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Deep learning and single-cell phenotyping for rapid
antimicrobial susceptibility detection in
Escherichia coli
Alexander Zagajewski 1,2,7, Piers Turner1,2,7, Conor Feehily3, Hafez El Sayyed1,2, Monique Andersson3,4,

Lucinda Barrett4, Sarah Oakley4, Mathew Stracy5, Derrick Crook3,4, Christoffer Nellåker 6✉,

Nicole Stoesser 3,4✉ & Achillefs N. Kapanidis 1,2✉

The rise of antimicrobial resistance (AMR) is one of the greatest public health challenges,

already causing up to 1.2 million deaths annually and rising. Current culture-based turnaround

times for bacterial identification in clinical samples and antimicrobial susceptibility testing

(AST) are typically 18–24 h. We present a novel proof-of-concept methodological advance in

susceptibility testing based on the deep-learning of single-cell specific morphological phe-

notypes directly associated with antimicrobial susceptibility in Escherichia coli. Our models can

reliably (80% single-cell accuracy) classify untreated and treated susceptible cells for a lab-

reference fully susceptible E. coli strain, across four antibiotics (ciprofloxacin, gentamicin,

rifampicin and co-amoxiclav). For ciprofloxacin, we demonstrate our models reveal significant

(p < 0.001) differences between bacterial cell populations affected and unaffected by anti-

biotic treatment, and show that given treatment with a fixed concentration of 10 mg/L over

30min these phenotypic effects correlate with clinical susceptibility defined by established

clinical breakpoints. Deploying our approach on cell populations from six E. coli strains

obtained from human bloodstream infections with varying degrees of ciprofloxacin resistance

and treated with a range of ciprofloxacin concentrations, we show single-cell phenotyping has

the potential to provide equivalent information to growth-based AST assays, but in as little as

30min.
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Antimicrobial resistance (AMR) is a major public health
challenge, causing an estimated 1.2 million deaths
annually1, with this number predicted to rise much fur-

ther if left unchecked. AMR represents the evolutionary effect of
antimicrobial selection pressures in the context of the short
bacterial cell cycle, leading to adaptation by natural selection
through a variety of molecular mechanisms2. Several clinical
strategies to address the AMR crisis have been considered. One
strategy relies on the continuous development of novel anti-
microbial agents to outpace bacterial evolution; however, this
strategy alone is neither scientifically nor economically viable3,4.
Another strategy relies on the conservation of the existing anti-
microbial arsenal through strict stewardship and regulation,
which remains challenging to implement universally5. A third
option, as part of stewardship, is through diagnostic improve-
ments, including more rapid Antimicrobial Susceptibility Testing
(AST) methods, which allow better tailoring of antibiotic treat-
ment regimens given to patients6. A combination of these and
other approaches, such as vaccination, is likely needed, as no
single strategy currently represents a complete solution across all
settings.

Existing ASTs provide phenotypic quantification of the Mini-
mum Inhibitory Concentration (MIC) of an antibiotic of choice
for isolates cultured from infected patients, and can be com-
plemented by targeted nucleic-acid assays for known resistance
determinants. AST may also be preceded by species identification
(e.g., using MALDI-ToF). Several drawbacks of current bacterial
identification and AST workflows are a requirement for culture-
based isolation of clinical pathogens, expert operators and
laboratory space, and a typical turnaround time of 18–24 h from
sampling to results7, although faster growth-based AST platforms
are being more widely deployed (e.g. Accelerate’s Pheno System,
bioMerieux’s SPECIFIC REVEAL® Rapid AST System). Initial
antimicrobial regimens given to sick patients are therefore usually
broad-spectrum, which may maximise collateral patient-level
effects such as perturbation of gut flora, and contribute to the
selection and dissemination of AMR at both the patient- and
population-levels.

Multiple novel approaches to improve the speed of AST exist,
including biosensors, genomic assays, and hybridisation
approaches;8 however, most of these remain in the development
stage7, and have not yet been translated into practice. Many of
these methods assess an entire bacterial culture, and the lack of
single-cell specificity leaves them insensitive to heterogeneity in
cell populations, such as the presence of persister cells, or poly-
microbial mixtures. A potential solution to this problem is the use
of single-cell specific ASTs, which address the heterogeneity
problem while also offering higher throughput by evaluating the
effect of antimicrobials directly on cells, rather than relying on
secondary markers such as growth of an entire culture. Multiple
such candidate ASTs have been proposed, enabled by platforms
such as flow cytometry9, Raman spectroscopy10,11, fluorescent
probes in droplet microfluidic devices12, impedence cytometry13

and others. Further opportunity in single-cell ASTs comes from
their integration with widefield microscopy14–17, which increases
throughput by enabling real-time simultaneous monitoring of
large numbers of individual cells. Such cellular imaging produces
rich, high-volume, unstructured data that are well suited to
machine-learning based analysis, and in particular, by modern
deep-learning techniques. These techniques have been used to
great effect to produce AST inference models from genomic18,19

and metabolomic20–23 data, where their ability to execute their
own feature engineering maximises the usage of complex,
unstructured data. With similar insights, deep-learning has been
applied to widefield microscopy to produce candidate ASTs that

provide phenotypic quantification by monitoring single-cell
growth24,25 or motion patterns26,27 in the presence of antibiotics.

