Data 1).

To understand how the variants affect the regulatory activity of
the CDC20 promoter, we performed luciferase assays using a
150 bp sequence encoding the CDC20 promoter hotspot in a
promoter-less luciferase vector. We assayed the three most
prevalent variants, G528A, G529A, and GG528AA, all located
near the canonical ETS motif, and two variants not within the
motif that were detected in one donor, C520T and C527T. We
investigated the effect of these variants on luciferase activity
relative to the wild-type promoter in seven melanoma cell lines
which harbor previously identified distinct transcriptional
identities that range from melanocytic (i.e. more proliferative)
to undifferentiated (i.e. more migratory, Fig. 2, Supplemental
Fig. 5a, Supplemental Data 4, Supplemental Data 5)20. We also
performed luciferase assays in primary melanocytes isolated from
neonatal foreskin and HEK 293FT, a human embryonic kidney
cell line. All melanoma cell lines harbor the BRAFV600E mutation
except for SK-MEL-2 which contains the NRASQ61R mutation.

Most notably, G525A, located within the canonical ETS motif,
and G528A, located adjacent to the motif, consistently and
significantly reduced luciferase activity in all melanoma cell lines
except for the G528A mutation in SK-MEL-2 cells which showed
an increase (Fig. 2b, Supplemental Data 4). Interestingly, G529A
did not always have similar effects on reporter activity as G528A,
despite being only one nucleotide further from the ETS motif
than G528A. For example, while we observed similar reductions
in luciferase activity between G528A and G529A in UACC-62
and RPMI-7951, we observed a slight increase in G529A in LOX-

Fig. 1 A method to identify putative functional non-coding variants in human melanoma. a Summary of pipeline to identify hotspots (a) with a
generalized schematic of three theoretical hotspots (a). Blue boxes indicate regions within putative Melanoma Regulatory Regions (pMRRs), and red box
indicates null regions (i.e. those outside predicted regulatory regions). Numbered rectangles represent hotspots. Dot plots represent the number of
variants within a given position. Donor score is equal to the square of the number of donors divided by the number of mutated positions, and
FunSeq2 score is a weighting factor with higher values indicating higher conservation within regulatory regions and/or TF binding site motif altering.
b Kernel density estimate of hotspot scores in pMRRs (blue) and not in pMRRs/in null regions (red). Hotspots with log10 scores lower than 1 are not
shown. Dashed line depicts hotspot scores with a p-value= 1 × 10−6, lower p-values are to the right. c Boxplots showing the log10-transformed Donor,
FunSeq2, and Hotspot (Donor x FunSeq2) for the top 10,000 highest-scoring hotspots. d Bar chart demonstrating the frequency of genomic annotations
for the top 10,000 null hotspots (red bars) and statistically significant hotspots (707 hotspots, FDR-adjusted p-value < 0.05, blue bars). e Bar chart of the
total number of mutations in significant hotspots (707 hotspots) at each site within 4 bp of the core ETS motif, GGAA (top, represents 5,561 mutations out
of a total of 8514 mutations), and WebLogo of 11 bp WT sequence (bottom).
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IMVI, SK-MEL-5, and SK-MEL-28 (Fig. 2b, Supplemental
Data 4). Moreover, when we consider the effects of the multi-
nucleotide variant GG528AA, we observe an effect that is less
deleterious than G528A, only leading to a significant reduction of
luciferase activity in A375 and primary melanocytes, and even a
significant increase in the non-melanoma cell line HEK 293FT, as
previously observed10. Finally, we did not observe changes in
activity that associated with the transcriptional identity of the cell
line, suggesting the effect of the variants is independent of the cell
identities used here. For example, LOX-IMVI (i.e. undifferen-
tiated) and SK-MEL-5 (i.e. melanocytic) had similar luciferase
assay results despite stark differences in transcriptional states.

We evaluated the expression levels of ETS transcription factor
family members in melanoma but did not observe a pattern that
implicates any one transcription factor to the observed effects of the
luciferase assay (Supplemental Fig. 5b). Therefore, to interrogate
the binding activity at the CDC20 promoter hotspot, we leveraged
existing ENCODE transcription factor ChIP-seq data from multi-
ple cell types. While these data did not include melanoma cell lines
or samples due to inadequate representation of this sample type in
ENCODE (Supplemental Data 6), we assume that transcriptional
regulation will share core mechanisms across cell types due to the
ubiquitous and essential function of CDC20. We observe binding
of several ETS factors, predominantly ELF1 and GABPA which are
known to be expressed in melanoma52, as well as other factors
known to play important roles in melanoma, YY1, JUN, and MYC
(Supplemental Fig. 6a)53–56. siRNA-mediated knockdown of ELF1
but not GABPA in A375 melanoma cells led to a significant
reduction of CDC20 (Supplemental Fig. 6b).

We then generated position weight matrices (PWM) using a
10 bp sequence encapsulating the CDC20 promoter hotspot ETS
motif (Fig. 2a, orange highlighted box, motif includes the flanking
2 bp) in the presence of the G525A, G528A, G529A, or GG528AA
variants. We used Homer to scan these PWMs against our collated
pMRRs. We expected, as observed in our luciferase assays,
sequences that were similar to the G525A mutation would have
the most dramatic reduction in binding activity while G529A and
GG528AA would not be as affected. Indeed, for ELF1, we saw that
sequences that resembled the CDC20 promoter mutations reduced
binding activity with G528A, G525A, and GG528AA leading to the
largest reductions (Supplemental Fig. 6c). In the case of GG528AA,
we did not expect such a drastic reduction as the GG528AA
mutations were less deleterious than the G528A, and in some cases
the G529A mutations, in the luciferase reporter assays. Interest-
ingly, when we looked at GABPA binding activity, we saw that only
the G525A CDC20 promoter mutation had an observable
reduction in binding activity (Supplemental Fig. 6d). Taken
together, this suggests a putative regulatory role for ELF1 on
CDC20 expression.

Distinct transcriptional programs emerge in nevi and mela-
noma in a CDC20 dosage-associated manner. CDC20 promoter
variants lead to a decrease in reporter activity; however, tumors
with relatively higher levels of CDC20 have worse overall survival
(Supplemental Fig. 1) and CDC20 has been shown to be essential
for migration in melanoma mouse models57.Therefore, we
hypothesize the existence of both a CDC20-low and CDC20-high
phenotype that may support specific transcriptional programs
associated with key melanoma phenotypes, as is known with
MITF15,58,59. To begin probing for the potential existence of a
CDC20-high and CDC20-low state, we utilized three cohorts of
bulk RNA-sequencing on melanoma tumors: (1) Kunz et al.
(2018) cohort of 23 nevi and 57 primary melanomas, (2) TCGA-
SKCM, and (3) ICGC-MELA. We performed gene set enrichment
analysis60 (GSEA) on samples with relatively high and relatively

low levels of CDC20 using published gene signatures that stratify
melanomas into two major subtypes: (1) highly proliferative/
weakly metastatic and (2) weakly proliferative/highly metastatic
(Supplemental Data 7)61,62.

