
ARTICLE

Enhancing alphafold-multimer-based protein
complex structure prediction with MULTICOM
in CASP15
Jian Liu1, Zhiye Guo 1, Tianqi Wu1, Raj S. Roy1, Farhan Quadir1, Chen Chen1 & Jianlin Cheng 1✉

To enhance the AlphaFold-Multimer-based protein complex structure prediction, we devel-

oped a quaternary structure prediction system (MULTICOM) to improve the input fed to

AlphaFold-Multimer and evaluate and refine its outputs. MULTICOM samples diverse mul-

tiple sequence alignments (MSAs) and templates for AlphaFold-Multimer to generate

structural predictions by using both traditional sequence alignments and Foldseek-based

structure alignments, ranks structural predictions through multiple complementary metrics,

and refines the structural predictions via a Foldseek structure alignment-based refinement

method. The MULTICOM system with different implementations was blindly tested in the

assembly structure prediction in the 15th Critical Assessment of Techniques for Protein

Structure Prediction (CASP15) in 2022 as both server and human predictors. MULTICOM_qa

ranked 3rd among 26 CASP15 server predictors and MULTICOM_human ranked 7th among

87 CASP15 server and human predictors. The average TM-score of the first predictions

submitted by MULTICOM_qa for CASP15 assembly targets is ~0.76, 5.3% higher than ~0.72

of the standard AlphaFold-Multimer. The average TM-score of the best of top 5 predictions

submitted by MULTICOM_qa is ~0.80, about 8% higher than ~0.74 of the standard

AlphaFold-Multimer. Moreover, the Foldseek Structure Alignment-based Multimer structure

Generation (FSAMG) method outperforms the widely used sequence alignment-based

multimer structure generation.
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S ingle-chain proteins (monomers) often interact with each
other to form multimers (i.e., assemblies or complexes) to
perform functions such as gene regulation and signal

transduction. The quaternary structures of multimers largely
determine their function. Therefore, it is important to predict the
quaternary structure of protein complexes from their sequences
for studying protein-protein interaction and function. However,
predicting the quaternary structure of protein complexes is more
difficult than predicting the tertiary structure of single-chain
monomers because the former involves more than one protein
chain and needs to consider both intra-chain residue-residue
interaction and inter-chain residue-residue interaction.

Traditionally, the prediction of protein complex structures
employs template-based modeling or ab initio methods such as
protein-protein docking. In template-based modeling, complex
templates with known structures are initially identified for a
target protein complex and subsequently utilized to construct its
structural prediction. While this approach proves effective if
similar homologous templates can be found, it does not work for
most targets because good templates are usually not available or
cannot be identified.

In contrast, ab initio methods aim to predict complex struc-
tures without the reliance on templates, utilizing various techni-
ques such as grid-based fast-Fourier transform docking1–3,
particle swarm optimization for conformational sampling4, and
local shape complementarity alongside symmetry constraints5.
Furthermore, integrative methods6,7 combine template-based
modeling and ab initio docking to improve the prediction of
complex structures. Nevertheless, the accuracy of these methods
for predicting complex structures is generally low8,9, due to the
absence of templates, complexities associated with conforma-
tional sampling, inaccuracy of scoring functions, and challenges
in accommodating protein flexibility.

The recent application of deep learning to inter-protein contact
prediction and quaternary structure prediction has started to
transform the field10–15. Particularly, the adaption of the high-
accuracy tertiary structure prediction method—AlphaFold216—
for quaternary structure prediction as AlphaFold-Multimer13 has
drastically improved the accuracy of quaternary structure pre-
diction for protein assemblies. AlphaFold-Multimer is an end-to-
end protein complex structure prediction method whose accuracy
depends mostly on the quality of multiple sequence alignment
(MSA) input, even though good structural templates may have
some positive effect.

Despite the breakthrough made by AlphaFold-Multimer, its
accuracy for quaternary structure prediction is still much lower
than AlphaFold2’s accuracy for tertiary structure prediction.
Therefore, there is still a large room to further improve the
accuracy of AlphaFold-Multimer-based complex structure
prediction.

In this work, we developed several algorithms to improve
AlphaFold-Multimer-based complex prediction from different
aspects and integrated them to build a MULTICOM complex
structure prediction system. It uses both traditional sequence
alignments and Foldseek17-based structure alignments to gen-
erate MSAs for monomers and concatenates them as MSAs for
multimers according to different criteria such as the same species
and known/hypothetical protein-protein interaction. The struc-
tural templates identified by the sequence or structure alignments
for monomers from different template databases are also com-
bined as templates for the multimers. The diverse set of MSAs
and templates are used as input for AlphaFold-Multimer to
generate quaternary structural predictions, which are then ranked
by multiple complementary quality assessment (QA) methods
including AlphaFold-Multimer’s confidence score, the average
pairwise structural similarity (PSS) between a prediction and

other predictions of the same target, and the average of the two.
The top-ranked predictions are further refined by using the
Foldseek structure alignment-based multimer structure refine-
ment to generate better predictions.

We implemented the MULTICOM system as two server pre-
dictors and two human predictors that blindly participated in the
assembly structure prediction in CASP15 from May to August
2022. Both the MULTICOM server and human predictors ranked
among the top server or human/server predictors in CASP15. The
predictors also performed significantly better than a standard
AlphaFold-Multimer predictor participating in CASP15,
demonstrating that the MULTICOM approach has significantly
improved the accuracy of the AlphaFold-Multimer-based protein
assembly structure prediction. We released the source code of the
MULTICOM system at GitHub so that the community can run it
on top of AlphaFold-Multimer to obtain more accurate protein
complex structure predictions.

Results and discussion
The comparison between MULTICOM servers and other
CASP15 server assembly predictors. According to the CASP15
official assessment (see the official ranking https://
predictioncenter.org/casp15/zscores_multimer.cgi), MULTI-
COM_qa and MULTICOM_deep servers ranked 3rd and 5th

among all CASP15 assembly server predictors. The MULTICOM
human predictors (MULTICOM_human and MULTICOM)
ranked 7th and 10th among all CASP15 assembly predictors. The
official CASP15 ranking metric (https://predictioncenter.org/
casp15/doc/presentations/Day2/Assessment_Assembly-CASP_
EKaraca.pdf) to score a prediction in a pool of predictions for a

target is
ZscoreICS þZscoreIPS þZscoreTM�score þZscorelDDToligo

4 , which is the
average of Z-scores of ICS (Interface Contact Score)18, IPS
(Interface Patch Score)18, TM-score calculated by US-align19 and
lDDToligo (Oligomeric lDDT)20. Such a score was calculated for
the no. 1 prediction for each target submitted by each predictor.
The sum of all positive Z-scores for all the CASP15 targets is the
total score of a predictor, which is used to rank all the predictors
as shown in Table 1. In addition to the top 1 submitted predic-
tions, CASP15 also calculated the total score for the best of five
predictions for the targets submitted by a predictor to rank the
predictors alternatively. According to the Z scores in terms of the
best of five predictions, MULTICOM_deep, MULTICOM_qa
ranked 2nd and 3rd among 26 server predictors as shown in
Table S1. MULTICOM_human and MULTICOM ranked 10th

and 14th among 84 predictors.
The average TM-scores of top 1 predictions (or best of five

predictions) submitted for 41 multimer targets by the top 15
CASP15 server predictors including the standard AlphaFold-
Multimer (i.e., NBIS-AF2-multimer run by the Elofsson Group)
according to the CASP15 official Z-score ranking are reported in
Table 1 (or Table S1). The TM-score of a prediction is calculated
by using US-align19 with parameters (-TMscore 6 -ter 1) to
compare it with the native structure. 41 multimeric targets
include 20 hetero-multimers and 21 homo-multimers. A target is
classified as a template-based modeling (TBM) target if a rather
complete template could be found for it and its subunits, while a
target is classified as free-modeling (FM) or FM/TBM target if no
template or only a partial template could be found for it or its
subunits. Out of 41 multimeric targets, 14 of them are classified as
TBM targets, 27 of them are classified as FM or FM/TBM targets.

