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HLA allele-calling using multi-ancestry whole-
exome sequencing from the UK Biobank identifies
129 novel associations in 11 autoimmune diseases
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The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with

many immune-mediated and infection-related diseases. Due to its highly polymorphic nature

and complex linkage disequilibrium patterns, traditional genetic association studies of single

nucleotide polymorphisms do not perform well in this region. Instead, the field has adopted

the assessment of the association of HLA alleles (i.e., entire HLA gene haplotypes) with

disease. Often based on genotyping arrays, these association studies impute HLA alleles,

decreasing accuracy and thus statistical power for rare alleles and in non-European ances-

tries. Here, we use whole-exome sequencing (WES) from 454,824 UK Biobank (UKB) par-

ticipants to directly call HLA alleles using the HLA-HD algorithm. We show this method is

more accurate than imputing HLA alleles and harness the improved statistical power to

identify 360 associations for 11 auto-immune phenotypes (at least 129 likely novel), leading to

better insights into the specific coding polymorphisms that underlie these diseases. We show

that HLA alleles with synonymous variants, often overlooked in HLA studies, can significantly

influence these phenotypes. Lastly, we show that HLA sequencing may improve polygenic

risk scores accuracy across ancestries. These findings allow better characterization of the role

of the HLA region in human disease.
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The HLA1 gene complex is a highly polymorphic region of
the human genome with a striking linkage disequilibrium
(LD) pattern. While genetic variants in HLA are often

strongly associated with multiple auto-immune and infectious
diseases2,3, genome-wide association studies (GWAS) cannot
easily be fine-mapped to likely causal variants, and consequently
specialized methods are required to improve statistical power and
fine-mapping3. Hence, in most current genetic association studies
of HLA, the unit of variation is not usually a single nucleotide
polymorphism but rather a whole HLA gene version or haplo-
type, known as an HLA allele.

By convention, HLA allele names start with the gene name,
followed by up to four sets of digits (also called fields 1 to 4), each
separated by a colon. From left to right, these digits provide
information on the allele’s serological specificity, HLA protein,
synonymous variants, and non-coding (i.e., intronic) variants. For
example, HLA-A*01:01:01:01 is one such allele for gene HLA-A.
The use of HLA alleles in association tests, known as HLA fine-
mapping, has higher statistical power than single nucleotide
polymorphism-based approaches and allows for a better under-
standing of the role of the HLA region in a wide range of
conditions2,4–7. It can help identify targets for novel medicines
and improve our ability to identify populations at risk for
immune- and infection-mediated disease.

For the HLA fine-mapping to be possible, HLA alleles must be
accurately assigned to study participants. The most common and
cost-effective method is to impute HLA alleles from variants
typed with genotyping arrays8–13. However, the imputation
requires large and diverse HLA reference panels, access to which
still needs to be improved, and is less accurate for individuals of
underrepresented ancestries14 and rarer alleles15. Using sequen-
cing data to call HLA alleles eliminates the need for such a
reference panel and may provide better accuracy of individual-
level HLA alleles, resulting in improved fine-mapping and
statistical power.

In this study, we used the UKB16 release of 454,824 WES
sequences17 to call each participant’s HLA alleles using the HLA-
HD algorithm18. HLA-HD provides reliable HLA allele calling
from short-read sequencing19 and is easily scalable on a cloud
computing environment like DNAnexus (Palo Alto, California,
USA). It is also the only published HLA allele calling algorithm
that provides 3-field calls and whose IMGT-HLA internal refer-
ence can be updated to use the most recent one. We then provide
a comprehensive report on the HLA allele landscape in UKB
participants of 5 ancestries (African [AFR], Admixed American
[AMR], East Asian [EAS], European [EUR], South Asian [SAS]),
and we compare our results to imputed HLA alleles currently
available in UKB participants. We assessed the improvement in
statistical power by performing HLA allele and amino acid
association studies on 11 auto-immune traits across all genetic
ancestries. Lastly, we built polygenic risk scores (PRS) incorpor-
ating HLA alleles for these traits. Our findings should allow for a
better understanding of the role of HLA alleles in disease and
better risk stratification.