Another microscopy approach relies on directly evaluating the
effect of antimicrobials on cellular structures, such as the bacterial
nucleoid or the cell membrane. These structures have been
characterised experimentally and computationally28,29, and were
used as single-cell phenotypes to profile cytological pathways to
understand the mode of action of antibiotics30, and to test for
methicillin resistance in Staphylococcus aureus31. A wide range of
nucleoid and cell membrane cytological phenotypes under dif-
ferent treatment conditions have since been established for a
range of Gram-positive and Gram-negative species32–34. Such a
phenotyping approach has notable advantages over single-cell
microscopy assays monitoring growth or motion patterns: results
are available on the timescale of a single bacterial life cycle rather
than several lifecycles, the method is applicable to difficult-to-
culture pathogens, and there is no requirement for continuous
tracking of individual live cells over time. However, cellular
phenotyping may be affected by phenotypic plasticity, whereby
small genotypic and environmental differences can strongly
influence the displayed phenotype.

In this work, we introduce a novel, single-cell, microscopy-
based approach to characterising bacterial antibiotic susceptibility
that in principle could address some shortcomings of existing
assays. We combine single-cell phenotypes of the nucleoid and
cell membrane with modern Convolutional Neural Networks
(CNNs) to develop a method based on deep phenotyping of
individual cells that display different physiological responses to
antibiotics. CNNs feature a hierarchical pattern of learnable
convolution filters, which allows efficient learning in hetero-
genous imaging data without manual feature engineering –
removing the main bottleneck of previous work31. Our Deep
Antimicrobial Susceptibility Phenotyping (DASP) platform uses
widefield micrographs to rapidly classify antibiotic-treated cells as
either susceptible or resistant. We have developed specific models
for four antibiotics, each representative of an antibiotic family
with a different mode of action: the fluoroquinolone ciprofloxacin
(which targets DNA synthesis), the aminoglycoside gentamicin
(targets protein synthesis), the beta-lactam co-amoxiclav (targets
cell-well synthesis) and rifampicin (targets RNA synthesis). We
show our models appear robust to phenotypic plasticity by
training them on a lab strain of Escherichia coli and then
deploying them successfully on several E. coli clinical isolates with
different ciprofloxacin MICs, where we were able to distinguish
bacteria displaying changes in cellular phenotype in response to
fixed ciprofloxacin treatment concentrations. Furthermore, we
demonstrate that for ciprofloxacin, varying the treatment con-
centration generates a dose-response relationship that might
allow precise quantification of the MIC of clinical isolates over
timeframes as little as 30 min.

Results
Detecting antibiotic susceptibility based on deep learning of
single-cell subcellular phenotypes. We designed a method that
takes as an input bacterial cultures grown in rich medium to a
consistent optical density and then treated with an antibiotic of
choice for a time sufficient to produce distinct, antibiotic-specific,
cellular phenotypic changes (Fig. 1A, left) - in which case bacteria
were classified as “susceptible” to the given antibiotic. Upon cell
fixation and staining (Fig. 1A), cells that remained unaffected by
the treatment were classified as having a “resistant” cellular
phenotype, which highly resembled the original untreated phe-
notype (see Supplementary Fig. S1 for example comparing the
resistant and untreated phenotypes in resistant clinical isolates).
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After collecting a large number of micrographs (each
representing an image containing 50–200 cells), individual cells
representing either the untreated or susceptible phenotype were
used to train segmentation and classification models. At testing,
the trained models segment micrographs of treated cells and
classify individual cells into one of the two categories with regards
to antibiotic susceptibility; examining the distribution of
classifications enables reporting on the resistance of the entire
population of bacterial cells making up the sample (Fig. 1B).

Generating antibiotic-resistant and antibiotic-susceptible cel-
lular phenotypes. To implement the concept above, we char-
acterised the untreated cellular phenotype of lab reference E. coli
strain MG1655, as well as the susceptible cellular phenotypes of
the same strain to four antibiotics reflecting different modes of
action: ciprofloxacin (CIP; MG1655 MIC= 0.012 mg/L), genta-
micin (GENT; MG1655 MIC= 0.13 mg/L), co-amoxiclav
(COAMOX; MG1655 MIC= 3.2 mg/L), or rifampicin (RIF;
MG1655 MIC= 8 mg/L), where CIP, GENT and COAMOX are
widely used in clinical practice as treatment for infections caused
by E. coli (see Methods and Supplementary Table S1). Rifampicin
is not clinically relevant for E. coli. The MG1655 E. coli strain was
incubated with supra-MIC concentrations of 10 mg/L, 40 mg/L,
100 mg/L and 160 mg/L of ciprofloxacin, gentamicin, rifampicin
and co-amoxiclav for 30 min, 30 min, 30 min and 60 min
respectively, in order to capture discernible changes in cellular
morphology. The Amoxicillin and clavulanic acid co-amoxiclav
in co-amoxiclav were prepared at a 2:1 ratio (The clavulanic acid
concentration was 80 mg/L at the co-amoxiclav treatment con-
centration). To capture the untreated cellular phenotype (and use
it as a proxy for the resistant phenotypes, where we expect no

treatment-induced changes in the nucleoid and membrane) and
the susceptible phenotype for each antibiotic, we stained the
bacterial nucleoid with the DNA-binding fluorophore DAPI
(green signals in Fig. 2A–E), and the membrane with the lipid
stain Nile Red (NR; red signals in Fig. 2A–E), revealing the
organisation of the nucleoid and overall cell morphology as a
function of treatment.

In the untreated phenotype (Fig. 2A), distinct copies of the
chromosome were seen in each cell, organised into heterogenous
macrodomains by nucleoid-associated proteins35. In contrast,
incubating MG1655 with 10 mg/L of ciprofloxacin produced a
compaction of the chromosome towards the cell centre due to
topoisomerase IV inhibition36 (Fig. 2B). Similarly, incubation
with gentamicin, which binds to the 30S ribosomal subunit and
interferes with translation elongation, also leads to nucleoid
compaction, although the chromosomes in this case do not merge
fully into one spot (Fig. 2C). Incubation with rifampicin, which
inhibits transcription initiation by RNA polymerase, led to
decompaction of the nucleoid (Fig. 2D); individual chromosomes
could still be distinguished, but the macrodomains were lost.
Finally, exposure to co-amoxiclav produces a subtle susceptible
phenotype – whilst some differences in the organisation of the
macrodomains can be seen, the effect is more challenging to
discriminate visually from the untreated phenotype. Representa-
tive full fields of view for all phenotypes are provided in
Supplementary Figs. S2 and S3.