The average TM-score of top 1 predictions submitted by our
best MULTICOM server predictor (MULTICOM_qa) for the 41
multimers is 0.7565, only slightly lower than the highest score
0.7665 of the no. 2 Z score ranked server predictor Manifold-E. It
is worth noting that CASP15 Z score-based ranking is not the
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same as the average TM score-based ranking because the former
favors the predictors that perform well on some targets when
most other targets fail, which is different from the latter weights
all the targets equally. This is the reason Yang-Multimer ranked
no. 1 in terms of Z-score even though it missed three targets. The
average TM-score of top 1 predictions of MULTICOM_qa is
5.27% higher than 0.7186 of NBIS-AF2-multimer, showing that a
pronounced improvement has been made over the standard
AlphaFold-Multimer. Like all the other server predictors,
MULTICOM_qa and MULTICOM_deep performed better on
the TBM targets than on the FM and FM/TBM targets.
MULTICOM_deep has the highest average TM-score of 0.8459
on the TBM targets. MULTICOM_qa has the second highest
average TM-score of 0.7281 on the 27 FM and FM/TBM targets,
only lower than 0.7382 of Manifold-E.

MULTICOM_qa performed obviously worse than the top-ranked
server predictors—either Manifold-E or Yang-Multimer—(i.e., TM-
score difference >0.08) on three homo-trimers (T1174o, T1179o and
T1181o), two large hetero-multimers (H1114 and H1137), three
hetero-dimers including two nanobodies (H1141 and H1144) and
an antibody-antigen H1129, and a large homo-multimers (T1176o)
(see Fig. 1). For T1174o, T1179o and T1181o, MULTICOM_qa
managed to generate some good predictions in the prediction pool,
but the ranking method failed to select them as top 1 prediction. For
H1114 (stoichiometry: A4B8C8), because there was no sufficient
GPU memory for AlphaFold-Multimer to generate full-length
predictions for the entire complex of 7,988 residues, MULTI-
COM_qa tried to predict the structures for different components of
the complex (e.g., ABC, AB2C2, A3B3C3, AB4C2, B8) and then
combined them to build the structure for the entire complex.
Unfortunately, it did not try to build the structure of the A4
component, which is the key to linking all the components together.
Therefore, MULTICOM_qa submitted a structure predicted for
AB2C2 as the top 1 prediction as shown in Fig. 1.

For H1137 (stoichiometry: A1B1C1D1E1F1G2H1I1), MULTI-
COM_qa predicted two conformations for the six-chain trans-
membrane helical channel consisting of Chains A, B, C, D, E and
F (one relatively straight one and one bended one), but it selected
the less accurate bended one according to the pairwise similarity
between predictions, leading to the mediocre quality of predicted
structures for the target (see Fig. 1).

For two nanobody-antigen complexes H1141 and H1144
(stoichiometry: A1B1), there are different reasons for the failure.
For H1141, the maximum TM-score of the predictions generated
by MULTICOM is 0.6838, much lower than 0.96 of the top 1
prediction submitted by Manifold-E. For H1144, although some
good structural predictions (TM-score= ~0.89) had been gener-
ated, the ranking method selected a common conformation of
low quality rather than the high-quality predictions that were rare
in the prediction pool. For nanobody targets like H1141 and
H1144, it would be useful to generate a large number of
predictions to obtain more high-accuracy predictions that may
have obviously higher confidence scores than other low-quality
predictions. Moreover, as nanobody targets do not necessarily
have inter-chain co-evolution information recorded in their
MSAs, it may be useful not to pair their MSAs when using
AlphaFold-Multimer to generate predictions for them as shown
by some predictors in CASP15.

For H1129, our monomer alignments pairing method did not
find any pairs for the two subunits. Therefore, only several default
MSAs and template combinations (e.g., default_multimer,
default_pdb, default_pdb70, default_comp, default_struct,
default_af) were used as inputs for AlphaFold-Multimer to
generate 30 predictions for it. The maximum TM-score of the
generated predictions is 0.8149, much lower than 0.964 of the top
1 prediction submitted by Yang-Multimer. T1176o is a homo-
multimer with 8 subunits that interact via multiple interfaces, for
which AlphaFold-Multimer could generate full-length complex
structures directly. However, the interaction between the 8 sub-
units could not be well predicted by AlphaFold-Multimer.
Predicting the structure for 2 or 3 units (A2 or A3) of the
multimer produced several different conformations and inter-
faces, which could not be easily combined to generate good full-
length predictions for the complex. In fact, no prediction
submitted by all the CASP15 predictors have a TM-score >0.5,
indicating this is a very hard target.

Overall performance of MULTICOM_qa compared with the
standard AlphaFold-Multimer. Fig. 2a shows the distribution of
TM-scores of the best of five predictions submitted by MULTI-
COM_qa on the 41 multimers (14 TBM multimers and 27 TBM/
FM and FM multimers). For 31 out of 41 (75.61%) targets, it

Table 1 The top 15 out of 26 server predictors including NBIS-AF2-multimer ranked by the CASP15 official Z-score and the
average TM-score of top 1 predictions submitted by them for the 41 multimers, 14 TBM multimers, 27 TBM/FM and FM
multimers.

Server predictors Sum of Z scores
(> 0.0)

Target
count

Avg TM-score on 41
multimers

Avg TM-score on 14 TBM
multimers

Avg TM-score on 27 FM and
FM/TBM multimers

Yang-Multimer42 24.6946 38 0.7138 0.8235 0.6569
Manifold-E43 18.8589 41 0.7665 0.8211 0.7382
MULTICOM_qa44 18.3529 41 0.7565 0.8111 0.7281
DFolding-server45 17.0135 33 0.5978 0.6634 0.5637
MULTICOM_deep44 16.2869 41 0.7416 0.8459 0.6875
UltraFold_Server46 15.7081 41 0.6961 0.7884 0.6483
MultiFOLD47 15.2358 41 0.6643 0.7366 0.6268
MUFold48 14.0905 41 0.7195 0.8401 0.6569
Kiharalab_Server49 13.5184 40 0.6703 0.7597 0.624
ColabFold50 12.7694 39 0.6339 0.7148 0.592
NBIS-AF2-multimer51 12.271 41 0.7186 0.8163 0.668
RaptorX-Multimer52 11.9178 40 0.6744 0.78 0.6196
Yang-Server42 10.495 19 0.3578 0.6174 0.2232
DFolding-refine45 9.3295 36 0.6584 0.8144 0.5775
GuijunLab-Assembly53 8.6 41 0.6701 0.769 0.6188

When calculating the average TM-score here, if a predictor did not submit a prediction for a target, the TM-score for the target is set to 0.
The bold font highlights the best result. The underline denotes the second-best result.
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generated at least one prediction with TM-score >= 0.7. For 24
out of 41 (58.54%) targets, it generated at least one high-quality
prediction with TM-score > 0.85.

However, MULTICOM_qa performed very poorly on H1114,
T1176o, T1115o, T1160o and T1161o (TM-score of the best
prediction <0.5) as shown in Fig. 2a and Fig. S1. H1114
(stoichiometry: A4B8C8), T1176o (stoichiometry: A8) and
T1115o (stoichiometry: A16) are very large multimers. The
reason why MULTICOM_qa failed on H1114 and T1176o is
explained in Section 2.1. T1115o is a large homo-multimer with
16 subunits (4608 residues), for which AlphaFold-Multimer could
not generate full-length complex structures due to the lack of
GPU memory. Therefore, MULTICOM_qa tried to predict the
multimer structures for A4 and A8, which were combined into an

arc-like structure for the complex whose bending angles were
different from the native structure.