Results
HLA allele calling from WES. HLA-HD was used to call HLA
alleles for 454,824 participants at 3-field resolution (representing
the allele’s serological specificity, HLA protein, and synonymous
variants). We used the UKB whole-genome genotyping (una-
vailable in 1283 participants) projected on the 1000 Genome
reference to estimate genetic ancestry. We found that this cohort
included 8725 participants of AFR genetic ancestry, 2898 of AMR
genetic ancestry, 2647 of EAS genetic ancestry, 429,822 of EUR
genetic ancestry, and 9449 of SAS genetic ancestry (see Methods).

The UKB WES target regions provided reads at 31 HLA genes.
These included 12 HLA Class I genes (6 protein-coding genes)
and 19 HLA Class II genes (13 protein-coding). Class I genes
were generally well covered (Supplementary Data 1 and Supple-
mentary Fig. 1), with all participants having more than 20 reads
aligning to HLA-A, HLA-C, HLA-E, HLA-F, and HLA-G, while
only 109 of 454,814 (0.02%) participants had less than 20 reads at
their HLA-B gene. Class II genes were also well covered, except
for HLA-DQA1, which was less well-covered; while 95.9% of
participants had calls at HLA-DQA1, 34.4% of them had less than
20 reads at exon 2. While it is challenging to assess read coverage
for HLA-DRB3 to HLA-DRB9 given that these genes are not
carried by every individual, HLA-DRB1 was well covered (0.23%
of participants with less than 20 reads). All Class I genes were
found in each ancestry. However, the EUR cohort was the only
one for which all Class II genes were found, with HLA-DPA2 and
HLA-DRB9 absent in all other ancestral cohorts and HLA-DRB6
also missing in the AFR, AMR, and EAS cohorts.

As expected, the number of unique HLA alleles was the highest
in the larger EUR cohort, at 5,295, and ranged from 985 (EAS) to
1527 (SAS) in smaller cohorts of the other four ancestries
(Fig. 1a). When adjusted by sample size, the AMR and EAS
genetic ancestry participants had the largest number of alleles
(0.432 and 0.372 alleles per participant, respectively), while the
EUR cohort had the lowest (0.012) (Fig. 1b). The fact that this
ratio is the smallest in the EUR cohort is likely due to fact that
past a certain sample size, the likelihood of finding a new
additional allele will decrease. The finding that the AMR
participants have a larger number of HLA alleles is consistent
with other studies and reference panels which showed that native
American populations have a high number of HLA alleles absent
in other populations20–22. As expected, most of the HLA alleles
were rare (minor allele frequency [MAF] < 1%) in all ancestries,
with 166 out of 5295 alleles with MAF > 1% in the EUR cohort
and 209 out of 1304 alleles with MAF > 1% in the AMR cohort
(Supplementary Fig. 2). Similarly, the first 25 most common
alleles in each ancestry account for > 90% of total variation
frequency. (Fig. 1c). Lastly, HLA Class I genes (including
pseudogenes) showed the highest diversity, with an average of
586.0 alleles per gene compared to 194.4 for HLA Class II genes.
The highest number of alleles was found in the EUR cohort, and
the lowest in the EAS cohort (Fig. 1d), but once again, the
observation was mirrored when accounting for sample size
(Fig. 1e). Lastly, to adjust for the large differences in participants
of each ancestry which could saturate the number of alleles found
in each group, and hence bias comparisons on number of alleles
per ancestry groups, we down sampled 10,000 times each group
to have the same sample size and number of HLA alleles as the
smallest group (EAS). This analysis was only done for classical
HLA genes, as they had enough unique alleles for the simulations
to be stable. As expected, the AMR ancestry cohort had more
expected unique alleles than other groups in all genes, except for
HLA-DPA1 where the AFR cohort, had more (Supplementary
Data 2 and Supplementary Fig. 3). A complete list of alleles and
their frequencies at 3-field and 2-field resolution is available in
Supplementary Data 3 and Supplementary Data 4.

Comparison to imputed alleles. The UKB provides HLA allele
imputation using the HLA:IMP*2 software13 for 11 genes at
2-field resolution: HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-
DQB1, HLA-DPA1, HLA-DPB1, HLA-DRB1, HLA-DRB3, HLA-
DRB4, HLA-DRB5. These HLA imputation results have been used
extensively in the literature in the past. While they do not
represent a perfect gold standard (especially in non-European
populations), they still provide an important resource to compare
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our HLA calls against. We, therefore, compared concordance
between the sequenced alleles at 2-field resolution and the pre-
viously imputed UKB alleles. It is crucial to note that there is
currently no perfect reference standard against which to compare
HLA calling or imputation methods, and that any comparison
will suffer from considerable ambiguity.