The gene expression program of CDC20-low samples is more
enriched for genes in the neural crest-like and proliferative gene
sets based on relatively high expression of genes like SOX10,
an important regulator of the melanocytic and neural crest
lineage (Fig. 3a, Supplemental Fig. 7). Up-regulation of SOX10 is
believed to, at least in part, contribute to the re-emergence of the
neural crest features observed during melanoma initiation and
progression18,19,21,44. The gene expression program in CDC20-
high samples is enriched for genes in the invasive and TGFβ-like
gene sets which contains genes like AXL and AMIGO2 that have
been positively associated with invasion and metastasis (Fig. 3b,
Supplemental Fig. 7, Supplemental Data 7)15,22,63.

Additionally, we leveraged publicly available single-cell RNA-
sequencing datasets of melanoma cell lines and tumors with
sufficient coverage of CDC20 for further observations of a
proliferative CDC20-low transcriptional state and an invasive
CDC20-high transcriptional state. We observed a statistically
significant difference (p-value < 2.2 x 10−16) in the expression of
CDC20 between the cells classified as relatively more melanocytic
(lower levels of CDC20) compared to the clusters of cells classified
as more mesenchymal-like13,59 (higher levels of CDC20, Fig. 3c,
Supplemental Data 8). This trend was also observed in a
secondary dataset that classified cells using a separate but related
MITF signature15,64 (Fig. 3d-e, Supplemental Data 8).

Taken together, these results set the precedent for a
population of CDC20-low and CDC20-high cells that may drive
transcriptional programs more favorable at specific stages of
melanoma. CDC20-low populations appear to adapt a melano-
cytic/proliferative gene signature, commonly seen in primary
stages of melanoma, whilst CDC20-high populations may
benefit migration/metastasis.

Genome-engineered CDC20 promoter mutants have altered
phenotypes and transcriptional profiles. Thus far, we have
identified variants prevalent in the CDC20 promoter in melanoma
tumors that by luciferase reporter assay reduce transcriptional
activity and see distinct transcriptional profiles in naturally
occurring human melanoma tumors and nevi associated with high
and low levels of CDC20. To determine the effect of CDC20 pro-
moter mutations on key cancer phenotypes and gene expression
programs, we generated two CRISPR/Cas9-engineered A375 mel-
anoma cell lines termed A3 and A10 (Fig. 4a). The A3 line contains
an indel on both alleles, both of which have the G528 and G529
nucleotides deleted. One allele retains the core GGAA motif while
the other does not. The A10 line contains a larger deletion that
completely removes the G525, G528, and G529 mutations, as well
as the core ETS motif in both alleles (Fig. 4a).

Both indels decrease CDC20 expression by 2.0-fold on average as
detected by RNA-sequencing (FDR-adjusted p-value= 1.8 x 10-40,
Fig. 4b, Supplemental Data 9). The A3 strain has slightly lower
CDC20 expression than A10 despite having a smaller deletion and
the retention of one core ETS motif (Fig. 4b). Principal component
analysis shows a separation along PC1 between the WT parental
A375 line (high CDC20), the WT Cas9 control A375 line (high
CDC20), and the mutant A3 and A10 line (low CDC20, Fig. 4c).

We identified 3223 differentially expressed genes using bulk
RNA-seq between both WT and both mutant cell lines (Supple-
mental Data 9). There were 1,955 and 999 differentially expressed
genes between A10 and both WT strains and 999 between A3 and
WT (Supplemental Data 9). However, by hypergeometric test, the
number of overlapping genes is significant (p-value < 2.2 x 10-16).
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Using the differentially upregulated genes between each mutant
strain and both together results revealed an enrichment of gene
ontology (GO) terms that were mostly similar across all
comparisons (Fig. 4d). Notably, the A3 CDC20 promoter indel
line lacked genes involved in Wnt signaling.

We performed GSEA on the A375 WT and CDC20 promoter
indel lines A3 and A10 using the same gene sets as before

(Figs. 3a and 2b and Supplemental Fig. 7). There is a significant
enrichment of genes upregulated in CDC20 promoter indel cells
vs WT for genes in the Verfaillie proliferative and Hoek neural
crest-like gene signature61,62 (Fig. 4e). For WT lines, we noted
significant enrichment in the Verfaillie invasive gene signature
but an unsignificant enrichment of genes in the Hoek TGFβ-like
gene signature (Supplemental Data 7).
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We used a third gene signature that stratifies melanoma by four
subtypes (i.e. melanocytic, transitory, neural crest-like, and
undifferentiated) to cluster the differentially expressed genes
between WT and CDC20 promoter indel cell lines20. As expected,
based on the GSEA results and the known transcriptional profile of
the A375 melanoma cell line, we observed that WT cell lines have
relatively high expression of genes in the undifferentiated subtype

(Fig. 4f). On the other hand, the mutant cell lines, which have
relatively lower expression of CDC20 due to the promoter variants
introduced by CRISPR/Cas9, have relatively higher expression of
genes associated with the melanocytic and transitory subtypes.
These results support the notion that relatively lower expression of
CDC20 promotes a phenotypic state that is more proliferative, less
invasive, and contains relatively high expression levels of important
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neural crest and melanocyte lineage specifiers such as SOX10. As
CDC20 levels increase, a transcriptional state that is more associated
with invasion and metastasis is observed, including relatively higher
expression of AXL, a gene associated with metastasis in melanoma
and other cancers15,65.

To extend these hypotheses to other melanoma cell lines, we
knocked down CDC20 by siRNA and performed quantitative PCR
(qPCR) on SOX10 on melanoma cell lines spanning multiple
subtypes. In all melanoma cell lines assayed, siRNA-mediated
knockdown of CDC20 significantly upregulated SOX10 (Fig. 5a,
Supplemental Fig. 8, Supplemental Data 10). We also assessed how
CDC20 knock-down would affect AXL expression in melanoma cell
lines with relatively high levels of AXL (i.e. those classified as
undifferentiated). Interestingly, in these cells, we observed a
significant decrease in AXL (Fig. 5a). This lends support to our
hypothesis that low level of CDC20 supports a more proliferative
and less invasive state.