The two homodimers (T1160o and T1161o) have two very
short chains (48 residues only). They have very similar sequences
(only five-residue differences in the sequence of the chain) but
fold into two different conformations due to different crystal-
lization conditions, which may make it harder for AlphaFold-
Multimer to predict their structures. In fact, few CASP15
predictors made good predictions for these two targets, even
though AlphaFold-Multimer assigned very high confidence scores
(e.g., >0.8) to the incorrect predictions, indicating they may be
outliers.

Figure 2b compares the TM-score of the best of the top 5
predictions that MULTICOM_qa submitted for each of 41

MULTICOM_qa
TM-score = 0.448

Manifold-E
TM-score = 0.737 MULTICOM_qa

TM-score = 0.75
Yang-Multimer

TM-score = 0.843
T1179o (A2)

Native structure

MULTICOM_qa
TM-score = 0.669

Manifold-E
TM-score = 0.882

T1181o (A3)
Native structure

MULTICOM_qa
TM-score = 0.244

Manifold-E
TM-score = 0.882

H1114 (A4B8C8)
Native structure

MULTICOM_qa
TM-score = 0.685

Manifold-E
TM-score = 0.770

H1137 (A1B1C1D1E1F1G2H1I1)
Native structure

MULTICOM_qa
TM-score = 0.681

Yang-Multimer
TM-score = 0.987

H1144 (A1B1)
Native structure

MULTICOM_qa
TM-score = 0.669

Manifold-E
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H1141 (A1B1)
Native structure

MULTICOM_qa
TM-score = 0.724

Yang-Multimer
TM-score = 0.964

H1129 (A1B1)
Native structureMULTICOM_qa

TM-score = 0.196
Manifold-E

TM-score = 0.379
T1176o (A8)

Native structure

T1174o (A3)
Native structure

Fig. 1 The targets on which MULTICOM_qa underperformed. The top 1 submitted predictions for 9 targets on which MULTICOM_qa performed worse
than Manifold-E or Yang-Multimer.
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Fig. 2 Comparative analysis of MULTICOM_qa and NBIS-AF2-multimer on 41 multimer targets. a The plot of the best TM-scores of the top 5
predictions submitted by MULTICOM_qa on the 27 TBM/FM and FM targets, and 14 TBM targets in the increasing order. The per-target average TM-
score of the best prediction is 0.7963 on the 41 multimer targets. b The plot of the TM-score of the best of the top 5 predictions submitted by
MULTICOM_qa for each target against that of NBIS-AF2-multimer on 41 multimer targets.
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multimers against that submitted by the standard AlphaFold-
Multimer—NBIS-AF2-multimer. On almost all the targets,
MULTICOM_qa was able to generate predictions with quality
better than or similar to NBIS-AF2-multimer. Particularly,
MULTICOM_qa performed substantially better (e.g., TM-score
difference >0.05) than NBIS-AF2-multimer on nine targets
(H1111, T1187o, T1173o, H1135, H1137, T1179o, T1181o,
T1123o and T1115o), while NBIS-AF2-multimer only has an
obviously higher score (e.g., difference >0.05) than MULTI-
COM_qa for only one target (H1157). The average best TM-score
of the top 5 predictions of MULTICOM_qa on the 41 multimer
targets is 0.7963, which is about 8.0% higher than 0.7375 of NBIS-
AF2-multimer. The p-value of the difference is 0.026 according to
one-sided Wilcoxon signed-rank test. Fig. 3 illustrates the nine
examples on which MULTICOM_qa substantially outperformed
NBIS-AF2-multimer.

Sampling predictions with diverse MSAs and templates
improves assembly structure prediction. We compare the best
prediction generated from the MSA-template combinations in
Table S2 and Table S3 with that of NBIS-AF2-multimer on each
of 31 out of 41 CASP15 assembly targets. 10 targets are not
included into this analysis for several reasons: unavailability of
native structures for T1115o, T1192o, and H1185, multiple
structural conformations for H1171 and H1172, and no or few
full-length structures (i.e, <5 predictions) generated for H1111,
H1114, H1135, H1137 and T1176o directly by the customized
AlphaFold-Multimer in the MULTICOM server system during
CASP15 because there was no sufficient GPU memory. The top 5
predictions generated by the MULTICOM server system for the

31 targets are selected according to their AlphaFold-Multimer
confidence scores.

Figure 4 compares the TM-score of the best of the five
predictions predicted from the diverse MSAs and templates
generated by the sequence alignment component in the MULTI-
COM server system against that of NBIS-AF2-multimer on the 31
multimer targets. The average TM-score of the best predictions
generated by the MULTICOM server system is 0.813, higher than
0.789 for NBIS-AF2-multimer. The results demonstrate using
diverse MSAs and templates generated by different sequence
alignment approaches as input for AlphaFold-Multimer to
generate more predictions can improve the quality of the best
possible predictions over the standard AlphaFold-Multimer.

Increasing the value of AlphaFold-Multimer parameter
num_ensemble_eval from 1 to 3 and num_recycle from 3 to 5
and updating the sequence and template databases to the time
slightly prior to the start date of CASP15 can also slightly
improve the quality of the predictions generated. For instance, the
average per-target best TM-score of using AlphaFold-Multimer
with the updated databases and adjusted parameters is 0.8013,
slightly higher than 0.789 of NBIS-AF2-multimer. It is worth
noting that the sequence databases of NBIS-AF2-multimer were
also updated to April 2022 and its template database was updated
to May 2022.

To further analyze the performance of all 13 kinds of MSAs in
Table S4 on protein complexes, after CASP15 was concluded, we
created a benchmark dataset21 from the proteins deposited in the
PDB after AlphaFold-Multimer was released as follows. We
retrieved complex structures from the PDB released between
04/01/2022 and 12/09/2022. The structures were subjected to a
series of filtering, considering the criteria13 such as sequence
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Fig. 3 Nine notable cases where MULTICOM_qa outperformed NBIS-AF2-multimer. The nine examples (H1111, T1187o, T1173o, T1115o, H1135, T1181o,
T1123o, T1179o, H1137) on which MULTICOM_qa performed substantially better than NBIS-AF2-multimer.
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length (>1536 residues), resolution (>4 Angstrom), and chain
number (>8). The complexes were considered hetero-multimers
based on a 0.9 sequence identity threshold between chains. Only
hetero-multimers were used in this post-CASP15 experiment
because all the 13 MSA generation methods were applied to them,
while the homo-multimer structure prediction used only 7 kinds
of MSAs without the complicated monomer MSA pairing. To
remove artificial hetero-multimers due to the experimental
artifact, we only retained hetero-multimers whose structure had
at least ten inter-chain residue-residue pairs in contact with a
minimum distance of < 5 Angstrom between any heavy atoms. To
remove the hetero-multimers that are similar to known protein
structures that may be used by AlphaFold-Multimer and
MULTICOM, we excluded hetero-multimers whose subunits
had more than 0.4 sequence identity with the monomer chains in
the PDB prior to 04/01/2022. Additionally, a hetero-multimer
was removed if any one of its subunits had a template hit in the
monomer template database of MULTICOM consisting of
monomer structures released by 04/01/2022 by HHSearch at
the e-value threshold of 1. Moreover, the subunits of hetero-
multimers were clustered using MMseqs2 with a 0.3 sequence
identity threshold. The cluster ID assigned to each hetero-
multimer was determined by the combination of the cluster IDs
of its monomer chains. The hetero-multimer with the best
resolution in each cluster was selected to be included into the final
benchmark dataset. The dataset has 100 hetero-multimers
in total.