Nevertheless, we set out to compare imputed and called alleles
in the UKB. The complete set of imputed alleles included 196 in
Class I and 136 in Class II genes. 10 out of these 332 alleles were
absent among the sequenced HLA alleles. However, all 10 of these
alleles had low frequency (MAF < 0.04%), suggesting that these
may have been imputation mistakes because the imputation
accuracy decreases with the allele frequency.

While allele concordance was excellent for HLA Class I genes
(90.4% for HLA-A, 89.5% for HLA-B, and 91.1% for HLA-C) and
HLA-DPA1 (96.8% for HLA-DPA1), it dropped substantially for
other genes (as low as 47.2% for HLA-DQA1) (Supplementary
Data 6–11). However, this concordance calculation did not
account for the considerable increase in the number of discovered
HLA alleles in recent years, which has more than doubled since
the original publication of the HLA:IMP*2 software13. Specifi-
cally, HLA-HD had more alleles at its disposal that it could assign
to each participant, this includes novel alleles that were split form
old ones and that are not included in the HLA:IMP*2 algorithm.
This therefore clearly biases any direct comparison against HLA-
HD, as any call using a more modern HLA allele would be
considered automatically wrong by HLA:IMP*2. Hence, we also
looked at an adjusted concordance rate by only looking at the
concordance of called alleles that were present in the HLA:IMP*2
database. As expected, the adjusted concordance was much
greater, with only two genes scoring less than 90%: HLA-DQA1
and HLA-DRB4 (Fig. 2 and Supplementary Data 6–11). For the
latter two genes, this was due HLA alleles that had not been
imputed but were called in more than 95% of cases of

discordance. This further highlights the increased power of
HLA sequencing over imputation. For HLA-DQA1, we suspect
that this is consistent with it having been the most poorly
sequenced genes, as discussed above (Supplementary Fig. 1).

Of the participants whose alleles did not completely match, the
mismatch was primarily due to HLA alleles of low allele
frequencies (MAF < 1%). The mean allele frequencies of those
participants ranged from 1.16% for HLA-DPA1 to 0.09% for
HLA-B (Supplementary Data 5). For all genes and ancestries,
lower allele frequency was associated with a lower concordance
rate (Supplementary Fig. 4). Moreover, there was a significant
decrease in both allele concordance and adjusted concordance in
participants of non-EUR ancestries (Fig. 2 and Supplementary
Data 6–11), for both classes of HLA genes. While the average
allele concordance and adjusted concordance for HLA Class I
genes in the EUR cohort was 91.0% and 96.9%, they dropped to
75.5% and 88.4% in AFR, to 81.1% and 89.9% in AMR, to 78.7%
and 86.8% in EAS, and to 81.2% and 90.1% in SAS. Likewise,
EUR participants’ mean concordance and adjusted concordance
for HLA Class II alleles was 73.9% and 91.5%, which decreased to
68.5% and 82.4% in AFR, to 70.4% and 83.3% in AMR, to 69.5%
and 82.9% in EAS, and to 70.5% and 81.2%in SAS. Finally, using
different allele dosing QC threshold for the imputed alleles only
had a mild effect on concordance results, with an average
decrease in adjusted concordance of 0.93 percentage point (range:
0.10–3.0) when using liberal dosage thresholds (see Methods),
and an average increase in adjusted concordance of 2.01
percentage point (range 0.2–6.2) when using a stricter threshold
(see Supplementary Data 6–11 for full comparisons).

Hence, HLA sequencing improves accuracy compared to
previously imputed alleles, this improvement in not fully
explained by an increase in the number of known HLA alleles,
and, as suspected, the non-EUR genetic ancestry individuals and
those who carry rarer alleles suffer the most from the decrease in

Fig. 1 Summary of HLA alleles and their distribution per genetic ancestry. a Number of 3-field HLA alleles per continental genetic ancestry. b Number of
3-field HLA alleles per genetic ancestry, divided by the number of participants in each ancestry. c Cumulative 3-field allele frequency. Each line represents a
different HLA gene. Dashed line at 90%. Note that some genes are not present in all participants (e.g., HLA-DRB3), and their true cumulative allele
frequency sum would be less than 100%. Hence, frequencies are given as allele count for allele divided by total number of alleles at that gene, then added
cumulatively starting with the alleles with the highest frequencies. d The average number of alleles per gene stratified by HLA class. e The average number
of alleles per gene divided by the number of participants in each cohort stratified HLA class. All analyses in this figure were limited to the protein-
coding genes.
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HLA allele imputation performance. This emphasizes the lack of
diversity in the currently available imputation reference panels
and limits the application of imputation-based approaches.