CDC20 mutations have previously been shown to cause
aneuploidy66–68. We therefore analyzed all melanoma cell lines
in the Cancer Dependency Map cohort (DepMap) and melanoma
tumors in TCGA to examine whether CDC20 expression
correlates with aneuploidy. We did not observe a statistically
significant association between CDC20 expression and aneuploidy
in either cohort (Supplemental Fig. 9a, b). Additionally, we
checked the A375 mutant lines for increased aneuploidy but did
not observe any in a karyotyping analysis (Supplemental Fig. 9C).

To see whether our A375 promoter indel lines have altered
migration capabilities as suggested by the results of GSEA and the
literature57, we performed a Boyden chamber assay containing
collagen and a scratch assay and observed decreased migration
capabilities in both experiments suggesting that, at least in this
context, reduced levels of CDC20 affect migration more so than
viability (Fig. 5b, c).

Because of the essential role of CDC20 in the cell cycle and the
more proliferative transcriptional signature of CDC20-low samples,
we assayed changes in growth rates in the presence of media
containing serum, media containing serum and DMSO, and media
containing serum and 30 nM dabrafenib (MAPKi) daily over the
span of 6 days (Supplemental Fig. 9d). Minimal changes in growth
rates were observed with slightly higher numbers of A3 cells in
culture by day 6 and initially slightly lower cell numbers for A10
than A375 WT and A3.

Finally, we assessed whether the CDC20 promoter indel lines
have altered growth in an in vivo context using xenografts of the
CDC20 indel and WT lines in the flanks of immunodeficient nude
mice. We generated xenografts for WT A375 and A3 and A10
CDC20 promoter indel melanoma cell lines (5 mice per cell line, 2
flank tumors per mouse, 3 cell lines for a total of 30 total tumors)
and measured tumor volume over the course of 6 weeks with

unblinding only after completion of all measurements and analysis
(Fig. 5d, Supplemental Data 11). We observed a significant increase
in the tumor volume of A3 (average tumor volume at 5th
timepoint= 1316mm3, standard error mean= 66.1 m3, q-value=
0.002) and a slightly larger but unsignificant increase in the tumor
volume of A10 (576mm3, 48.9 mm3, q-value= 0.30) as compared
to WT A375 parental line (386mm3, 36.8 mm3) by 6 weeks of
xenograft growth (Fig. 5d). In conclusion, we demonstrate that
non-coding indels in the promoter of CDC20 reduce CDC20
expression, up-regulate genes associated with a more proliferative
signature, and increase xenograft growth, supporting a putative
cancer-driving role for the non-coding single nucleotide variants
identified in 27.9% of skin cutaneous melanomas.

Discussion
Using the largest available cohort of melanoma whole-genome
sequencing data and several dozen melanoma-specific functional
genomics datasets, we have identified hundreds of mutational
hotspots containing putatively functional non-coding somatic
variants. Under the assumption that variants outside of pMRRs
are not, or are less likely to be, functional, we generated an
empirical null distribution with which to calculate significance.
Several of our top-scoring hotspots have previously been identi-
fied as being in regions of the genome that are recurrently
mutated due to presence of a motif sensitive to UV mutagenesis
at actively bound promoters32,47,51. Although none of the hot-
spots were significantly associated with overall survival using
TCGA data, which while an extremely valuable and often infor-
mative resource, overrepresents nodal metastases relative to pri-
mary and other distant metastases types11, we did identify
promising changes in the relative expression of hotspot-
associated genes between WT and mutated samples, despite
being relatively under-powered due limited RNA-sequencing.
Shifting our analysis instead towards gene expression, we
observed expression changes of the genes nearest to the hotspots
between early and late tumors, as well as in overall survival of
tumors with relatively higher or lower gene expression. Although
our analysis identified other promising candidates, including the
presence of several ribosomal genes, one of which has been
previously validated9, we chose to focus on characterizing var-
iants in the promoter of CDC20, whose weighted rate of recur-
rence and predicted functional significance were greater than that
of the well-studied TERT promoter variants and began to
investigate how these variants alter melanoma behavior.

CDC20 is a highly conserved and essential regulator of the cell
cycle. Deletion of CDC20 leads to arrest at metaphase in 2-day
old embryos in mice69. It is a catalytic co-activator of the Ana-
phase Promoting Complex/Cyclosome (APC/C) which is a large

Fig. 4 Engineered indels at the recurrently mutated CDC20 promoter locus leads to decreased CDC20 expression and changes in transcriptional state.
a Sequence alignment of the CDC20 promoter between hg19, WT A375, A3, and A10. Arrows denoting positions of G525A, G528A, and G529A. The ETS
core motif is boxed. The last nucleotide of the sequence is 37 bp upstream of the TSS of CDC20. Nucleotides are color-coded and dashes indicate deletions.
b Plot depicting log2 transformed DESeq2-normalized read counts of CDC20 in WT A375 and CDC20 promoter indel strains, A3 and A10, with decreased
CDC20 expression. Each point represents CDC20 expression in one sample. c Principal component analysis of read counts normalized by regularized log
transformation using the top 500 most variable genes. The horizontal axis, PC1, explains 58% of the variance associated across all samples and separates
out WT from CDC20 promoter indel cell lines. The vertical axis, PC2, explains 28% of the variance and separated A3 from A10. d Gene ontology analysis
of the 999 differentially expressed genes (DEG) between A3 and WT, 1,995 DEG between A10 and WT, and 3,223 DEG between both CDC20 promoter
indel cell lines and WT. The size of the dots represents higher gene ratios of the number of genes within each gene ontology term. The color of the dot
represents FDR-adjusted p-values with redder dots indicating lower p-values. e Gene set enrichment analysis of the Hoek and Verfaillie gene signatures
with nominal p-values reported on each plot. Dark purple dots represent genes enriched in the CDC20 promoter indel cell lines while light purple dots
represent genes enriched in the WT A375 melanoma cell lines. f Heatmap depicting z-score normalized expression patterns of differentially expressed
genes within one of the four Tsoi et al. (2018) melanoma transcriptional subgroups. Samples and genes are hierarchically clustered with orange and blue
indicating relatively higher or lower expression, respectively, of genes across samples.
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multi-subunit E3 ubiquitin ligase. CDC20 contains many degrons
(i.e. protein ‘motifs’ that recognize and target substrates for
degradation) for proteins including Cyclin B1 and Securin70.
Degradation of Cyclin B leads to the inactivation of mitotic
cyclin-dependent kinases and degradation of securin leads to
activation of separase, causing separation of sister chromatids.
The combined effect of the two mark the beginning of anaphase

and end of mitosis71. The spindle assembly complex (SAC) binds
to CDC20 and MAD2 (forming the mitotic checkpoint complex,
MCC) at the kinetochore to inhibit APC-CDC20 until all sister
chromatids are attached to the kinetochore72. Cyclin-dependent
kinases also phosphorylate CDC20 which reduces the binding
efficiency with APC/C, therefore preventing APC/C-CDC20
formation and G2-to-M transition73. This is an essential function
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as the inability to inhibit APC-CDC20 leads to rapid tumor-
igenesis in mice74.