For each of the hetero-multimers in the dataset, the MSApaired

and the MSAunpaired generated by our in-house default
AlphaFold-Multimer were also used to generate 25 predictions
without using any templates. For a fair comparison, each of the 13
different kinds of paired MSAs of its subunits (MSApaired)
generated by MULTICOM together with the exactly same
unpaired MSAs of the subunits (MSAunpaired) was used by
AlphaFold-Multimer to generate 25 predictions, without using
any structural template as input. The top 5 predictions for each
kind of MSApaired were selected by the AlphaFold-Multimer’s

confidence score. The results of 13 kinds of MSA and the default
AlphaFold-Multimer MSA are shown in Fig. S2, where each
MSApaired is named by its interaction source and sequence
database.

In Fig. S2a, the average TM-score of the top-1 predictions on the
100 hetero-multimers for the MSApaired generated by the default
AlphaFold-Multimer (denote as default_multimer) is 0.799, which
is higher than the average score of the other 13 kinds of MSApaired

ranging from 0.7697 to 0.788. However, according to the one-sided
Wilcoxon signed rank test, there is no significant difference between
default_multimer and 7 kinds of MSApaired (spec_iter_uniprot_sto,
str_iter_uniref_sto, str_iter_uniprot_sto, unidist_uniprot_sto,
pdb_iter_uniref_sto, pdb_iter_uniref_a3m, and unidist_unire-
f_a3m). The average TM-score of the best of top 5 predictions of
default_multimer is 0.8206, higher than the average score of the 13
MSAs ranging from 0.7954 to 0.8153, but there is no significant
difference between default_multimer and 5 kinds of MSApaired

(str_iter_uniref_sto, str_iter_uniprot_sto, spec_iter_uniprot_sto,
pdb_iter_uniref_a3m, and str_iter_uniref_a3m) (Fig. S2b).

To investigate the effectiveness of combining the 13 kinds of
MSApaired, the default_multimer was employed to generate 325
predictions for each hetero-multimer, which were used to
compare with the 325 predictions in the combined prediction
pool of the 13 kinds of MSApaired (denote as combine). Notably,
the average TM-score of the combine method for top 1 (or best of
top 5) predictions selected by the AlphaFold-Multimer’s
confidence score is 0.8045 (or 0.8317), higher than the 0.7997
(or 0.8212) of default_multimer (Fig. S2c), even though the
difference is not statistically significant. The results show that
even though each of the 13 kinds of MSAs does not perform
better than the default MSA, the predictions generated form them
as whole have better quality than the default MSA, demonstrating
their complementarity across different targets. Interestingly, only
increasing the number of predictions from 25 to 325 for the
default_multimer resulted in a much smaller improvement (e.g.,
0.0004 TM-score difference for top 1 predictions and 0.0006 TM-
score difference for top five predictions). The results show that
sampling predictions with diverse MSAs can improve the quality
of the assembly structure prediction more substantially than only
increasing the number of predictions generated.

Foldseek structure alignment-based multimer structure gen-
eration improves prediction accuracy. During the CASP15
experiment, the Foldseek Structure Alignment-based Multimer
structure Generation method (FSAMG) was applied to generate
structural predictions for 26 multimers. For each multimer target,
FSAMG was run 2–5 times with different tertiary structures
predicted for the subunits/chains of the target, leading to 10–25
multimer predictions generated. On the 26 common targets, the
average TM-score of the best of top five predictions ranked by
AlphaFold-Multimer confidence score and generated by FSAMG
is 0.81, higher than 0.79 of NBIS-AF2-multimer, showing that a
noticeable improvement has been made by FSAMG over the
standard sequence-alignment-based multimer structure genera-
tion in AlphaFold-Multimer.

Compared to NBIS-AF2-multimer, FSAMG generated much
better predictions on H1140 (0.818 vs 0.622), H1144 (0.890 vs
0.683), T1173o (0.973 vs 0.490), and T1123o (0.893 vs 0.825) as
shown in Fig. 5 and Fig. 6 due to several factors below,
respectively.

For H1140 (stoichiometry: A1B1), a nanobody target, the MSA
for each subunit/chain found by the sequence search (i.e.,
MSAunpaired) was augmented by structural alignments generated
by using Foldseek to search the tertiary structure of each chain
against the known structures in the PDB. The augmented
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Fig. 4 Comparison of MULTICOM predictions to NBIS-AF2-multimer on
31 multimer targets. The TM-score of the best of top five predictions
sampled from the diverse MSAs and templates generated by the sequence
alignment component in the MULTICOM server system for each of 31
multimer targets (y axis) against that of NBIS-AF2-multimer (x axis).
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MSAunpaired of each chain and the similar structural templates
found by the Foldseek search were used as input for AlphaFold-
Multimer to generate predictions, even though no paired
alignments covering the two chains of H1140 were found by
the Foldseek search. The highest TM-score of the predictions
generated by FSAMG is 0.818 (Fig. 6), much higher than 0.622 of
NBIS-AF2-multimer and 0.626 of our in-house AlphaFold-

Multimer with the sequence alignment-based MSAs and
templates as input. For H1144 (stoichiometry: A1B1), another
nanobody target, the highest TM-score of the predictions
generated by FSAMG is 0.890 (Fig. 6), higher than 0.683 of
NBIS-AF2-multimer and 0.855 of our in-house AlphaFold-
Multimer with the sequence alignment-based MSAs and
templates as input. The multimer predictions generated by the
two methods have very similar tertiary structures for individual
chains. However, the multimer predictions generated by FSAMG
have better interactions between the two chains than NBIS-AF2-
multimer. Indeed, the main challenge for this target is to predict
the interaction between the two subunits because there is no
inter-chain co-evolutionary information in the MSAs of nano-
body targets. For FSAMG, AlphaFold-Multimer was provided
with the MSAunpaired containing newly added structural align-
ments as well as only two paired alignments in MSApaired to
generate predictions. In contrast, for both H1140 and H1144, our
other AlphaFold-Multimer variants that enabled MSA pairing
cannot generate good predictions with ~1000 paired alignments
in the MSApaired. The results indicate using more paired MSAs
with AlphaFold-Multimer results in bad predictions for nano-
body targets because their two chains do not have co-evolution.

For T1123o (stoichiometry: A2), the number of sequences of
the initial MSApaired was 26. FSAMG added 10 more structural
alignments into the MSApaired and found 4 monomer templates
(5W1NA, 5KOUA, 5W1ND, 5KOVA) for each subunit that were
fed into AlphaFold-Multimer to generate 10 predictions. The top
5 predictions selected by the AlphaFold-Multimer confidence
score have TM-scores of 0.873, 0.873, 0.877, 0.893 and 0.881
(Fig. 6), all higher than 0.825 of NBIS-AF2-multimer.

For T1173o (stoichiometry: A3), the number of sequences in
the initial sequence alignment-based MSApaired was already larger
than the maximum number of sequences (2048) that can be used
by AlphaFold-Multimer, the paired alignments added into the
MSApaired by FSAMG made little difference. The main difference

H1140_A H1140_B

H1144_A H1144_B

T1173_A * 3

H1140 (A1B1)

H1144 (A1B1)

T1173o (A3)

+

+

TM-score = 0.81754

TM-score = 0.88978

398.0=erocs-MT)2A(o3211T2*A_3211T

TM-score = 0.97304

cba

Fig. 6 Four good predictions (H1140, H1144, T1123o, and T1173o) made by the Foldseek structure alignment-based multimer structure generation
(FSAMG). a Input monomer structures generated by AlphaFold2. b a multimer prediction generated by FSAMG. c The superposition between the multimer
prediction and the native structure (cyan: prediction, gold: native structure) and the TM-score of the prediction.
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Fig. 5 Comparison of Foldseek structure alignment-based multimer
structure generation and NBIS-AF2-multimer predictions on 26 CASP15
multimer targets. The TM-score of the best of top 5 predictions for each
target generated by Foldseek structure alignment-based multimer structure
generation (FSAMG) versus NBIS-AF2-multimer on 26 CASP15 multimer
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is that FSAMG found 4 significant monomer templates including
4UW7A, 4UW4B, 4UW7C from a homo-trimer 4UW7, and
5AQ5B from another homo-trimer 5AQ5 for T1173o that were
used as input for AlphaFold-Multimer to generate predictions.
The proportion of high-accuracy predictions (TM-score > 0.95)
generated by FSAMG is 60% (Fig. 6), while NBIS-AF2-multimer
and our other AlphaFold-Multimer variants did not generate any
prediction of such high accuracy.