HLA haplotypes LD. To further describe our results and confirm
their concordance with previous literature on the HLA, we
characterized the LD pattern in the UKB cohort’s HLA locus.
Since HLA genes are multiallelic, the usual biallelic LD metrics
give an incomplete portrait of the LD between pairs of HLA
genes, as these would only provide pairwise HLA allele LD.
Hence, we used an extension of biallelic LD that averages con-
ditional LD measurements over the distribution of HLA alleles
between pairs of HLA genes (asymmetric LD23). It has been used
successfully in previous HLA studies and reduces to the standard
R2 measure of LD in cases where both variants (here HLA genes)
are biallelic23. For this analysis, we used the 2-field HLA allele
resolution to mitigate the effect of rare alleles, which makes the
asymmetric LD calculation unstable (see Methods). While there
were some variations between genetic ancestries in HLA haplo-
type LD patterns (Supplementary Fig. 5), most haplotypes in high
LD were located in physical proximity to each other, with the
following groups being closely associated across all genetic
ancestries: 1) HLA-B and HLA-C, 2) the Class I genes (excluding
HLA-B and HLA-C), 3) the HLA-DR, and HLA-DQ genes, 4)
HLA-DPA1 and HLA-DPB1, and lastly, 5) HLA-DMA and HLA-

DMB. Full asymmetric LD results per ancestry are provided in
Supplementary Data 12–17.

Allele frequency comparison to reference panel. As the last
quality check, we compared the allele frequencies obtained from
WES HLA allele calling with those reported in the Allele Fre-
quency Net Database (AFND)24. The AFND aggregates allele
frequencies from multiple large cohorts, which we matched to the
UKB biobank cohort based on their reported ancestries and
country of origin (see Methods). However, given the sparsity of
high-quality data on non-classical HLA genes in the AFND, we
restricted this comparison to classical HLA genes (HLA-A, HLA-
B, HLA-C, HLA-DPA1, HLA-DPA2, HLA-DQA1, HLA-DQB1,
HLA-DRB1). Correlation between allele frequencies in the UKB
and allele frequencies in the selected reference cohorts was high,
suggesting that WES HLA calling performed well (R2: 0.83; F-test
p-value: 2.2 × 10−16; intercept: 0.001, 95% CI: 0.0008–0.002;
slope: 0.99, 95% CI: 0.98–1.01; Supplementary Fig. 6).

HLA association studies in 11 auto-immune phenotypes. To
demonstrate the power of WES-based HLA analysis, we per-
formed allele association studies for 11 phenotypes known to be
associated with HLA genes: ankylosing spondylitis25, asthma26,
autoimmune thyroid disorders27, coeliac disease28, Crohn’s
disease29, type I diabetes mellitus30, multiple sclerosis and other

Fig. 2 Adjusted concordance between sequenced and imputed HLA alleles. Adjusted concordance (%) are shown stratified by HLA genes and genetic
ancestry.
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demyelinating diseases (MS-Demyelinating)31, polymyalgia
rheumatica or giant cell arteritis (PMR-GCA)32, psoriasis33,
rheumatoid arthritis34, and ulcerative colitis35 (Supplementary
Data 18). The choice of these phenotypes was determined by the
fact that they had previously established HLA associations (which
would provide us with positive control associations), their large
sample size in the UK Biobank, and their previous UK Biobank
GWAS associations in the HLA regions (which ensure appro-
priate sample size for our analyses). Analyses were performed
with Regenie36 (see Methods) for each ancestry separately if there
were 50 or more cases using age, sex, and the first 10 genetic
principal components (PCs) as covariates (Supplementary
Data 19). Ancestry-specific results were the meta-analyzed using
fixed-effect meta-analysis with METAL37 (Supplementary
Data 20 for full summary statistics). We used a genome-wide
significant threshold divided by the number of phenotypes as our
statistical significance threshold (i.e., p < 5 × 10−8/11).