To classify the phenotypes, we designed a 2-stage deep-learning
pipeline (Fig. 2F). In the first stage, a Mask-Region based
Convolutional Neural Network (RCNN) model37 segments
individual cells from whole micrographs using the image
generated using NR stain. In the second stage, a separate

Fig. 1 Schematic of an approach to antimicrobial susceptibility testing based on bacterial single-cell phenotypes. A Live E.coli cells are treated with an
antibiotic, inducing changes in subcellular morphology. Susceptible cells show strong phenotypic changes associated with the effect of antibiotic action,
creating a distinct susceptible phenotype. Resistant cells are not affected by the antibiotic – the resistant phenotype is similar to the untreated phenotype.
Cells are fixed, and nucleoids and cell membranes are fluorescently stained. The sample is imaged under a widefield fluorescence microscope. A deep
learning pipeline is trained to distinguish the susceptible phenotype from the resistant (untreated) phenotype, with single cell resolution. B An unknown
sample can be processed and fed into the trained model, which classifies the phenotypes on a single cell level, to produce sample-wide classification
statistics. These statistics can then be used to obtain information on the resistance of the entire sample.
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DenseNet121 classifier classifies cells into phenotypes using the
images generated using both NR and DAPI stains. Together, both
stages allow precise quantification of the sample response to
antibiotic treatment with single-cell resolution.

Single-instance cell segmentation by Mask R-CNN. To segment
cells from micrographs, a Mask R-CNN model was built on a
ResNet50 backbone, and trained for a 2-class segmentation task
(cell/background) on a cross-validation dataset of annotated
micrographs of treated and untreated cells from 6 repeat imaging
experiments of MG1655 (Supplementary Fig. S4C), consisting in
total of 29,297 ground truth, manually curated cells in 459 fields
of view. During training, the model was continually validated on a
validation set, consisting of 9044 cells in 115 fields of view.

We evaluated the performance of our segmentation on a
dataset consisting of all the micrographs across all treatments in a
“holdout” experiment – from which no cells or micrographs were
used either in training or hyperparameter optimisation. Evaluat-
ing a total of 155 micrographs containing 13,247 ground-truth,
manually curated cells, we detected a total of 12,147 cells (92 %
maximum total recall). To quantify the quality of the

segmentation, we calculated the average precision-recall curves
at a range across Intersection over Union (IoU) thresholds, as
well as the associated segmentation confidence (Supplementary
Fig. S5). The precision-recall curve quantifies the tradeoff
between precision (i.e., the fraction of returned results that are
relevant), and recall (i.e., the fraction of total relevant results that
were successfully returned), whereas the IoU quantifies the area
overlap between the detection instances and ground truth
instances needed to count as a successful detection – as the IoU
threshold increases, the task becomes harder. We achieved a
mean Average Precision (mAP) of 70 % at the standard IoU
threshold of 0.5 (Supplementary Fig. S6).

Distinguishing resistant and susceptible single-cell phenotypes.
To classify segmented cells into distinct phenotypes, we trained
DenseNet12138 classifiers in a range of computational experi-
ments (Supplementary Fig. S4B, C), for the binary classification of
resistant and susceptible single-cell phenotypes generated using
MG1655 and one classifier per antibiotic. As discussed above,
treated MG1655 cells were used to generate the susceptible class,
whilst untreated cells were used to generate the resistant class.

Fig. 2 Segmentation and Classification pipeline. A Untreated phenotype in the MG1655 E.coli strain, which resembles the resistant phenotype.
B Ciprofloxacin susceptible phenotype. C Gentamicin susceptible phenotype. D Rifampicin susceptible phenotype. E Co-amoxiclav susceptible phenotype.
Note, this phenotype is morphologically similar to the untreated phenotype. F A multichannel image consisting of DAPI (green) and Nile Red (red) is split
into individual channels. A Mask R-CNN segmenter segments single-instance binary masks from the Nile Red channel. Binary masks are used to isolate
single cells. A phenotype classifier classifies individual cells into either the resistant or susceptible phenotype, using both channels. The scalebars in
A–E are 2 µm, and the scalebars in F are 5 µm.
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First, we trained each classifier on the cross-validation dataset,
where all untreated and treated cells from 6 experiments were
combined into one dataset from which cells for the training,
validation and test sets were drawn randomly without replace-
ment (seeMethods); this “cross-validation” approach provides the
expected upper bound for model performance. Second, to
examine the performance loss from the upper bound due to
experimental variation within the training data, we performed an
experimental K-fold cross-validation: one of the 6 experiments
was withheld for testing, and the model trained on a class-
balanced dataset consisting of an equal number of cells drawn
randomly from each of the remaining experiments. This “K-fold
cross-validation” experiment was rotated around with the final
reported result being the sum over 6 different models trained and
tested on different permutations of experiments. Lastly, to
evaluate the robustness of the classifiers against experimental
variation, we trained a model on a class-balanced dataset of equal
numbers of cells drawn randomly from the 6 experiments, and
then evaluated it on a class-balanced dataset of the same equal
number of randomly selected cells from a 7th, “holdout”
experiment. Notably, no data from the holdout experiment was
used for training, or hyperparameter optimisation of any of the
classifiers.