Among 26 multimer targets, FSAMG performed only
obviously worse than NBIS-AF2-multimer on H1167—an
antibody-antigen target. The best TM-score of its top 5
predictions is only 0.529, much lower than 0.802 of NBIS-AF2-
multimer. The reason is that there were two kinds of
conformations (a bad one with TM-score≃ 0.5 and a good one
TM-score≃ 0.8) in the prediction pool generated by FSAMG for
H1167. The top 5 predictions selected by the confidence score
unfortunately all belong to the bad conformation.

The comparison of the multimer structure QA methods. In the
CASP15 experiment, the three main QA methods, including the
AlphaFold-Multimer self-reported confidence score (Confidence),
the average pairwise similarity score between a prediction and all
other predictions for a target (PSS) calculated by MM-align, and
the average of the two scores (CoPSS), were applied to rank and
select multimer predictions by MULTICOM predictors.

We use the average per-target ranking loss and average per-target
correlation to compare the three QA methods on all the full-length
predictions generated for 31 multimers by the CASP15 server
prediction deadline (called server_prediction_dataset) and by
the CASP15 human prediction deadline (called human_prediction_
dataset). server_prediction_dataset is a subset of human_predic-
tion_dataset. For some multimer targets, human_prediction_dataset
includes some additional predictions generated between the server
prediction deadline and the human prediction deadline. The per-
target ranking loss for a target is the difference between the TM-
score/DockQ score of the best prediction for the target in a dataset
and the TM-score/DockQ score of the no. 1 prediction selected for
the target by a QA method. The smaller the loss, the better the
ranking for the target. The per-target loss is averaged over all the
targets to assess the ranking performance of a QA method. The per-
target correlation for a target is Pearson’s correlation between the
quality scores generated by a QA method for the predictions and the
true quality scores (TM-scores/DockQ score) of the predictions.
Higher the per-target correlation, the better the quality scores
generated by the QA method. The per-target correlation can be
averaged over all the targets to assess the prediction accuracy
estimation capability of a QA method.

The average per-target ranking loss and average per-target
correlation of the three QA methods on the two datasets are
reported in Table 2. On the server_prediction_dataset, CoPSS has
the lowest average ranking loss and highest average correlation of
0.0842 and 0.3898, better than 0.0866 0.3447 of Confidence and

0.0853 and 0.3767 of PSS in terms of TM-score, indicating that
combining Confidence and PSS improves the performance of
estimating the global accuracy of the predictions in the
server_prediction_dataset. On some targets, PSS can substantially
outperform AlphaFold-Multimer’s confidence score. For instance,
PSS’s TM-score ranking loss for T1179o is 0.03, much lower than
0.428 of AlphaFold-Multimer’s confidence score. In terms of
DockQ score, Confidence has the lowest average ranking loss on
the server_prediction_dataset (0.1003), while CoPSS has the
highest average correlation on the server_prediction_dataset
(0.4073), indicating that they have some complementarity.

On the human_prediction_dataset, in terms of TM-score,
Confidence yields the lowest loss of 0.0505 but the lowest
correlation of 0.3845, while CoPSS has the second lowest loss of
0.0625 and the highest correlation of 0.4078, indicating that
combining Confidence and PSS as CoPSS achieves better
performance than PSS in terms of global structural accuracy
(TM-score). For DockQ score that more specifically considers the
quality of the interface in predicted structures, Confidence has the
lowest average ranking loss (0.0979), while CoPSS has the highest
correlation (0.459). Based on the results of the two datasets,
Confidence, and PSS are complementary for estimating the
accuracy of multimer predictions, while Confidence performs
better in estimating the interface accuracy of the multimer
predictions in terms of the loss of DockQ score. Combining them
may be useful to improve the QA of multimer predictions.
However, how to combine them to achieve consistently better
results still needs more investigation.

The performance of Foldseek structure alignment-based mul-
timer structure refinement. The Foldseek structure alignment-
based multimer structure refinement method (FSAMR) was
applied to 19 multimer targets during the CASP15 experiment.
The per-target average maximum TM-scores of the original
predictions is 0.752, similar to 0.750 of the refined predictions.
However, FSAMR was able to generate better predictions for
some targets, especially for T1187o (TM-score 0.899 vs 0.689)
(Fig. S3). For T1187o, the improvement may be due to the extra
alignments added to the MSApaired by FSAMR. However, FSAMR
can also generate predictions of worse quality. One extreme case
is T1153o (Fig. S3), where a refined prediction has a TM-score of
0.484, much lower than 0.928 of the initial prediction. However,
the worse quality can be detected by the change in the AlphaFold-
Multimer confidence score of the predictions. The confidence
scores for the 5 original predictions are close to 0.9, while the
confidence scores for the five refined predictions are close to 0.48,
indicating a significant drop in the confidence score after the
refinement. If we only use the refined predictions whose con-
fidence score is higher than that of the initial prediction by at least
a margin (i.e., 0.2), the average per-target maximum TM-scores of
the refined predictions is 0.752, higher than 0.740 of the initial
predictions. The results show that FSAMR can be used to

Table 2 The average per-target ranking loss and average per-target correlation of the three QA methods (Confidence, PSS, and
CoPSS) on the server_prediction_dataset and the human_prediction_dataset.

QA Method server_prediction_dataset human_prediction_dataset

TM-score DockQ score TM-score DockQ score

Loss↓ Corr↑ Loss↓ Corr↑ Loss↓ Corr↑ Loss↓ Corr↑

Confidence 0.0866 0.3447 0.1003 0.3776 0.0505 0.3845 0.0979 0.4328
PSS 0.0853 0.3767 0.1373 0.3455 0.0892 0.3853 0.1224 0.4257
CoPSS 0.0842 0.3898 0.1053 0.4073 0.0625 0.4078 0.1171 0.4590

The bold font highlights the best result. The underline denotes the second-best result.
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generate some diverse and even better predictions for a multimer
target if the change in the prediction confidence score is
substantial.

MULTICOM server assembly predictors versus human
assembly predictors. Compared to the MULTICOM server pre-
dictors, the prediction pool of the MULTICOM human pre-
dictors (MULTICOM and MULTICOM_human) was slightly
larger since some additional predictions for some hard targets
were generated by either the customized AlphaFold-Multimer
with different inputs or by FSAMR between the server prediction
deadline and the human prediction deadline. The average TM-
score of the best of five predictions for 41 multimer targets by
MULTICOM_qa is 0.796, only slightly lower than 0.797 of the
best MULTICOM human predictor (MULTICOM_human),
indicating that they achieved largely comparable performance.
However, the average TM-score of the top 1 predictions for the 41
multimer targets of MULTICOM_qa is 0.757, lower than 0.776
for MULTICOM_human. The improvement made by the human
predictor comes mostly from the increase in the number of
multimer predictions generated for some targets and some extra
human-guided prediction ranking and combination, especially on
the top 1 prediction. For instance, for T1174o and T1181o, there
were two alternative conformations in the top 5 predictions
submitted by MULTICOM_qa, but it used the bad conformation
as the top 1 prediction, while MULTICOM_human used the good
conformation as the top 1 prediction. For a large hard target
T1176o, more structural predictions were generated by MULTI-
COM_human for the components of T1176o to be combined to
generate full-length predictions for T1176o. MULTICOM_hu-
man’s best prediction has a TM-score of 0.249, higher than 0.196
of the best prediction by MULTICOM_qa.