CDC20 has also been implicated in functions outside of the
SAC and MCC, including the mediation of chromatin loop for-
mation through ubiquitylation of hnRNPU75, attenuation of
cardiac hypertrophy76, maintenance of the primary cilia77, reg-
ulation of dendrite morphogenesis in neurons78,79, and most
relevant to our study, maintaining stemness in human primary
keratinocytes and human embryonic stem cells80,81. The Bio-
GRID database (thebiogrid.org) has 231 unique interactors cat-
aloged for CDC20, including histone remodelers HDAC1/2,
chromatin remodeler CTCF, and neural crest transcription factor
and oncogene MYC. Thus, understanding how a reduction in
CDC20 appears to favor a melanocytic/proliferative state in
melanoma will require substantial further investigation and
appears warranted based on our findings for its role in melanoma
given that it may alter the ubiquitylation kinetics of the APC/
CDC20 complex and many other targets.

Specific CDC20 promoter variants tested decreased reporter
activity across most cell lines in this study. Four variants were
within 2 bp of a core ETS motif but did not all affect reporter
activity to similar extents. G525A and G528A strongly reduced
reporter activity in most cell lines assayed, while G529A and
GG528AA reduced reporter activity in a subset of cell lines,
suggesting a cell-specific response to these variants. We favor that
these differences in transcriptional responses are influenced by
specific combinations of transcription factor activities (that is
variations in protein levels, modifications affecting abilities to
enhance or repress gene expression, and interactions with and
availability of necessary cofactors), as well as potentially more
broadly defined DNA and histone modifications, that are likely
specific to different melanoma cell lines and to distinct stages of
the melanocyte to melanoma transition which, even when assayed
in in vitro models, are likely transient and difficult to directly
probe. Interestingly, the CDC20 promoter has not been reported
to be methylated in previous work82–86. To begin investigating
the binding activity at the CDC20 promoter hotspot, we used
ENCODE ChIP-seq data from several non-melanoma cell lines
and identified potential binding of multiple transcription factors,
including ETS family members, which were predicted to have
altered binding in naturally occurring motifs that matched the
mutated ETS motif at the CDC20 promoter when mutated
(Supplemental Fig. 6). In particular, we observed binding activity
of ELF1 at the CDC20 promoter and a reduction in CDC20 upon
ELF1 knockdown by siRNA in a melanoma cell line. While ELF1
is known to be expressed in melanoma52, future work will simi-
larly be required to understand the exact mechanism by which
CDC20 promoter mutations induce differential transcriptional
regulation, likely by specifically altered transcription factor
binding activity in distinct, dynamic melanoma states. This study
lends strong support for continued endeavors into ELF1 regula-
tion of CDC20.

We identified both in our genome engineered cells and in three
other naturally occurring human melanoma cohorts that samples

with low CDC20 express transcriptional programs associated with
a neural crest-like or proliferative state, characterized by relatively
higher expression of genes like SOX10, which was then validated
by siRNA-mediated knockdown of CDC20 in multiple melanoma
cell lines (Fig. 5a, Supplemental Data 9, Supplemental Data 10).
However, we did not observe this up-regulation in primary
melanocytes nor the non-melanoma cell line HEK 293FT, despite
functional validation of the CDC20 promoter hotspot mutations
in luciferase reporter assays in these cell lines. We speculate that
both early oncogene activation and specific lineage identity is
required for the effect of the CDC20 promoter hotspots, through
downregulation of CDC20, on promoting a transcriptional pro-
gram that, based on previous reports, is important for establish-
ment of primary melanomas18,19,21,44. In support of this
hypothesis, we observed a statistically significant increase in
tumor growth of the A3 CDC20 promoter indel cell line relative
to the parental A375 cell line when subcutaneously xenografted in
the flanks of immunocompromised nude mice (Fig. 5d). Inter-
estingly, the growth rates were markedly faster for A3 compared
to wild-type in the in vivo study than as assessed by the in vitro
cell viability assay, suggesting an important interaction between
the tumor microenvironment and CDC20 function. Indeed, one
of the GO terms enriched in the mutant cell lines implicate gene
regulatory networks that function to alter the extracellular matrix
(Fig. 4d). Meanwhile, as CDC20 levels increase, we observe a
change in the transcriptional program that is associated with the
invasive subtype, including an increase in the expression of AXL87

(Supplemental Data 9). Both in our CDC20 promoter indel lines
and in two other melanoma cell lines that are characterized by
relatively high expression of AXL, we observed a significant
reduction of AXL upon CDC20 knockdown by siRNA (Fig. 5a).
Therefore, we propose cells with relatively high expression of
CDC20 may gain migration capabilities. In support of this, we
observed loss of migratory capabilities in A3 and A10, the CDC20
promoter indel cell lines with lowered CDC20 levels (Fig. 5c). As
has been recently shown, transcriptional heterogeneity in primary
melanomas may consist of cell types capable of driving primary
tumor growth but not metastasis and vice versa21. With this ever-
increasing recognition of tumor heterogeneity, especially in
metastases87,88, larger sample catalogs will be required to make
claims about selective advantages/disadvantages of specific var-
iants. Although we did not detect metastases in the mice injected
with the wild-type A375 melanoma cell line, further study is
warranted to understand the metastatic potential of CDC20-high
versus CDC20-low expressing melanoma cell lines.