Our meta-analyses yielded 360 HLA allele associations at
3-field resolution (Table 1 and Supplementary Fig. 7), of which
118 were from HLA Class I genes. A pertinent positive control
association is HLA-B*27:05, an allele used for diagnosis and
prognostication in clinical medicine38, and which was highly
associated with ankylosing spondylitis (OR: 6.55, 95% CI:
5.97–7.18, p: 1.97 × 10−305, effect allele frequency [EAF]: 3.9%).
Crohn’s disease was the phenotype with the least associations (1),
but the other phenotypes averaged 35.9 associations at the 3-field
resolution, with the highest number of associations in auto-
immune thyroid disorders (n= 69), coeliac disease (n= 63), and
psoriasis (n= 62). To test how many of these associations were
novel, we used the HLA-SPREAD PubMed abstract natural
language processing database39. An association was considered
previously reported if we could find it in the database. As an
additional novelty check, we also repeated HLA association
analyses using the imputed HLA alleles since these were already
available and used in published association studies (even if they
may not have been reported at all). Since most of the HLA
literature restricts their analysis to 2-field precision, we used our
2-field association results and checked if these had been
previously reported for their given phenotypes. The 2-field
resolution analyses yielded 341 allele associations, of which 129
were likely novel. Of the rest, 44 were reported in the HLA-
SPREAD database, while 168 could also be found using HLA
allele association studies using the UKB imputed alleles (Fig. 3
and Supplementary Data 20).

Importantly, 103 of the 360 associations with 3-field resolution
alleles were found in genes for which HLA imputation results
were unavailable, suggesting that WES-based HLA allele calling
could help discover many more HLA associations than previously
possible. Moreover, many of these exhibited strong associations,
both in terms of small p-values and large effect sizes, even in
genes which were not previously known for a high degree of
polymorphism. For example, HLA-G*01:06:01 showed a strong
association with psoriasis (OR: 1.80, 95% CI: 1.70–1.90, p:
3.57 × 10−100, EAF: 6.2%). We also found multiple associations in
rare alleles (MAF < 1%), including the novel HLA-B*57:31:02 in
psoriasis (OR= 4.61, 95% CI: 3.22–6.59, p= 7.1 × 10−17, EAF=
0.06%) and HLA-C*02:178 in ankylosing spondylitis (OR= 5.33,
95% CI: 3.37–8.41, p= 7.75 × 10−13, EAF= 0.2%). While the
HLA-B*57 and HLA-C*02 allele groups as a whole are already
known to be associated with these diseases40, this is, to our
knowledge, the first time these specific alleles are reported. Given
their high effect sizes, we believe that using WES for HLA
allele calling in rare variants can allow us to better characterize
the specific HLA variants and amino acid residues responsible for
in risk of some diseases (here psoriasis and ankylosing
spondylitis).

Many of these associations are unlikely to be observed due to
HLA haplotype LD. In fact, of the 64,620 pairs of statistically
significant 3-field resolution alleles (360*359/2), only 123 show a
(biallelic) LD R2 of 0.2 or more (Supplementary Data 21). More
specifically, the HLA-G*01:06:01 allele was only in mild LD with
two other alleles associated with psoriasis: HLA-A*01:01:01
(R2= 0.21) and HLA-H*02:01:01 (R2= 0.26), which were both
in high LD together (R2= 0.71) and less significantly associated
with psoriasis than was HLA-G*01:06:01 (p= 1.77 × 10−49 for
HLA-A*01:01:01, and p= 1.53 × 10−49 for HLA-H*02:01:01).
Hence, with respect to the other alleles included in this analysis,
HLA-G*01:06:01 was independently associated with psoriasis.
While HLA-G has been linked with other skin diseases, to our
knowledge, associations between skin or soft tissue phenotypes
and the HLA-G*01:06 haplotype have only been reported in
squamous intraepithelial cancer and cervical cancer41.

Likewise, conditional analyses showed that 116 of the 129 novel
allele associations were still significant after conditioning the most
significant alleles of each phenotype (false discovery rate < 5%).
Further, we found an additional 366 significant novel variant
associations (false discovery rate < 5%) when conditioning on the
most significant alleles for each phenotype, again suggesting that
WES has increased power compared to imputation and
supporting the validity of the likely novel allele associations
found above. See Supplementary Data 22 for full conditional
analyses results.

Lastly, among phenotypes which were analyzed in more than
one ancestry and could therefore be meta-analyzed, there were no
strong signal of heterogeneity in HLA associations. Indeed, qq-
Plots of heterogeneity p-values show that there were no
heterogeneous effects using our genome-wide threshold
(p < 5 × 10−8/11), and only one association with p-value lower
than the Bonferroni threshold (p < 0.05/13,576) at DOB*01:02:01
for type 1 diabetes mellitus (see Supplementary Data 20 and
Supplementary Fig. 8).