With this procedure, we achieved an excellent (>84%) single-
cell classification accuracy in the holdout experiments across all
antibiotic conditions (Fig. 3), with comparable statistics in the
other computational experiments; full numerical results across all
experiments and antibiotics are provided in Supplementary
Tables S2 and S3. Untreated cells, which were used to generate
the resistant class, were predominantly classified as resistant (ie.
not displaying a physiological response to an antibiotic), whilst
treated cells were classified as susceptible (ie. displaying the
expected physiological response).

To understand the decision-making process of the CNN
classifier, and the potential failure modes, we used saliency
mapping39 to produce attention heatmaps over example single-
cell phenotype inputs; such mapping highlights the pixels that
contribute most to the classification decision. We observed that,
for all antibiotics, in correctly classified cells, the classifier focuses
primarily on nucleoid structure and organisation, with some
attention given to the membrane, as expected (Supplementary
Fig. S7). The same pattern was observed in cells that were
misclassified (Supplementary Fig. S8) – such cells did not show
the full expected phenotype due to cell-to-cell heterogeneity. For
example, some ciprofloxacin susceptible cells did not show a full
nucleoid compaction during the treatment window, and were
thus classified as resistant.

Single-cell phenotypic classifications reflect clinical E. coli
isolate MICs relative to a given treatment concentration for
ciprofloxacin. Having validated both our segmentation and
classification models on the MG1655 E. coli strain used to gen-
erate the training data, we deployed the models on six clinical
isolates of E. coli (EC1-6), each with a different degree of resis-
tance to ciprofloxacin (as exemplified by the MIC of each isolate,
which we measured; see Methods) and linked to a resistance
genotype derived from sequencing (Supplementary Table S4).
The rationale here was to understand whether our approach using
short incubation times with high concentrations of antibiotics to
obtain resistant/susceptible classifications based on cellular phe-
notypes meaningfully reflected resistant/susceptible classifications
defined by determining minimum inhibitory concentrations
(MICs), as used in clinical microbiology. To evaluate the response
of the isolates to ciprofloxacin, we used our segmentation model
(trained on the cross-validation dataset), and the binary antibiotic

susceptibility classifier (resistant vs susceptible to ciprofloxacin)
used to analyse holdout samples as described in the previous
section.

Samples of clinical isolates were prepared using two conditions:
applying no antibiotic treatment (untreated), or treating cells with
ciprofloxacin at the same concentration and duration as the
susceptible MG1655 used for training (20× EUCAST40 break-
point concentration [i.e., 10 mg/L], 30 min incubation). These
samples underwent the same processing as the training samples,
producing collections of micrographs for each sample. Those
collections of micrographs were segmented to identify individual
cells, and then the classification model was used to classify these
cells as either resistant, or susceptible.

Prior to any antibiotic treatment, cells of all clinical isolates were
predominantly classified correctly (i.e., in the resistant class –
untreated cells showing no response to the antibiotic) and with high
confidence; for example, we obtained 77% and 96% resistant
classifications for untreated EC2 and EC5 (Fig. 4A, left, and Fig. 4B,
left, respectively). Treated cells for clinical isolates with an MIC to
ciprofloxacin below the 10mg/L treatment concentration used in this
experiment displayed the susceptible cellular phenotype, and were
strongly classified as such, with e.g. 91% of all cells being classified as
susceptible in EC2, which had an MIC of 0.03mg/L (Fig. 4A, right).
Treated cells for clinical isolates with an MIC > 10mg/L were also
strongly classified as such, with e.g. 91% of all cells being classified as
resistant in EC5, which had an MIC of 108mg/L (Fig. 4B, right).
While it may be possible to improve the accuracy of resistant
classifications by ignoring predictions with a prediction confidence
below a certain threshold, more data would be required to ascertain
the effect of a given prediction threshold, the appropriate value of a
prediction threshold, and how the resulting dose-response curve
correlates with clinically relevant antibiotic resistant tests.

This pattern was maintained across the library of all six clinical
isolates (Fig. 5; see also Supplementary Figs. S9–11 for representa-
tive fields of view and overlays showing phenotype detections, and
Supplementary Fig. S12 for the total number of cell detections in
each repeat of each isolate and treatment condition). In isolates
with MICs below the training and treatment concentration
(EC1–4), there was a statistically significant (p-value < 0.001)
increase in the ratio of susceptible classifications based on cellular
phenotypes in treated samples, as compared to the untreated
samples. In sharp contrast, for resistant isolates with MICs above
the training and treatment concentration (EC5-6), there was no
statistically significant difference in the ratio of susceptible
classifications based on cellular phenotype between treated and
untreated samples. The size of the proportion of cells classified as
showing a susceptible cellular phenotype appeared correlated with
the difference between the isolate MIC and treatment concentra-
tion. For example, for isolates with MICs well below the treatment
concentration (EC1–3) > 80% of cells were classified as showing a
susceptible cellular phenotype in treated samples, whilst for EC4,
with an MIC approximating the treatment concentration (MIC=
8mg/L, treatment concentration= 10mg/L) only 38% of treated
cells were classified as showing a susceptible cellular phenotype.
The minimum number of observations required to classify treated
susceptible phenotypes with a 90% accuracy and a 1% statistical
significance was found to be <400, though significantly less cells are
required when the treatment concentration exceeds the MIC by at
least an order of magnitude (Supplementary Table S5).

Changes in single-cell susceptible:resistant classification ratios
following incubation with varying ciprofloxacin concentrations
provides antimicrobial susceptibility information in 30min.
After demonstrating that our models can differentiate between
clinical isolates resistant and susceptible (based on MIC) to a
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fixed concentration of ciprofloxacin after 30 min of incubation,
we investigated the impact of varying ciprofloxacin concentra-
tions on the ratio of single-cell susceptible:resistant classifications
with the same incubation time. The rationale for this was that we
reasoned that these ratios may reflect the MIC value for different
isolates, based on the observations in Fig. 5. This time, we gen-
erated samples of three of the clinical isolates with different MICs
(EC1, EC3 and EC5; MICs: 0.008, 0.5 and 8 respectively), treated
them at nine different ciprofloxacin concentrations (ranging from
0.001 mg/L to 16 mg/L) for 30 min, imaged them, and evaluated
the ratios of cells classified as showing susceptible versus resistant
cellular phenotypes (see Supplementary Fig. S13 for numbers of
cell detections in each biological replicate of each isolate and
treatment concentration).