The ever-expanding genomic data available for melanoma has
been crucial in advancing our understanding of melanoma
biology11,12, but most of the largest datasets with publicly avail-
able clinical outcomes data (i.e. TCGA) overrepresent metastatic
lesions, and even then a subset of metastatic lesion types (i.e.
lymph node metastases in TCGA). Thus, while CDC20 has been
implicated as a cancer-driving gene with higher levels often
associated with melanoma metastases and poorer survival, we
posit that specific levels of CDC20 expression may be crucial to

Fig. 5 CDC20 knockdown promotes a proliferative or neural crest transcriptional state. a Knockdown of CDC20 by siRNA leads to significant down-
regulation of AXL and up-regulation of SOX10 in undifferentiated cell lines RPMI-7951 and SK-MEL-2, up-regulation of SOX10 in melanocytic cell lines SK-
MEL-5 and SK-MEL-28, but no to minimal change in primary melanocytes and HEK 293FT. Each boxplot is the culmination of 12 technical replicates
transfected with a non-targeting siRNA (siNTC) or siCDC20. Ct scores are normalized to GAPDH. b Scratch assays at 0 hours post scratch and 24 hours
post-scratch for WT, A3, and A10. c Total fluorescence obtained from the lower chamber of a Boyden chamber loaded with 20 µL of collagen. Three
technical replicates were performed per cell line. d Tumor volume (average of 10 tumors per line with error bars ± SEM) of WT (A375 Cas9 control), A3,
and A10 between 27 and 42 days post subcutaneous flank injection into immunocompromised nude mice. e Proposed model. As CDC20 expression
increases, a more invasive and migratory transcriptional landscape is observed, suggesting functional significance for CDC20 in the role of metastasis. At
early stages of the melanoma lifespan, low CDC20 expression promoters a proliferative state that fuels primary melanoma growth.
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supporting or allowing passage of melanocytes through malignant
transformation (CDC20 low) to locally invasive cancer and then
on to metastatic disease (CDC20 high, Fig. 5e). As in the case of
MITF, a rheostat model of CDC20 may exist, whereby higher
levels of CDC20 drives metastasis and lower levels support a
phenotype likely beneficial in earlier tumors58.

Methods
Calculating hotspot scores
Step 1: Merge mutations into hotpots. Mutation calls for SNVs and
indels from the MELA-AU cohort were downloaded from
dcc.icgc.org after receiving DACO approval12. Using a 25 bp
window, we merged mutation calls using bedtools intersect89 into
hotspots based on the premise that highly recurrent variants may
be under positive selection at some point during the melanoma
life cycle (e.g. favor melanoma growth) and that a transcription
factor binding site(s) (TFBSs) may be disrupted/created by
modifying any of multiple nucleotides in this window.

Step 2: Filter hotspots not in putative enhancers/promoters. We
downloaded processed peak calls from ChIP-seq (e.g. H3K27Ac,
H3K4me3, CTCF) and ATAC-Seq (revealing accessible chroma-
tin domains) data from 69 melanoma datasets to enrich for
putative Melanoma Regulatory Regions (pMRRs) which we rea-
soned are more likely to bind transcription/chromatin factors
(Supplemental Data 1). These are indicated by the blue peaks in
the example Fig. 1a. We excluded exons and those regions (e.g.
highly repetitive) from Encode excluded regions list90.

Step 3: Calculate donor score. The donor score for a given hotspot
is represented as D2/G, where D is the number of samples
(donors) with the specific variant and G is the number of
nucleotide locations with variants in the hotspot. For example, in
Fig. 1a, the purple hotspot shows D= 3+ 1+ 2+ 4= 10 muta-
tions, at G= 4 different locations, for Donor Score of 102/4= 25.

Step 4: Weight variants using FunSeq2 score. Each mutation is
weighted for predicted functional significance by features
including predicted TFBS motif creating/breaking effect and
evolutionary conservation using pre-computed scores from the
published FunSeq2 algorithm (http://funseq2.gersteinlab.org/
downloads) with a higher score predicting higher likelihood of
functional significance43.

Step 5: Calculate hotspot score. Each hotspot is assigned a Hotspot
Score as the product of the Donor Score (Step 3) and mean
FunSeq2 score (Step 4) for all variants in the hotspot, to weigh
both the number of variants and their predicted functional con-
sequence in one metric. For example, in Fig. 1a, the purple box
shows (Average FunSeq2 score)*(Donor Score)= 1.5*25= 37.5

Step 6: Calculate p-value for each hotspot in MRRs relative to the
empirical null distribution (non-pMRR regions from Step 2). For
each hotspot score within pMRRs, we calculated a p-value by
determining the proportion of null hotspots with hotspot scores
greater than or equal to it. All p-values were adjusted for false
discovery rate (FDR). Adjusted p-values equal to 0 are provided
(Supplemental Data 2).

Genomic analysis of hotspots. For all pMRRs, statistically sig-
nificant hotspots (FDR adjusted p-value < 0.05, 707 hotspots), and
top-scoring hotspots outside of pMRRs (top 707 null hotspots by
Hotspot Score), we annotated regions using the ChIPSeeker
function annotatePeak91 (Fig. 1d). For HOMER motif analysis,
we ran findMotifsGenome.pl on BED files of all pMRRs and

statistically significant hotspots to identify known motifs (Sup-
plemental Fig. 1a). For each variant within statistically significant
hotspots, we made FASTA files with 20 bp sequences corre-
sponding to either the WT or mutant sequence (variant at
position 10). These were processed through HOMER using the
findMotfs.pl function (Supplemental Fig. 1a). A BED file con-
taining only the CDC20 promoter variants were processed
through motifBreakR92 using the known and discovered motif
information from transcription factor ChIP-seq datasets in
Encode93.

To calculate the ETS motif distribution, we first made FASTA
files containing 11 bp sequences corresponding to either the WT
or mutant sequence (variant at position 6) from the 707 statis-
tically significant hotspots with FDR-adjusted p-values < 0.05. If a
sequence contained the GGAA motif, we counted how far each
variant within a statistically significant hotspot occurred from the
nearest GGAA (if more than one instance was detected). If the
reverse complement, TTCC was identified, as the nearest ETS
motif, we first rewrote the sequence as its reverse complement
and then counted the distance. A consensus sequence was
generated with Web Logo (https://weblogo.berkeley.edu/logo.cgi)
using a re-oriented version of the 11 bp WT fasta file where the
first G of the GGAA motif is always at position 5.

Cohort comparison of Top 13 genes. We downloaded DESeq2-
normalized read counts from GSE112509 for the Kunz cohort
and quantile-normalized read counts from Firehose (Broad
GDAC) for the TCGA-SKCM cohort. The Kunz cohort is made
of 23 laser-microdissected melanocytic nevi and 57 primary
melanomas48. The TCGA cohort consists of 81 primary and 367
metastatic melanomas11.

For ICGC-MELA, we downloaded BAM outputs from STAR94

from the European Genome-Phenome Archive (EGA) under Study
ID EGAD00001003353. Gene counts were calculated using RSEM95

and normalized by DESeq296. This cohort consists of 56melanomas
from 46 donors and consists of 25 metastatic melanomas, 17
primary melanomas, and 14 cell lines derived from tumors12.