In summary, these findings suggest that WES-based HLA
calling can identify many novel HLA-disease associations,
possibly with large effects, compared to those identified through
imputation-based approaches.

Replication analyses in the Estonian biobank. We performed
the same analyses with 2-field imputed HLA alleles from the
Estonian Biobank (Supplementary Data 23). Of the 341 allele
associations found above, 196 were imputed and available for
analyses. Of those 196 alleles, 123 were of the same effect direc-
tion and had a p-value less than the Bonferroni correction
(p < 0.05/196) and another 25 had a p-value less than 0.05 (but
above the Bonferroni correction). There was one additional allele
with a p-value less than the Bonferroni correction and with an
opposite effect direction. As suspected, of the potentially novel
associations found above, only 8 were found in the list of imputed
alleles, only 2 of which had a p-value less than 0.05 in the
Estonian Biobank results. This again supports that WES-based
HLA calling provides reliable and more accurate results than
imputation-based methods.

Effect of synonymous variants. Given the increased allele reso-
lution provided by WES-based HLA calling, we examined the
effect of the additional HLA field on phenotype associations (i.e.,
from 2-field to 3-field resolution, wherein 3-field resolution
would capture synonymous variants). We would expect similar
and same-direction effect sizes for all synonymous variants in the
HLA allele if they did not impact the phenotype. For example, if
HLA-A*01:01 was associated with a given phenotype, we would
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Table 1 3-field HLA allele association studies meta-analyses results.