Relationship between MSA and multimer structure quality. For
tertiary structure prediction, the quality of the input MSA
quantified by the number of effective sequence (Neff) was shown
to have a high correlation coefficient (i.e., 0.777) with the quality
score (i.e., GDT-TS) of the tertiary structure predictions gener-
ated by AlphaFold2 for the single-chain monomer targets in
CASP1522. However, it is more difficult to study the relationship
between the quality of MSA and the quality of multimer struc-
tural predictions because AlphaFold-Multimer takes both the
MSA of individual chains (MSAunpaired) and the paired MSA of
the multimer (MSApaired) as input, while AlphaFold2 only uses
one MSA as input for tertiary structure prediction. Specifically,
for homo-multimer consisting of multiple identical chains,
AlphaFold-Multimer uses only MSApaired as input, but for hetero-
multimer, AlphaFold-Multimer leverages both MSAunpaired and
MSApaired if available. Here, we use the results of our default
AlphaFold-Multimer variant (default_multimer in Table S2 for
homo-multimer and in Table S3 for hetero-multimer) in the
MULTICOM system to study the relationship between MSA
quality and prediction quality. The quality of the input MSAs for
a multimer is calculated by Neffmultimer=∑n

i¼1
Li
L Neff ðMSAiÞ,

where n is the number of subunits of the multimer, MSAi is the
combination of MSAunpaired for subunit i and the portion of the
alignment in MSApaired for subunit i, Li is the sequence length of
subunit i, L is the total sequence length of the multimer. The per-
target average correlation between the average TM-scores of the
predictions and Neffmultimer of the MSAs is 0.240 on 31 multimer
targets, which is a much weaker correlation than the tertiary
structure prediction for single-chain monomer targets. The weak
correlation may be because the quality of multimers depends not
only on the quality of MSAs of individual chains but also on the

quality of the MSAs informing the interaction between the chains.
But this quality of MSAs is not well measured by Neffmultimer.

Prediction of the structures of very large assemblies. Several
multimer targets (e.g., H1111, H1114, H1137, and T1115o) are so
large that AlphaFold-Multimer could not generate full-length
predictions for them directly because the 80GB memory of the
Nvidia A100 GPU used by MULTICOM was not sufficient to
handle them. In this situation, MULTICOM decomposed each of
such targets into multiple components to predict the structures of
components separately and then combined the structural pre-
dictions of the components into the full-length of the target
through the overlapped chains between the components. For
instance, H1137 (stoichiometry: A1B1C1D1E1F1G2H1I1) has 9
different chains and 3,939 residues in total. Based on the structure
template information, the first domains of six chains
(A1B1C1D1E1F1) form a ring, and the ring structure interacts
with H and I Chains. Therefore, MULTICOM first predicted the
structure of the six chains (A1B1C1D1E1F1) (see Fig. S4a) for
two typical conformations predicted for them: a ring with the
straight tail and a ring with the bended tail). It then divided the
six chains into a ring structure and a tail structure. The sequences
of the ring structure of the first six chains were then cut off to be
used with the other three chains (G, H, I) to predict the structure
of the 9 chains excluding the tail of the first six chains (see
Fig. S4b). Finally, the structure of the first six chains and the
structure of the 9 chains without the tail were combined by
Modeller23 through their common ring structure to build the full-
length structure for H1137 (see Fig. S4c for the bended con-
formation predictions for H1137 and their TM-score as well as
the native structure of H1137). The full-length structure with a
straight tail (see Fig. S4a) has better quality than the one with the
bended tail, but the latter is more frequent than the former. The
AlphaFold-Multimer confidence score could have selected the
structure with the straight tail correctly, but the PSS score pre-
ferred the inferior structure with the bended tail because it was
more abundant.

It is worth noting that AlphaFold-Multimer was rather
effective in generating structural predictions for small complexes
with diverse sampling strategies in CASP15. For the small
complexes (e.g., less than 6 chains), extensive sampling
approaches (such as generating over 1000 predictions) through
AlphaFold-Multimer employed by some groups such as the
Wallner group yielded some high-quality structural predictions.
The main challenge for these approaches lies in selecting the
structural prediction with the highest quality, which can be
tackled by developing more effective methods for assessing the
quality of multimer structures.

However, the prediction complexity intensifies when dealing
with large higher-order complexes due to two main factors.
Firstly, predicting the multimer structure for higher-order
complexes demands substantial computational resources (e.g.,
H1111, H1114, T1115o, H1137) that may not be available. In this
case, dividing a large multimer into subcomplexes to generate
predictions for them to be combined into full-length predictions
for the multimer is a viable option. However, a large multimer
usually has too many sub-complexes to generate predictions for
in a limited amount of time. Identifying critical sub-complexes
that can link sub-complexes together to form the structure of the
entire multimer is critical and sometimes very challenging. For
instance, constructing full-length structures for H1111 (A9B9C9)
and H1114 (A4B8C8) hinges on generating the structures of
subcomplex C9 of H1111 and subcomplex A4 of H1114 because
they form the backbone of linking all the chains in the multimers
together. However, it is not always obvious to prioritize them for
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structure generation. Secondly, higher-order complexes may have
multiple protein-protein interaction interfaces between their
units, which presents a challenge for AlphaFold-Multimer to
predict and combine them to generate full-length multimer
structures due to a large number of combinatorial choices. For
example, there are more than four possible interaction interfaces
between two identical subunits of T1176o (A8) predicted by
AlphaFold-Multimer. No full-length prediction for this target
submitted from the CASP15 predictors has a TM-score higher
than 0.5. Addressing these challenges may require the develop-
ment of efficient and effective methods for the combinatorial
problems of selecting subcomplexes to generate predictions and
combining different predictions with different interfaces to
generate full-length structures of multimers.

Conclusions
We report a protein prediction system (MULTICOM) to improve
AlphaFold-Multimer-based complex structure prediction, which
blindly participated in the CASP15 experiment from May to
August 2022 as both server and human predictors. MULTICOM
enhances AlphaFold-Multimer predictions by generating diverse
MSAs and structural templates using both sequence and structure
alignments for AlphaFold-Multimer to generate better predic-
tions, combining AlphaFold-Multimer confidence score with the
complementary pairwise prediction similarity score to rank pre-
dictions, and further refining the predictions using Foldseek
structure alignment to augment MSAs and templates input for
AlphaFold-Multimer. MULTICOM_qa server ranked among the
top CASP15 server predictors for assembly structure prediction
and performed significantly better than a standard AlphaFold-
Multimer predictor. The results show that using diverse MSAs
and structural templates as input is an effective way to generate
better predictions for assembly structure prediction. Particularly,
the FSAMG method performs better than the existing sequence
alignment-based approach used by AlphaFold-Multimer. More-
over, the FSAMR can substantially improve the quality of struc-
tural predictions for some targets. Furthermore, our results show
that the average pairwise similarity between a prediction and
other predictions is complementary with AlphaFold-Multimer’s
self-reported confidence score for estimating the accuracy of
assembly predictions.