For the Baggiolini cohort, we obtained raw counts from the
supplementary material of the corresponding publication and
normalized counts by DESeq296. This cohort is made up of human
pluripotent stem cell derived cells that are engineered to contain
doxycycline-inducible BRAFV600E. KO lines contain deletions to
RB1, TP53, and P16. These cells were then differentiated into
neural crest cells, melanoblasts, and melanocytes. For our study, we
only considered WT and KO melanoblast samples that had
activated BRAFV600E expression. In line with the corresponding
publication, we consider KO melanoblasts to be melanoma-like
(based on the ability to form tumors when subcutaneously injected
into NSG mice) while WT melanoblasts were considered to be a
non-tumorigenic precursor to melanocytes49.

For each of the top 13 genes, we calculated the log2 fold-change
between metastatic and primary melanomas (TCGA-SKCM and
ICGC-MELA), primary melanoma and nevi (Kunz), and KO and
WT melanoblasts.

Kaplan–Meier curves of samples with and without the hotspot
mutations were generated using the R packages ggsurvfit and
survival97. Survival rates and corresponding p-values for high and
low expressing tumors were downloaded from cBioPortal98

(TCGA-SKCM) using the Onco Query Language (OQL): GENE:
EXP < -0.5 and GENE: EXP > 0.5. Data was downloaded from
cBioPortal.org and plotted with ggplot2.

Cell culture. We obtained A375 (CRL-1619) and RPMI-7951
(HTB-66) cells from ATCC. SK-MEL-2, LOX-IMVI, SK-MEL-28,
SK-MEL-5, UACC-62 cells were obtained directly from the NCI-
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60 collection following written request and approval and were
grown in RPMI-1640 media with 2 mM L-Glutamine (Gibco,
11875) with 10% FBS and 1X Pen/Strep. Newborn foreskin
melanocytes were ordered from the specimen research core at the
SPORE in Skin Cancer at Yale University. HEK-293FT cells were
obtained from Invitrogen (#R70007). Cells were grown in a
dedicated incubator set to 37°C at 5% CO2. A375 and HEK
293FT cell lines were grown in DMEM media (Corning, 10-013-
CV) with 10% Fetal Bovine Serum (Gibco, 261470) and 1X
Penicillin/Streptavidin (Pen/Strep, Sigma-Aldrich, P4333). Pri-
mary melanocytes were grown in OPTI-MEM (Gibco, 31985)
containing 5% FBS, 1X Pen/Strep, 10 ng bFGF (ConnStem,
F1004), 4 mL of 5 mM IBMX (Sigma, #I-5879), 1 ng/mL Heparin
(Sigma, #3393), and 200 µL of 0.1 M dbcAMP (Sigma, #D-0627).
SK-MEL-5 and RPMI-7951 were grown in EMEM media
(Corning, 10-009-CV) with 10% Fetal Bovine Serum (Gibco,
261470) and 1X Penicillin/Streptavidin (Pen/Strep, Sigma-
Aldrich, P4333). UACC-62, LOX-IMVI, UACC-257, SK-MEL-28,
and SK-MEL-2 were grown in RPMI-1640 media (Corning, 10-
040-CV) supplemented with 1X L-Glutamine (Gibco, #
25030081), 10% Fetal Bovine Serum (Gibco, 261470), and 1X
Penicillin/Streptavidin (Pen/Strep, Sigma-Aldrich, P4333). Cells
were grown in a dedicated incubator set to 37°C at 5% CO2.

Luciferase assays. To make the luciferase vectors, we synthesized
a 170 bp sequence containing the WT CDC20 promoter sequence
(chr1:43,824,464-43,824,633) (GenScript). From this template, we
amplified a 150 bp sequence using primers pGL3-CDC20_F and
pGL3-CDC20_R (Phusion High-Fidelity PCR Master Mix, NEB
M0531, Supplemental Data 12) that added restriction sites for
SacI and XhoI to the 150 bp sequence. Both the pGL3-Basic
Luciferase vector (Promega, E1751) and the CDC20 promoter
amplicon were digested using SacI-HF (NEB, R3156S) and XhoI
(NEB, R0146S) at 37°C overnight, followed by heat inactivation at
65°C for 20 min. Digested vector and amplicon were ligated using
T4 DNA Ligase (NEB, M0202S) and transformed into OneShot
Top10 Chemically Competent Cells (ThermoFisher, C404010).
Individual colonies were mini-prepped and confirmed by Sanger
Sequencing (Azenta).

Using the Q5 Site-Directed Mutagenesis kit (NEB, E0554), we
induced variants in the WT sequence using primers designed by
NEBaseChanger (https://nebasechanger.neb.com/, Supplemental
Data 12). Sequences that were successfully mutated, as well as the
WT pGL3-Basic vector and pRL-TK (Promega, E2241), were
midi-prepped (Qiagen, 12941).

For all cell lines, 300,000 cells per well were seeded onto 6-well
plates. All transfections were performed using 9 uL of Lipofectamine
2000 (Invitrogen, 11668), 1.5 µg of luciferase vector, and 1.0 µg of
control pRL-TK (renilla), following the manufacturer’s protocol. All
transfections were performed at minimum in duplicate.

The following day, luciferase and renilla luminescence were
measured using the Dual-Luciferase Reporter Assay System
(Promega, E1910) per manufacturer specifications. Cells were
lysed using 500 µL of 1X Passive Lysis Buffer and incubated for
15 min on an orbital shaker. 20 µL of lysate were added to clear-
bottom 96-well plates. We ran three technical replicates per
sample. Luminescence was measured on a GloMax 96 Microplate
Luminometer (Promega) using a standard Dual Reporter Assay
program. All luciferase values were normalized to renilla, as the
internal transfection control. We then normalized all variant
ratios to the corresponding average WT value. p-values were
calculated using Student’s t-test.

Analysis of binding activity at the CDC20 promoter hotspot.
We used the encodeproject.org portal to find all TF ChIP-seq

assays targeting the following transcription factors: CREB1, ELF1,
ELK1, ELK4, ETS1, ETV6, EZH2, GABPA, JUN, JUNB, JUND,
MAX, MITF, MYC, SETDB1, SP1, and YY1. First, we down-
loaded only the processed BED files to identify the experiments
that had signal at the CDC20 promoter hotspot. For these files,
we then downloaded the corresponding bigWig files and merged
files by transcription factor. We used deepTools to plot the signal
profiles of each transcription factor99.