Marker Beta (log-Odds Ratio) Standard Error P-value Direction AF

Ankylosing Spondylitis (EUR)
HLA-B*27:05:02 1.88 0.05 5.86 × 10−305 + 0.04
HLA-C*02:02:02 1.31 0.06 2.76 × 10−94 + 0.03
HLA-C*01:02:01 1.33 0.07 1.65 × 10−92 + 0.03
HLA-B*07:02:01 −0.48 0.06 1.50 × 10−17 − 0.14
HLA-DRB1*01:03:01 0.81 0.10 4.81 × 10−15 + 0.02
Asthma (AFR, AMR, EAS, EUR, SAS)
HLA-DRB1*04:01:01 0.20 0.01 1.69 × 10−96 +−−++ 0.11
HLA-DRB8*01:01 0.09 0.005 7.79 × 10−74 +++++ 0.57
HLA-DRB7*01:01:01 0.08 0.005 5.75 × 10−64 +++++ 0.48
HLA-DRA*01:01:01 0.08 0.007 1.35 × 10−30 +++++ 0.57
HLA-DRB1*13:01:01 −0.17 0.01 1.38 × 10−30 −−+−− 0.05
Auto-immune thyroid disorders (AFR, AMR, EAS, EUR, SAS)
HLA-DQA1*01:02:01 −0.22 0.01 4.04 × 10−90 +−+−− 0.17
HLA-DRB1*15:01:01 −0.20 0.01 7.11 × 10−60 +++−+ 0.14
HLA-DRA*01:02:03 −0.20 0.01 9.34 × 10−59 ++−−− 0.14
HLA-DRA*01:01:01 0.14 0.009 1.32 × 10−53 +++++ 0.57
HLA-DRB1*04:01:01 0.19 0.01 2.73 × 10−49 ++++− 0.11
Coeliac (EUR)
HLA-DQB1*02:01:08 0.96 0.04 6.42 × 10−110 + 0.05
HLA-DRB1*03:147 0.70 0.03 2.40 × 10−91 + 0.10
HLA-DRB7*01:01:02 0.70 0.04 3.13 × 10−77 + 0.09
HLA-H*02:01:01 −0.72 0.04 9.88 × 10−73 − 0.21
HLA-DQB1*02:80 1.05 0.07 1.05 × 10−55 + 0.02
Crohn’s (EUR, SAS)
HLA-DRB1*01:03:01 1.03 0.08 9.97 × 10−41 +− 0.016
Diabetes mellitus (type 1) (AFR, EUR, SAS)
HLA-DRB1*04:01:01 0.72 0.03 1.53 × 10−119 ++− 0.11
HLA-DQB1*03:02:01 0.77 0.03 1.69 × 10−117 +++ 0.08
HLA-DRB7*01:01:01 0.30 0.02 2.27 × 10−72 +++ 0.48
HLA-DRB8*01:01 0.27 0.02 3.62 × 10−56 +++ 0.57
HLA-DRB5*01:01:01 −0.60 0.04 4.20 × 10−54 −−+ 0.13
MS-Demyelinating (EUR)
HLA-DRB1*15:01:01 0.78 0.04 1.05 × 10−108 + 0.144
HLA-DRA*01:02:03 0.77 0.04 2.32 × 10−105 + 0.146
HLA-DRB5*01:01:01 0.87 0.04 3.05 × 10−98 + 0.134
HLA-DQA1*01:02:01 0.64 0.03 4.89 × 10−82 + 0.167
HLA-DRB5*01:100 0.84 0.05 7.39 × 10−62 + 0.063
PMR-GCA (EUR, SAS)
HLA-DRB1*04:04:01 0.88 0.0409237 8.09 × 10−102 ++ 0.04
HLA-DRB7*01:01:01 0.27 0.0164555 2.56 × 10−59 ++ 0.49
HLA-DQB1*03:02:01 0.54 0.0338829 2.31 × 10−57 ++ 0.08
HLA-DRB8*01:01 0.24 0.0170413 3.47 × 10−44 ++ 0.57
HLA-DRB1*04:01:01 0.40 0.0312209 8.22 × 10−37 ++ 0.11
Psoriasis (EUR, SAS)
HLA-C*06:02:01 0.99 0.02 1.50 × 10−305 ++ 0.01
HLA-B*57:01:01 1.10 0.03 1.91 × 10−305 ++ 0.04
HLA-DRA*01:01:02 0.89 0.03 7.32 × 10−206 ++ 0.04
HLA-DOB*01:05 0.78 0.03 7.73 × 10−127 ++ 0.03
HLA-G*01:06:01 0.59 0.03 3.57 × 10−100 ++ 0.06
Rheumatoid arthritis (AFR, AMR, EUR, SAS)
HLA-DRB1*04:01:01 0.43 0.02 1.81 × 10−96 ++++ 0.11
HLA-DRA*01:01:01 0.27 0.02 4.51 × 10−63 +−++ 0.57
HLA-DRB7*01:01:01 0.17 0.01 8.58 × 10−57 −−++ 0.48
HLA-DRB4*01:03:01 0.22 0.02 2.97 × 10−39 −−++ 0.16
HLA-DQB1*03:02:01 0.31 0.02 1.27 × 10−38 ++++ 0.08
Ulcerative colitis (AFR, EUR, SAS)
HLA-DRB1*01:03:01 0.97 0.06 7.42 × 10−66 +++ 0.02
HLA-DRB8*01:01 −0.14 0.02 4.09 × 10−20 −−− 0.57
HLA-DRB7*01:01:01 −0.13 0.02 4.57 × 10−17 −−− 0.48
HLA-DRB1*04:04:01 −0.44 0.06 3.50 × 10−15 −−+ 0.04
HLA-DQB1*03:02:01 −0.27 0.04 1.10 × 10−11 −−− 0.08

Only five most significant results for each phenotype are shown (if there were more than 5 with p-value < 5 × 10−8/11). Beta on logistic scale. Direction refers to effect direction for each ancestry in the
meta-analyses (+ for positive, − for negative). The genetic ancestries used in each analysis are listed in parentheses after the phenotype name. Refer to Supplementary Data 20 for full summary
statistics, including for 2-field accuracy, and by ancestry. AF Allele frequency.
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expect HLA-A*01:01:01 and HLA-A*01:01:02 to show similar
effects on the phenotype.