Methods
The MULTICOM protein complex structure prediction system
and methods. The workflow of the MULTICOM complex/mul-
timer prediction system consists of seven steps (Fig. 7): (1) single-
chain (monomer) structure prediction for each unit of a multi-
mer, (2) monomer MSAs concatenation, (3) monomer templates
concatenation, (4) multimer structure generation, (5) Foldseek
structure alignment-based multimer structure generation,
(6) multimer structural prediction ranking, and (7) Foldseek
structure alignment-based multimer structure refinement. The
method in each step is described as follows.

Single-chain structure prediction for each subunit of a multi-
mer. Our in-house single-chain (monomer) tertiary structure
prediction system22 built on top of AlphaFold v2.2.0 is used to
generate MSAs, structural templates, and predicted tertiary
structures for each subunit of a multimer target. It uses sequence
alignment tools including HHblits24, JackHMMER25, MMseq226,
an in-house implementation of DeepMSA27 to search multiple
protein sequence databases including UniClust3028 (uni-
clust30_2018_08), UniRef3028 (UniRef30_2021_02), Uniref9029

(version 04/24/2022), UniProt29 (version 04/24/2022), the Inte-
grated Microbial Genomes (IMG) database30 and the

metagenome sequence databases (e.g., BFD31,32, Metaclust32,
MGnify clusters33) to generate a diverse set of MSAs for each unit
(monomer).

Monomer MSAs concatenation. AlphaFold-Multimer uses two
kinds of MSAs as input: (1) the unpaired MSA for each subunit
(MSAunpaired) and (2) the paired MSA that may encode the
coevolutionary information between the subunits (MSApaired),
which are prepared as follows by the MULTICOM system.

For hetero-multimers, the alignments in the MSAs of the subunits
are concatenated using the potential protein-protein interaction
information extracted from multiple sources to construct MSApaired

as shown in Table S4, including species annotations, UniProt
accession number of sequences, protein-protein interactions in the
STRING database34 and the complex structures in the Protein Data
Bank35 (PDB). The alignment description (header) in UniClust30,
UniRef30, UniRef90, and UniProt contains the UniProt ID, UniProt
accession number, and the species annotations (e.g., Organism
identifier (OX)13, Organism name (OS)36, Taxonomy identifier
(Tax)36). Based on the species information, the individual sequence
alignments in the MSAs of the subunits belonging to the same
species are concatenated to generate the paired multimer sequence
alignments sequentially in a top-down manner. Based on UniProt
accession numbers, sequence alignments from the subunit MSAs are
concatenated if the difference between their UniProt accession
numbers is smaller than 10 as in RosettaFold37. For simplification,
the alignments with the same UniProt accession number prefix (e.g.,
except for the last character) are paired. The STRING database
(version v11.0) contains many hypothetical protein-protein interac-
tions, each of which has an interaction score. The interaction score
between two protein sequences in the UniProt database is retrieved
according to the mapping between STRING ID to the UniProt ID.
Two sequence alignments from two subunit MSAs are concatenated
if their interaction score is higher than 0.5. According to the
mapping between the PDB code and UniProt ID, two sequence
alignments from two subunit MSAs are concatenated if they are
mapped to the same PDB code indicating that they are two subunits
of the same protein complex. The four sources of potential protein-
protein interactions above are used by MULTICOM to generate 13
kinds of MSApaired for hetero-multimers from the different databases
(Table S4). The MSAunpaired for hetero-multimers is always
generated by the same default MSA generation procedure in
AlphaFold-Multimer (e.g., searching the subunit/chain sequence
against UniRef30 and BFD, and MGnify clusters to generate MSAs).
Both MSApaired and MSAunpaired are used in the multimer structure
generation for hetero-multimers by AlphaFold-Multimer.

For homo-multimers, the default MSA generation of the
AlphaFold-Multimer is used by MULTICOM on different sequence
databases to generate several kinds of MSApaired (see default_multi-
mer, default_pdb, default_pdb70, default_comp, default_struct,
default_af, and default_img in Table S2) where the MSAunpaired is
simply concatenated horizontally together as the MSApaired since the
MSAunpaired of each subunit is identical. In contrast, the customized
multimer MSA generation methods in Table S2 pair only the
alignments in the MSAs of the subunits of the multimer that have
the same species annotation or PDB complex codes to generate
MSApaired. The alignments in the MSAs of the subunits without the
species annotation or whose UniProt IDs cannot be mapped to any
PDB codes are paired with gaps. Only MSApaired is used in the
multimer structure generation for homo-multimers by AlphaFold-
Multimer, while MSAunpaired is ignored.

Monomer templates concatenation. The sequences of the subunits
in the multimer are searched against the publicly available pdb_seqres
database (version 04/24/2022), pdb70 (version 03/13/2022) monomer
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template database16 curated from Protein Data Bank (PDB), an in-
house monomer template database pdb_sort9022, and an in-house
protein template database (pdb_complex) constructed from only the
biological assemblies in the PDB using HHSearch38, resulting four
kinds of templates. pdb_complex was constructed in a similar way as
pdb_sort90 except that the former only considered the biological
assemblies in the PDBwhile pdb_sort90 considered all the proteins in
the PDB. The templates found for each subunit are concatenated
together if they share the same PDB code. Only one concatenated
multimer template is kept for each PDB code. Finally, the predicted
tertiary structures for each subunit/chain are also used as the fifth
kind of templates, which can lead to highly inflated AlphaFold-
Multimer confidence scores for generated predictions and is less
useful than the other four kinds of templates.

Multimer structure generation. A customized version of
AlphaFold-Multimer v2.2.0 that accepts pre-generated MSAs
(e.g., MSAunpaired and MSApaired) and structural templates above
as input is used to generate predictions. To perform more
extensive sampling, the value of parameter num_ensemble_eval is
changed from 1 to 3 and num_recycle from 3 to 5 in the cus-
tomized AlphaFold-Multimer. The customized AlphaFold-
Multimer takes up to 19 combinations of MSAs and structural
templates (Table S2) for homo-multimer and up to 29 combi-
nations of MSAs and structural templates (Table S3) for hetero-
multimer as input to generate 10 structural predictions for each
combination by setting the value of num_multimer_prediction-
s_per_model to 2. Only the top 5 predictions ranked by the
AlphaFold-Multimer confidence scores for each MSA-template
combination are added into the structural prediction pool for

the multimer, resulting in up to 95 (or 145) predictions generated
for each homo-multimer (or hetero-multimer) target.

Foldseek structure alignment-based multimer structure gen-
eration. Different from using the sequence alignment-generated
MSAs and templates above as input for AlphaFold-Multimer to
generate predictions, we developed a FSAMG method (Fig. S5) to
generate up to 25 predictions as follows. The predicted tertiary
structures of the subunits of a multimer generated by AlphaFold2
are searched against both the pdb_complex template database and
the tertiary structure predictions in the AlphaFoldDB (the version 1
released before March 2022) by a fast structure alignment tool—
Foldseek—to identity similar structural hits. The output of the
Foldseek search includes the e-value of the structural hits as well as
the structural alignments between the target prediction and the hits.
The structural alignments of local structural hits with e value ≤ 0.001
and global structural hits with TM-score ≥ 0.3 are converted into the
sequence alignments between the target and the hits.

For hetero-multimers (Fig. S5a), the MSAunpaired is initialized
as the MSA generated for each subunit by the tertiary structure
prediction system, while the MSApaired is set empty. Two
sequence alignments generated from structural alignments for
two subunits/chains of the hetero-multimer are paired if they
come from the same PDB protein complex (i.e., sharing the same
PDB code but from different chains) or from the two non-
overlapping domains of a hit in the AlphaFoldDB. Only one
paired alignment is kept for each PDB code to avoid redundancy
in the paired alignments. The sequence alignments are added into
the MSAunpaired for each subunit, while the paired sequence
alignments are included into the MSApaired.