Across all three clinical isolates, cells treated at sub-MIC
concentrations did not show a significant shift away from the
untreated/resistant cellular phenotype, and the ratio of cells
classified as susceptible:resistant was low. Conversely, at

concentrations in excess of the MIC, a strong response was
observed, with >90% of the cells displaying a susceptible cellular
phenotype. At intermediate concentrations approximating the
MIC for each strain, the magnitude of the response varied
logistically between the asymptotes; to quantify this relationship,
we fitted asymmetric dose-response models to data (Fig. 6, see
also Methods).

Our method provided results after as little as 30 min of
incubation with ciprofloxacin, whilst gold-standard growth-based
ASTs give results over longer periods of time (18–24 h). To
compare our result against a growth-based gold-standard, we
measured growth curves of the three isolates in the presence of
ciprofloxacin over 24 h. From these curves, we calculated the total
cell growth by numerical integration of the time-resolved optical
density (OD600) signal, and normalised it to the growth of
untreated cells, thereby creating a ratio of total cell growth as a
function of ciprofloxacin concentration, relative to untreated cells
(Fig. 6B). Across all three isolates and ciprofloxacin

Fig. 3 Binary classification of resistant and susceptible phenotypes in E.coli MG1655 training strain. A Representative field of view (FoV) of untreated
cells shown in grayscale, with an overlay showing phenotype detections. Resistant classifications shown in red, susceptible ones shown in blue. Evaluation
carried out with the ciprofloxacin resistant/susceptible classifier. B As A, but with the gentamycin classifier. C As A, but with the rifampicin classifier. D As
A, but with the co-amoxiclav classifier. E As A, but with ciprofloxacin treated cells. F As B, but with gentamicin treated cells. G As C, but with rifampicin
treated cells. H As D, but with co-amoxiclav treated cells. I Holdout test performance of the ciprofloxacin classifier, evaluated on class-balanced, randomly
sampled 1000 cells from an independent holdout experiment, from which no data was drawn for model training or hyperparameter optimisation.
Percentage and absolute class counts shown in both the resistant [R] and susceptible [S] classes. J As I, but for the gentamicin classifier. K As I, but for the
rifampicin classifier. L As I, but for the co-amoxiclav classifier, and with a dataset of 800 cells. The scalebars in A–H are 2 µm.
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concentrations, the total cell growth followed a relationship
reciprocal to that of the ratio of susceptible:resistant cellular
phenotypic classifications derived using our method. At sub-MIC
concentrations, cell growth for each strain was not inhibited,
leading to a high cell growth ratio, whilst at concentrations in
excess of the MIC, no growth occurred. Again, at intermediate
concentrations approximating the MIC for each strain, a logistic,
dose-response relationship was observed which mirrored the ratio
of susceptible:resistant cellular phenotypes we observed using our
method.

In both dose-response models, the inflection points of the
curves (corresponding to free parameter c in the model fit) were
close to the MIC values of the isolates when measured using a
routine diagnostic AST assay (i.e. E-tests, see Methods).
Specifically, for EC1, the measured MIC by E-test was
0.008 mg/L, with a corresponding inflection point at
0.011 ± 0.001 mg/L; further, for EC2, the measured MIC by
E-test was 0.5 mg/L, with curve inflection at 0.49 ± 0.18 mg/L.
Our results provide evidence that for ciprofloxacin our approach
can provide valuable MIC-related information for different
clinical isolates following antibiotic incubation times as little as
30 min.

Discussion
By combining fluorescence imaging and deep-learning, we
demonstrate our DASP platform provides a proof-of-principle
approach to rapid single-cell antibiotic susceptibility profiling for
E. coli across a range of antibiotics with different mechanisms of
action. DASP is compatible with analysing clinical isolates with
varying susceptibilities to clinically relevant antibiotics such as

ciprofloxacin, providing equivalent information to a traditional
growth-based assay in 30 min. MIC-level predictions can be
generated by modelling dose-response effects on suscepti-
ble:resistant cellular phenotype ratios across an antibiotic dilution
series similar to that used in clinical microbiological AST assays.

The high accuracy statistics across our experiments establish
that our method is robust against both experimental variability
and phenotype plasticity exhibited by different clinical E. coli
isolates, showing promise for further work evaluating additional
antibiotics and moving towards the development of a clinical
diagnostic assay. Considering that distinct nucleoid and mem-
brane phenotypes have been identified a wide range of treatments
and organisms;32–34 our method of susceptibility phenotyping
should be applicable to a wide variety of antimicrobials and
bacterial species, although this remains to be evaluated.

Deploying our models on clinical isolates shows that the
models can distinguish between resistant and susceptible isolates
around a fixed treatment point, which could facilitate their use for
decision-making around standard clinical breakpoints used for
resistance classification, such as EUCAST breakpoints. Our
comparison with gold-standard bacterial growth assays in the
presence of a dilution series of ciprofloxacin also established that
our approach can provide equivalent information regarding the
ciprofloxacin MIC of a certain isolate in as little as 30 min, limited
only by the physiological response rate of the bacteria themselves,
and is therefore well-suited to the ultimate goal of a rapid sus-
ceptibility testing assay.