To identify sequences that match the CDC20 promoter
when mutated, we generated the following position weight
matrices with the function seq2profile.pl from the HOMER
algorithm100: CCGGAAGGCC (wild-type), CCAGAAGGCC
(G525A), CCGGAAAGCC (G528A), CCGGAAGACC (G529A),
and CCGGAAAACC (GG528AA). We scanned all promoters
within pMRRs for instances of these motifs, down-sampled to
50,000 instances, and plotted the signal profile of each
transcription factor at these locations using deepTools.

GSEA of TCGA-SKCM, ICGC-MELA, and Kunz cohorts. We
classified each sample as CDC20-low or CDC20-high based on
CDC20 expression. Samples with less than the 25th percentile of
CDC20 expression were classified as low, while samples with
greater than the 75th percentile of CDC20 expression were clas-
sified as high.

We performed gene set enrichment analysis (GSEA) on the
CDC20-low and CDC20-high samples using the Hoek et al. (2008)
and Verfaillie et al. (2016) signatures (Supplemental Data 7). The
following parameters were used: 1000 permutations, the pheno-
types were always set as low versus high (ergo enrichment scores
are positive for CDC20-low, negative for CDC20-high), permuta-
tions were performed on the gene set, the scoring scheme was set to
weighted_p2, the metric used was tTest, and the normalization
method was set to none.

Analysis of scRNA-sequencing. For the Wouters et al. (2020)
dataset, we downloaded publicly available processed normalized
read counts from GEO (GSE134432). Cell type classifications
were taken directly from the corresponding manuscript13. A
wilcoxon rank sum test was performed to calculate statistically
significant changes in CDC20 expression between all cells clas-
sified as melanocytic and those classified as mesenchymal. For the
Jerby-Arnon et al. (2018) dataset, we downloaded processed
normalized read counts and tSNE cell annotations from the
Broad Insitute Single Cell Portal64 (SCP109). A wilcoxon rank
sum test was performed to determine statistical significance
between CDC20 expression of cells with low v. moderate and
moderate v. high MITF signatures.

Genome engineering of A375. A375 cells were nucleofected on a
Lonza 4D nucleofector according to manufacturer recommenda-
tions (P3 solution, nucleofection program EH-100). Each nucleo-
fection was performed with 1 × 105 cells, 0.75 µL Cas9 Protein at
10 µg/µL (IDT v3 Cas9 protein, glycerol-free, # 10007806), and
0.75 µL of each sgRNA at 100uM (IDT) suspended in IDT Duplex
Buffer (IDT, # 11-05-01-03) (Supplemental Data 12). Sham-
nucleofections for WT A375 Cas9 controls were nucleofected with
an equal volume of blank PBS. After nucleofection, cells were
seeded into 500 µL of DMEM complete in a 24-well plate at stan-
dard incubator conditions.

72 hours post-nucleofection, cells were harvested, and split into
6-well culture for expansion and into lysis buffer for DNA
extraction (homemade by GESC, formulation identical to Lucigen
Quick-Extract buffer). PCRs were performed with Platinum
Superfi II 2x master mix (Thermofisher, #12368010) and primers
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against the sgRNAs target site (Supplemental Data 12). PCR
products were sequenced by NGS using Illumina.

After confirmation of cutting activity at, the pools were single-
cell sorted using a Sony SH800 cell sorter at 1 cell per well into 4 x
96-well plates with 100uL of DMEM, with 50% conditioned
media, 5 µM Rock Inhibitor, and 100 µM sodium pyruvate. Plates
were allowed to grow for ~10 days, then clones were harvested
and re-screened using PCR primers against the targeted locus
(Supplemental Data 12). Homozygous knockout clones were
identified based on the presence of deletion junction and absence
of the target locus. WT A375 Cas9 controls were sequenced at all
gRNA target sites to confirm wild-type genotype. Homozygous
knockout clones and wild-type Cas9 control clones were
expanded, checked by STR profiling, tested for mycoplasma
contamination, and used for subsequent experiments.

Cell viability assay of A375 CDC20 promoter knock-outs and
controls. For each strain (A3, A10, and the wild-type Cas9
control), we seeded 1500 cells per well in a clear-bottom 96-well
plate (Corning, #3903) in DMEM media containing 10% fetal
bovine serum and 1X Pennicilin/Streptavidin (DMEM com-
plete), DMEM complete with 30 nM dabrafenib (Selleck Che-
micals, S2807), or DMEM complete with 1% DMSO. To measure
viability, we used CellTiterGlo (Promega, G7570) as per the
manufacturer’s protocol. Plates were read on a GloMax 96
Microplate Luminometer (Promega) using the standard CellTi-
terGlo program.

Cell migration assay of A375 CDC20 promoter knock-outs and
controls. Scratch assays were performed by seeding 1 million cells
per well in a 6-well plate in DMEM complete media. Using a
P200 pipette, we scratched the plate at indicated positions. Cells
were washed with 1X PBS and imaged on a Nikon Eclipse Ts2.
Cells were then plated with DMEM media with 1% FBS and 1X
Pen/Strep. On the following day, cells were washed with 1X PBS
and imaged.

To perform the Boyden Chamber Assay, we diluted rat tail
collagen type 1 (Corning, 354249) down to 2 mg/mL in cold
media (DMEM supplemented with 1% FBS) and brought the pH
down to 7.5 using NaOH. We added 20 µL of 2 mg/mL collagen
to the upper chamber of a FlouroBlok 96-well insert system
(Corning, 08-771-006) with 8 µm pores and allowed it to
polymerize for 30 min at 37 °C. DMEM supplemented with
10% FBS was added to the lower chamber as a chemoattractant.
We resuspended cells in 1 µM CellTracker Green CMFDA Dye
(Invitrogen, C7025) in serum-free media and incubated for
20 min at 37 °C. Cells were washed with PBS and split with
Trypsin-EDTA (0.05%, Corning, 25300054). 8000 dyed cells per
well were seeded onto the upper chamber and promptly placed
into a Spark multimode microplate reader (Tecan) at 37 °C under
5% CO2 and humidified conditions. For 48 h fluorescence (Ex:
493 nm, Ex bandwidth: 7.5 nm, Em: 517, Em bandwidth 10 nm)
values were captured every hour across various Z-stacks with
excitation from the bottom to identify cells that had migrated
through the FluoroBlok insert.

RNA-sequencing of A375 CDC20 promoter knock-outs and
controls. 300,000 cells of the parental A375 (in duplicate), two
WT CRISPR/Cas9 clones (one replicate each), A3 (in duplicate),
and A10 (in duplicate) were seeded on a 6-well plate. On the
following day, we isolated RNA using the Qiagen RNeasy Plus
Mini Kit (Qiagen, 74134). Samples were submitted to the Gen-
ome Technology Access Center at the McDonnell Genome
Institute at Washington University School of Medicine for library
preparation and sequencing.