2. Monomer MSAs concatenation
3. Monomer templates concatenation

4. Multimer structure generation

6. Multimer structural prediction ranking

7. Foldseek structure alignment-based multimer structure 
refinement

Monomer/subunit sequences

Species annotation
UniProt accession number

STRING database
PDB

Sequence based concatenation
Structure based concatenation

AlphaFold-Multimer confidence score
Average pairwise structural similarity

Average score of the two

Multimer target

Monomer MSAs Monomer templates & predicted structures

Extract

pdb_complex, AlphaFoldDB

1. Single-chain structure prediction

Monomer predicted structures 
& their MSAs

5. Foldseek structure alignment-
based multimer structure generation

MULTICOM  Protein complex structure prediction system

Fig. 7 The workflow of the MULTICOM protein complex structure prediction system. Its prediction process starts with the prediction of the tertiary
structure of each chain (monomer) of a multimer target (Box 1). Then, on one hand, the MSAs and templates of the monomers are concatenated together
(Box 2 and Box 3) as input for AlphaFold-Multimer to generate multimer structure predictions (Box 4). On the other hand, the predicted tertiary structures
of the monomers are used by the Foldseek structure alignment-based multimer structure generation method to generate multimer structure predictions
(Box 5). The multimer structure predictions generated by the two approaches above are pooled together to be evaluated and ranked (Box 6). Finally, the
top-ranked models are refined by the Foldseek structure alignment-based multimer structure refinement method (Box 7).
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For homo-multimers (Fig. S5b), two different approaches are
applied to generate the MSApaired. The first approach initializes
the MSApaired with the horizontal concatenation of the multiple
copies of the MSA of monomer generated by the tertiary structure
prediction system. Subsequently, the sequence alignments of
individual subunits/chains that share the same PDB code but
from different chains or from the non-overlapping domains of a
hit in the AlphaFoldDB are paired. The top 50 paired alignments
ranked by e-value and TM-score are added into the MSApaired.
The second approach initializes the MSApaired by the pairings of
sequence alignments generated from the structural alignments
that share the same PDB code or ID in the AlphaFoldDB. Then
the horizontal concatenations of the multiple copies of the MSA
of monomer generated by the tertiary structure prediction system
are added to the MSApaired.

For each subunit in the hetero-multimer and homo-multimer,
the similar structural hits from the pdb_complex template
database and the AlphaFoldDB are ranked by e value and TM-
score. The ranked structural hits are treated as monomer
templates for each subunit. The structure-alignment generated
MSAs and the monomer templates for each subunit are used as
input for the customized AlphaFold-Multimer to generate 10
predictions. The top 5 predictions ranked by their confidence
scores are added to the structural prediction pool for the
multimer. This procedure is applied with 2–5 top-ranked tertiary
structure predictions of the subunits of the multimer as described
above to generate 10 to 25 predictions in total. This structure
alignment-based method can find some similar structural hits for
hard targets that sequence alignment methods cannot, leading to
deeper MSAs and more structural templates, which can be used
by AlphaFold-Multimer to generate better structure prediction.

Multimer structural prediction ranking. MULTICOM applies
three QA methods to rank the multimer predictions. Firstly, the
average pairwise structural similarity (PSS) score between a pre-
diction and other predictions in the prediction pool of a multimer
is used to rank the structural predictions39. The pairwise struc-
tural similarity score is calculated by MM-align40. Secondly, the
confidence score generated by AlphaFold-Multimer for each
prediction is also used to rank the predictions. Finally, the average
of the two is applied to rank the predictions.

Foldseek structure alignment-based multimer structure
refinement. Given an initial multimer prediction and its MSAs (i.e.,
MSAunpaired and/or MSApaired), the tertiary structure of each subunit
in the multimer structural prediction is used as input for Foldseek to
search for similar structures in the pdb_complex template database
and the AlphaFoldDB (the version 1 released before March 2022).
The structure alignments with e value ≤ 0.001 or TM-score≥ 0.3
between each subunit and structural hits are converted into sequence
alignments. The sequence alignments of the subunits generated from
the Foldseek search are concatenated if they are from the same PDB
complex structure or the non-overlapped regions of the same single-
chain AlphaFoldDB prediction to construct the MSA for the multi-
mer. The top structural hits of the subunits are used as the monomer
templates for each subunit of the multimer. The concatenated MSAs
are ranked by e-value and TM-score. Only the top 50 concatenated
MSAs are added to the original MSApaired to generate a deeper MSA.
The augmented MSApaired, original MSAunpaired (if any for hetero-
multimers), and the templates are used as inputs for the customized
AlphaFold-Multimer to generate the refined predictions. If the
highest confidence score of the newly refined predictions is higher
than that of the input prediction, the refinement process is repeated
with the refined prediction and its MSAs as input until the number of
refinement iterations reaches 5. The refined prediction with the

highest confidence score generated in the refinement process is used
as the final output prediction.

Implementation of the CASP15 assembly structure predictors.
During CASP15, the MULTICOM protein assembly structure pre-
diction system was mainly executed on three computer servers
(server 1: 192 AMD EPYC 7552 48-Core CPU Processor, 377 GB
RAM, an NVIDIA A100 PCIe 80GB GPU; server 2: 192 AMD
EPYC 7552 48-Core CPU Processor, 503 GB RAM, an NVIDIA
A100 PCIe 40GB GPU; and server 3: 192 AMD EPYC 7552 48-Core
CPU Processor, 1 TB RAM, an NVIDIA A100 PCIe 40GB GPU)
respectively to generate the predictions for multimer targets before
the server prediction deadline and additional predictions for some
multimer targets between the server prediction deadline and the
human prediction deadline if necessary. Generally, ~15–195 pre-
dictions were generated for each target, depending on its size. The
two CASP15 multimer server predictors (MULTICOM_qa and
MULTICOM_deep) mainly used the AlphaFold-Multimer con-
fidence score and the average of the confidence score and the PSS
score to rank multimer predictions, respectively.

The two human multimer predictors (MULTICOM and MULTI-
COM_human) considered all the predictions generated before the
human prediction deadline. Moreover, the Foldseek structure
alignment-based multimer structure refinement was applied to refine
the top-ranked predictions of most targets, and the refined
predictions were added to the prediction pool for the final multimer
structural prediction ranking. Generally, about 40–315 predictions
were generated for each human target. MULTICOM_human mainly
used the average of the confidence score and the PSS score to rank
and select predictions for final submission, while MULTICOM
mainly applied the PSS score to rank predictions. The ranking may
be manually adjusted according to human inspection. The main
difference between the MULTICOM server and human predictors is
summarized in Table S5.

For some very large complexes (e.g., H1111, H1114, H1135,
H1137, T1115o, T1176o, and T1192o), no full-length multimer
predictions or only poor full-length predictions could be
generated by AlphaFold-Multimer due to the GPU memory
limitation, the template-based structure modeling based on
Modeller23 was applied to combine the predictions of the
components of the complexes generated by AlphaFold-Multimer.

Statistics and reproducibility. 41 multimer targets were used in
CASP15, which is the largest blind multimer test dataset to date.
The quality of the structural predictions submitted by the pre-
dictors is not normally distributed. Consequently, the non-
parametric one-sided Wilcoxon signed rank test is the statistical
test used when comparing the performance between different
predictors at the 0.95 confidence level.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The CASP15 data including the experimental structures are available at: https://
predictioncenter.org/casp15/index.cgi. The protein structures predicted by the inhouse
MULTICOM3 software are available at https://github.com/BioinfoMachineLearning/
MULTICOM3/tree/main/evaluation. The source data of the Figures and Tables in this
study can be obtained from Supplementary Data 1.

Code availability
The source code of MULTICOM is available as an add-on package for AlphaFold-
Multimer at: https://github.com/BioinfoMachineLearning/MULTICOM3 and Zenodo41.
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