Our assay may also offer a route towards a more detailed
clinical definition of the MIC value, which is currently only
defined by growth. Notably, the MIC value is emerging as an
important independent factor in clinical management; e.g., co-

Fig. 4 Distribution of single-cell classifications of susceptible/resistant reflects the clinical classification of susceptible/resistant, as defined by MIC
and EUCAST breakpoints, for two clinical E. coli isolates. A (left) Histogram of detections from a representative imaging experiment of untreated,
susceptible E. coli isolate EC2 cells (Clinically ciprofloxacin susceptible, MIC= 0.03mg/L), normalised to the total sum of detections, as a function of
classification confidence. Percentages and absolute cell counts in each class indicated, together with the number of fields of view in the experiment (FoV).
(right) As before, but for ciprofloxacin treated EC2 cells. B As A, but for ciprofloxacin resistant EC5 (Clinically ciprofloxacin resistance, MIC= 72mg/L).
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amoxiclav MICs >32 mg/L have recently been specifically asso-
ciated with poor outcomes in E. coli bloodstream infections41.
Better and faster definition of bacterial MICs may therefore be
relevant to optimising treatment strategies and outcomes for
individual patients.

Comparison with other assays. Compared to current assays, our
technique could also serve as a richer potential source of clinical
information. Currently established ASTs operating at the colony
level only offer aggregate, sample-wide information measured
through secondary markers correlated with resistance, such as
culture growth or genomic information. This might miss relevant
mixed bacterial populations or important heteroresistance
phenotypes42 which could be picked up by evaluating individual
cellular susceptibility phenotypes using our method. Compared to
other candidate single-cell ASTs, DASP offers the potential to be
faster by allowing simultaneous interrogation of large numbers of
single-cells (in contrast to previous cytometry or Raman
approaches, which only interrogate one cell at a time), and does
not require cell tracking (in contrast to previous widefield
microscopy approaches focusing on single-cell growth or
motion). As this method has only been demonstrated for E. Coli.
with a relatively small number of antibiotics, significantly more
work will be required to establish this method as a reliable and
clinically relevant AST.

Previous single-cell phenotypic studies have implemented
linear transformations and manual analysis of engineered features
to classify methicillin susceptible and resistant S. aureus cells31.
Our approach represents a step-change over the approach above,
since it transforms the assessment of antibiotic susceptibility into
a non-linear classification of resistant phenotypes against
susceptible phenotypes, addressed by CNNs. Using learnt features
as opposed to engineered ones is advantageous, since it
generalizes the technique by allowing subtle phenotypic changes
to be detected (as seen in our co-amoxiclav results), and reducing
human bias. In contrast to a more manual analysis, CNNs offer
automatic processing of large volumes of data, scaling better with
the aim of a rapid, robust assay.

Future extensions. Our approach could be extended to become
more scalable, and to avoid the need for pre-culture steps. Cur-
rently, the assay operates on cultured clinical isolates, and thus
does not yet reduce the time needed to isolate and grow micro-
organisms from patient specimens. The isolates are cultured to a
constant OD600 of ~0.2 prior to processing, translating to ~108

Colony Forming Unit (CFU) counts - a count much higher than
the CFU counts encountered in infected physiological body
fluids43. We envision that use of microfluidics will be instru-
mental in bypassing the pathogen isolation and culture steps by
isolating and concentrating bacteria from patient specimens.

Fig. 5 Changes in detection distribution upon treatment correlate with
the degree of resistance in clinical isolates. A Ratio of susceptible
phenotype detections across different clinical isolates, in untreated and
ciprofloxacin treated (+CIP) samples. Alongside the raw data, the mean
and standard error of the mean are shown for the 3 biological replicates of
each clinical isolate. Overlay shows Tukey range test p-values, carried out
pairwise between corresponding untreated and treated sets of repeats
(n= 3), test carried out at significance level of 0.05, “n.s.” indicates not
significant. B Ciprofloxacin MICs of the clinical isolates, derived
experimentally as described in Methods. Horizontal line indicates the
treatment concentration used in the treated samples, which was used for
both clinical isolates and MG1655 training data.

Fig. 6 Single-cell phenotyping provides equivalent information to a 24 h
growth assay, in 30min. A Ratio of susceptible detections as a function of
ciprofloxacin treatment concentration. Average of 3 biological replicates,
error bars show the standard error of the mean. Vertical coloured lines
show the ciprofloxacin MICs of the isolates used. Black lines show the
dose-response fit, grey regions show the 95% confidence band of the fit.
B Total bacterial growth in liquid culture over 24 h, in the presence of
ciprofloxacin, normalised to the growth of untreated cells. Measured MICs
of the isolates are: EC1 – 0.008mg/L, EC3 – 0.5 mg/L, EC5 – 72mg/L.
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Finally, our assay has the potential to be coupled with rapid
bacterial species identification which can be performed using
various methods, such as targeted FISH staining25,44.

Limitations. There are several limitations to our study. Our deep-
learning approach relies on explicit classification of phenotypes;
whilst that removes the need for engineered features, enables
high-throughput and reduces human bias, it still requires that
phenotype classes are homogenous across cells and isolates.
Further work is required to validate this approach with more
species and antibiotics, and to more robustly demonstrate that
cellular susceptible:resistant phenotypes derived from short per-
iods of antibiotic incubation correlate with currently used clinical
microbiological susceptibility metrics such as MIC. Our approach
also requires specific models to be trained for each combination
of antibiotic and species, which may not scale well with the size of
the problem space; however, a reformulation of the computa-
tional task should produce solutions that scales better.