Total RNA integrity was determined using Agilent Bioanalyzer or
4200 Tapestation. Library preparation was performed with 5 to
10ug of total RNA with a Bioanalyzer RIN score greater than 8.0.
Ribosomal RNA was removed by poly-A selection using Oligo-dT
beads (mRNA Direct kit, Life Technologies). mRNA was then
fragmented in reverse transcriptase buffer and heating to 94 degrees
for 8 min. mRNA was reverse transcribed to yield cDNA using
SuperScript III RT enzyme (Life Technologies, per manufacturer’s
instructions) and random hexamers. A second strand reaction was
performed to yield ds-cDNA. cDNA was blunt ended, had an A
base added to the 3' ends, and then had Illumina sequencing
adapters ligated to the ends. Ligated fragments were then amplified
for 12–15 cycles using primers incorporating unique dual index
tags. Fragments were sequenced on an Illumina NovaSeq-6000
using paired end reads extending 150 bases. RNA-seq reads were
then aligned and quantitated to the Ensembl release 101 primary
assembly with an Illumina DRAGEN Bio-IT on-premise server
running version 3.9.3–8 software.

Read counts were normalized using DESeq2, comparing WT to
mutant strains96. Principal component analysis was performed
using the plotPCA function in the DESeq2 package. The heatmap
was generated with pheatmap using z-score normalized counts of
the manually curated list of 20 neural crest transcription
factors101 with FDR-adjusted p-values < 0.1 (between WT and
mutant samples).

Gene set enrichment analysis was performed as previously
described using the 25th and 75th quantile to establish CDC20-
low and CDC20-high expression groups, respectively. The Tsoi
et al. (2018) signature is provided as Supplemental Data 3 in the
corresponding manuscript2013. For simplification, we added
genes within the undifferentiated/neural crest-like subtype into
the undifferentiated subtype, the neural crest-like/transitory into
the neural crest-like subtype, and the transitory-melanocytic into
the transitory category.

qPCR analysis. 300,000 cells were seeded on a 6-well plate with the
corresponding media. Once the cells reached 60-80% confluency,
we transfected Silencer Select siRNAs (ThermoFisher Scientific,
Supplemental Data 12) in triplicate using Lipofectamine RNAi-
MAX using the manufacturer’s recommendation. 24 hours later we
isolated RNA using the Qiagen RNeasy Plus Mini Kit (Qiagen,
74134) and generated cDNA using the Super Script III First-Strand
System (Invitrogen, 18080051). qPCR was performed in quad-
ruplicate with iTaq Universal SYBR Green Supermix (BioRad,
1725120) using the recommended protocol and primers to the
corresponding gene (Supplemental Data 12) on a BioRad CFX
Connect Real Time System. Cycle threshold (Ct) scores were
normalized to the average GAPDH expression across all twelve
replicates (ΔCt) and transformed using the following equation:
2-ΔCt. p-values were calculated using Student’s t-test.

Aneuploidy analysis. Karyotyping and analysis of the A375
CDC20 Promoter Indel cell lines and the WT counterpart were
performed at the Cytogenetics and Molecular Pathology Labora-
tory at Washington University School of Medicine. The cytogenetic
test/ karyotype analysis was performed to assess aneuploidy (gains
and losses of whole chromosomes), structural changes (chromo-
somal translocations, inversions, segmental deletions and dupli-
cations). This assay involves growing of cells in appropriate culture
medium, hypotonic treatment, fixing cells, staining cells with GTG
banding and microscopic examination. Twenty cells are counted
for enumerating the number of chromosomes in a metaphase
spread. Three of these metaphase spreads are digitally processed to
produce a detailed karyotype/karyogram to perform a detailed
study (analysis) for variant counts and structural aberrations.
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Analyzing a metaphase is defined by band-by-band comparison
between chromosome pairs.

To analyze aneuploidy in the DepMap and TCGA-SKCM
cohorts, we used the data explorer portal (https://depmap.org/
portal/interactive/) and cBioPortal (http://www.cbioportal.org/)
to download the aneuploid scores and normalized CDC20
expression for all melanoma samples. Linear regression was
performed using the lm() function in R.

Xenograft mouse model. Athymic nude female mice, ages
8 weeks, weighing approximately 20 to 22 grams, were purchased
from the Jackson Lab (strain # 002019). All animal experiments
were performed in accordance with protocols approved by the
Institutional Animal Care and Use Committees (Protocol Num-
ber: 22-0263), and were performed in accordance with the Ani-
mals in Research: Reporting In Vivo Experiments (ARRIVE)
guidelines for the care and usage.

Xenografts of three A375 human melanoma cell lines: WT, A3,
and A10 clones were established in a blinded fashion, five mice in
each group. 1.0 × 106 cells in 0.1 mL of PBS and Matrigel (1:1)
were injected subcutaneously (s.c.) into the bilateral flanks of
mice, using a 28- needle gauge insulin syringe to establish 30 total
tumors (5 mice X 2 flank tumors each X 3 cell lines). The tumor
cells were observed to grow and formed tumors after implanta-
tion. Mice were monitored weekly until primary tumors were
seen, and subsequently, monitored and measured every four days.
The tumor growth curve is determined by measuring the tumor
volume using the equation: Volume= (L ×W2) x 0.52. At the end
of the experiment (day 42 from inoculation date), mice were
euthanized and tumors were excised, weighed, and stored in 10%
formalin, OCT blocks, and flash frozen. Lungs and livers were
examined with no evidence of metastasis noted. All the animal
experiments were performed in accordance with the Animal
Research: Reporting In Vivo Experiments (ARRIVE) guidelines
for the care and usage. Tumor growth curves were visualized, and
p-values were generated through permutation testing using the
compareGC function in the DRAP R package102. Using the
pwrss.t.2means function from the pwrss R package103, we
calculated that our experiment had a statistical power of 0.77.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All raw and processed sequencing data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE206639. The supplementary data contains a list of the datasets
used to define putative melanoma regulatory regions, the most significant hotspots, p-
values and fold-changes corresponding to all luciferase assay experiments, a list of the
ENCODE accession numbers used for ChIP-seq experiments, all GSEA summary
statistics, normalized read counts for the RNA-sequencing experiments, tumor
measurements related to Fig. 5, and a list of all primers used in this study.

Code availability
All code used in this manuscript is available upon request.
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