Methods
Bacterial strains and sample preparation. The reference labora-
tory strain was E. coli MG1655. Clinical isolates were blood culture
isolates of E. coli processed for diagnostic purposes and stored by the
Microbiology Laboratory of the Oxford University Hospitals NHS
Foundation Trust, Oxford, UK. Individual colonies of E. coli were
cultured overnight in 5ml of Lysogeny Broth (LB) at 37 °C, then
diluted 1:100 by volume in 5ml of EZ Rich Defined Medium (RDM;
Teknova) and cultured at 37 °C until reaching an OD600 of ~0.2 in a
shaking incubator. Subsequently, 1ml aliquots of the culture were
treated with one of the antibiotics (Supplementary Table S1) at the
concentration and duration listed to produce cells showing the
antibiotic-specific susceptible phenotype; aliquots of the culture were
treated similarly but in the absence of an antibiotic in order to
produce the resistant phenotype. As antibiotic concentrations at
EUCAST breakpoints produced less distinct cellular susceptibility
phenotypes within 30min (e.g. Supplementary Fig. S14 for cipro-
floxacin), for model training purposes the treatment concentrations
were optimised to produce distinct single cell phenotypes for each
antibiotic and were well in excess of the EUCAST breakpoint. Cells
were then fixed by incubation in 2.5% formaldehyde solution for
30min. Cells were washed 3 times with PBS via centrifugation at
4500 RCF for 3min, and then incubated with 100% ethanol for
10min. Cells were resuspended in PBS and stained by adding 10 μg/
L DAPI as the nucleic acid stain (GeneTex, catalogue number
GTX16206) and 1 μg/L Nile Red as the membrane stain (Fisher
Scientific, catalogue number 10464311) and incubated at room
temperature for 10min. Cells were washed twice with PBS and
suspended in a small volume of 10–20 μl.

For ciprofloxacin titration assays, the antibiotic was diluted
across a concentration range from 16mg/L to 0.001 mg/L and co-
incubated with 1 ml aliquots of bacteria as described above.
Stained and prepared samples were imaged by mounting on
agarose pads. Agarose pads were prepared consisting of 1% high-
purity agarose (Bio-Rad, catalogue number #1613101) in half-
concentration PBS solution, and imaged inverted through a glass
slide that had been burned in a plasma cleaner at 500 °C for
60 min.

All clinical isolates in the study had been whole-genome-
sequenced on the Illumina platform as described previously45,
and AMR genotypes were assigned using the ResFinder46

database with Abricate v0.9.847 (--min-id 95 --min-cov 95).
The MICs of the clinical isolates were calculated empirically by
E-test strip (Lioflchem), or where the MIC exceeded the
maximum range of the strip, by a 1:1.5 broth dilution of the
antibiotic.

Bacterial growth curves. Individual colonies of each strain were
grown overnight at 37oC in LB broth and subsequently diluted to
OD600 of ~0.04 (1:100 dilution) in RDM. These cells were added
in equal volume to a microtiter plate containing a prepared 2x
dilution range of ciprofloxacin in RDM to a final volume of
200 μl. Inoculated plates were incubated at 37oC in a Tecan
Sunrise plate reader, with an OD600 reading recorded at 15-min
intervals, following a 5-s orbital shaking. The same measurement
was taken for a blank sample, consisting solely of the growth
medium. To calculate total cell growth (Fig. 6B), the time-
resolved OD600 signals were integrated numerically in time. From
this, the integrated blank signals were subtracted, and finally all
measurements were normalised to the growth of untreated cells
by dividing each measurement by the measurement coming from
untreated cells.

Imaging. Agarose-mounted samples were imaged on a
Nanoimager-S fluorescence microscope (Oxford Nanoimaging).
Briefly, a blue (405 nm) and a green (532 nm) laser were com-
bined using a dichroic mirror and coupled into a fibre optic cable.
The fibre output was focused into the back focal plane of the
objective (100× oil immersion, NA 1.4) Fluorescence emission
was collected by the objective, separated into two emission
channels and imaged onto a sCMOS camera (Orca flash V4,
Hamamatsu). To make best use of the camera dynamic range
DAPI signal was imaged using 405 nm excitation and Nile Red
signal was imaged using 532 nm excitation; both signals were
acquired consecutively. To ensure reproducibility, laser powers
were kept constant at 1.5 kW/m2. For each of the two channels,
for each field of view (FoV), a stack of 30 frames was acquired at
30 ms exposure and 33 Hz frequency. To automate the task and
reduce human bias, the multiple acquisition capability of the
microscope was used, and the microscope autofocused on each
FoV prior to acquisition.

Deep learning – model selection. The segmentation and classi-
fication models employed in this study were chosen by evaluating
a range of classification models (including models from the
DenseNet, ResNet and EfficientNet family) and state of the art
segmentation models including Mask R-CNN37, Cellpose48 and
YOLO v849 (Supplementary Figs. S15 and S16). The batch size
and learning rate of each model was found using a grid search,
and the best pipeline was ultimately found by evaluating the
classification accuracy on the holdout test set. The best combi-
nation of models was found to be Mask R-CNN and
DenseNet12150. A breakdown of the classification accuracies for
each model and phenotype are shown in Supplementary Table S6.

Deep learning – segmentation. To generate training data for the
Mask R-CNN segmenter, only the Nile Red channel of every FoV
acquired was used. The 30 frames of each FoV were averaged to
generate a grayscale image, which was further expanded to RGB
space by replicating the grayscale image in each colour channel.
The raw images were augmented on-the-fly by random cropping
to a size of 256 by 256 pixels, followed by a random sequence of
transformations including horizontal and vertical flips and
translations, rotations, cutout51 as well as Gaussian blurring. Such
augmented images were passed forward to the segmenter during
training, along with equivalently transformed ground-truth
instance segmentation masks; these segmentation masks were
generated by manual data annotation followed by boot-strapping
and manual curation. The internal parameters of Mask R-CNN
were optimised to match the task at hand, consisting of mod-
ifications to its Region Proposal Network (RPN) and Non-
Maximum Suppression parameters. The segmenter training was
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then optimised via a grid-search, keeping the model that per-
formed best on validation data.

In the end, the best performing model was trained using an
initial learning rate of 0.003 and batch size of 2 with the Adam52

optimiser, using a momentum of 0.9 and weight decay of 0.001.
The final model was trained in 4 consecutive steps, starting from
initial weights trained on the MS COCO dataset53. In the first
step, the model ‘top’, consisting of the RPN and a second stage
classifier and mask regressor were trained for 50 epochs at the
initial learning rate, with other weights frozen. In the second step,
the entire network was trained together, including the feature-
encoding backbone, at the initial learning rate for another 50
epochs. In the 3rd step, the ‘top’ was fine-tuned for another 50
epochs, this time using 10 % of the initial learning rate (0.0003).
Finally, the entire network was fine-tuned at 10 % of the initial
learning rate for the final 50 epochs.

The Mask R-CNN model was adapted from a standard
implementation54.

Deep learning – classification. To generate training data for the
DenseNet121 classifier, both channels of every FoV acquired were
used. The 30 frames of each FoV were averaged separately for
both channels and used to construct RGB images, with Nile Red
signal in the red channel and DAPI signal in the green. The DAPI
channel was registered automatically to the Nile Red channel
using cross-correlation55 to correct for any drift between the
channels. Individual cells were extracted from assembled images
using the ground-truth instance segmentation masks that were
used to train the segmenter. All cells were then resized to a
common size of 64 by 64 pixels by zero-padding in either
dimension if below the target size, or resized down to target size if
above. To compensate for differences in staining and illumina-
tion, histogram equalisation was applied to every cell, indepen-
dently for each channel, within the segmentation mask only. Cells
were then augmented on-the-fly using a random sequence of
affine transformations, followed by a random sequence of
intensity augmentations to increase robustness against experi-
mental variation – these include a unsharp masking, random
brightness modifier in HSB colour space, addition of Gaussian-
distributed noise, channel misalignment and random Gaussian
blurring (Supplementary Fig. S17). The classifier training was
then optimised via grid-search, keeping the model that achieved
the best accuracy on validation data. The training loss and
accuracy for each model are shown in Supplementary Fig. S18.

To train the model to recognise binary resistant/susceptible
cellular phenotypes, individual untreated and treated
MG1655 susceptible cells only were used.

The classifier was implemented in Keras56 version 2.2.4.

Deep learning – saliency mapping. To produce attention heat-
maps over example classification inputs, we calculated the gra-
dient of the output category with respect to the input single-cell
image. We propagated positive gradients for positive activations
only39, and visualised the absolute value of the gradient.

Segmentation metrics. The quality of Mask R-CNN segmenta-
tion was analysed using Precision-Recall curves using the
bounding boxes of detections and ground truth segmentations to
compare performance at various IoU thresholds.

Classification metrics. Classification metrics of binary resistant-
susceptible classifiers are presented as a confusion matrix, which
displays the True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) counts in each class. From
these, per class precision, recall and accuracy can be calculated as

follows:

Precision ¼ TP
TP þ FP

ð1Þ

Recall ¼ TP
TP þ FN

ð2Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

Dose-response model fitting. To model the ratio of cells classi-
fied as susceptible as a function of treatment concentration, we
use non-linear least squares to fit a generalised logistic function of
the following form:

f xð Þ ¼ d þ a� d

1þ x
c

� �b� �g ð4Þ

where a and d are the lower and upper asymptotes, b is the scale
parameter, c is the x-coordinate of the inflexion point, and g is the
asymmetry parameter. The confidence bands (CB) of the fit can
be calculated directly from the covariance matrix of the fit:

CB xð Þ ¼ y xð Þ± tα
2;ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2ν ∑
n

j;k¼0

∂f xð Þ
∂pj

∂f xð Þ
∂pk

Cjk

s

ð5Þ

where yðx̂Þ is the best-fit estimate at x, tα=2;ν is the upper α/2
critical value for the t-distribution with N-n degrees of freedom, ν
is the degrees of freedom, χ2ν is the reduced chi-square of the fit, C
is the covariance matrix, p are the best-fit parameters and f(x) is
the generalised logistic function.

Statistics and reproducibility. The ratios of susceptible cells
found and classified in untreated and ciprofloxacin treated clin-
ical isolates were analysed using Tukey’s range test, computed
pairwise for untreated and treated samples of each clinical isolate,
and separately for each isolate. Three biological repeats were
analysed for each isolate, producing a set of three susceptible cell
ratios (n= 3) per isolate, per biological repeat. The total number
of cells that contributed to each ratio is displayed in Supple-
mentary Fig. S13. The significance level of the test was set at 0.05.

Ethics. We analysed bacterial isolates routinely stored by the John
Radcliffe Hospital Microbiology laboratory; no sampling was
specifically undertaken for the purposes of this study and no
patient-related information was accessed. In the UK, bacterial
isolates routinely cultured from human clinical samples do not
require ethical approval for analysis under the provisions of the
Human Tissue Act as they do not contain any material con-
sidered to be human tissue.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data and model weights that support the findings of this study, are available from the
Oxford University Research Archive: https://ora.ox.ac.uk/objects/uuid:12153432-e8b3-
4398-a395-abfb980bd84e. The source data for Figs. 5, 6, S15, S16 can be obtained in
supplementary dataset 1–4, respectively.

Code availability
All code used to generate the results is available publicly on the Kapanidis Laboratory
GitHub account, accessible at: https://github.com/KapanidisLab/Deep-Learning-and-
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Single-Cell-Phenotyping-for-Rapid-Antimicrobial-Susceptibility-Testing. Detailed
guidance on using the code is available upon request from AZ.
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