Specifically, we examined how synonymous variants in HLA
alleles were associated with the 11 auto-immune phenotypes
(Fig. 4). First, for any given phenotype, we found all 3-field
resolution alleles that showed statistically significant association
with a phenotype and compared their effect sizes with all other
alleles of the same 2-field haplotype, hence directly isolating the
effect of synonymous variants. We used Welch’s t-test for
unequal variances to compare effect size heterogeneity. We found
87 pairs of 3-field resolution alleles sharing the same 2-field
haplotype, 54 of which showed a significantly different effect size
(p < 0.05/307, see Methods). Of those, 11 were of opposite
directions. For example, HLA-DQB1*02:01:01 was associated
with a 1.09-fold increase in odds of asthma (95% CI: 1.06–1.12,
p= 1.25 × 10−10), HLA-DQB1*02:01:08 was associated with a
0.90-fold decrease in risk (95% CI: 0.87–0.93, p= 5.90 × 10−11).
There were an additional 42 pairs where one 3-field resolution
allele was associated with the phenotype, but the remaining were
not, and the heterogeneity was considered significant. For
example, the HLA-DQA1*01:02:01 allele was associated with a
0.94-fold decrease in odds of asthma (95% CI: 0.92–0.95,
p= 3.33 × 10−16), but HLA-DQA1*01:02:02 was not shown to
be significantly associated (OR: 1.93, 95% CI: 0.99–1.06,
p= 0.01). Lastly, 1 pair showed a difference in risk of disease in
the same direction but with a different effect size: HLA-
DQB1*02:01:01 was associated with a 1.29-fold increase in the
odds of coeliac disease (95% CI: 1.19–1.40, p= 5.27 × 10−10), but

HLA-DQB1*02:01:08 was associated with an even higher risk
with an odds ratio of 2.60 (95% CI: 2.39–2.87, p= 6.42 × 10−110).
Of note, both alleles had relatively similar frequencies (6.5% and
4.7%, respectively).

However, many of the comparisons of these allele pairs may
have been underpowered due to low allele frequencies. Therefore,
when there were more than two 3-field resolution alleles with no
association evidence for a given 2-field haplotype, we collapsed
them all into a single 3-field resolution allele. This is conceptually
the same process as a burden test (also known as a collapsing test)
used for rare variant analyses42. In doing so, we aggregated
enough alleles without association evidence to perform 220
additional pairwise comparisons, of which 12 suggested that there
was a difference between the lead 3-field resolution allele and the
corresponding collapsed HLA alleles. This included two instances
where the effect was in the opposite direction, suggesting that at
least one of the constituent 3-field resolution alleles in the
collapsed allele was in the opposite direction as the lead 3-field
resolution allele. For example, HLA-G*01:01:02 was associated
with a 0.70-fold decrease in odds of coeliac disease (95% CI:
0.65–0.75, p: 1.72 × 10−20), while the burden test of its dummy
3-field allele showed an opposite direction (OR: 1.29, 95% CI:
1.21–1.39, p: 7.98 × 10−13). This suggests that at least one
synonymous variant in HLA-G*01:01 obviates the association
of HLA-G*01:01:02 with coeliac disease.

In conclusion, the observed heterogeneity in the effects of
synonymous variants at HLA alleles suggests that this type of
variants is likely to contribute to the risk of human immune-

Fig. 3 HLA association studies at 2-field resolution. Odds ratios are shown. The curved dashed lines represent a power of 80% to detect an association at
a p-value of (5 × 10−8)/11 or less. Circles show likely novel allele associations. Pertinent positive controls include HLA-B*27:05 for ankylosing spondylitis
(OR: 6.55, 95% CI: 5.97–7.18, p: 1.97 × 10−305, EAF: 3.9%). Also note the rare and novel allele associations HLA-B*57:31 for psoriasis (OR= 4.61, 95% CI:
3.22–6.59, p= 7.1 × 10−17, EAF= 0.06%), and HLA-C*02:178 for ankylosing spondylitis (OR= 5.33, 95% CI: 3.37–8.41, p= 7.75 × 10−13, EAF= 0.2%). For
3-field resolution results, refer to Supplementary Fig. 7.
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mediated diseases. To our best knowledge, most previous HLA
fine-mapping studies were limited to 2-field resolution alleles and
did not capture synonymous variants’ effects. Specifically, we are
not aware of studies of comparable size that studied the effect of
synonymous HLA variants in a systematic way. See Supplemen-
tary Data 24 for the complete results of these analyses.

Imputed vs sequenced HLA alleles canonical correlation ana-
lysis (CCA) and PRSs. While our prior results supported the
hypothesis that WES-based HLA allele calling would be more
accurate than imputation, imputation may still provide enough
information to still be adequate for PRSs, even if it does not
assign alleles accurately to participants. To test this hypothesis, we
first used CCA on the matrices of imputed and WES-based HLA
alleles (using a 0, 1, and 2 encoding for absent, heterozygous, and
homozygous for the allele). CCA performs linear transformations
of both matrices to find the best linear approximation of one
against the other. In other words, it assumes the existence of a set
of variables that both HLA imputation and WES-based HLA
calling approximate, allowing for the calculation of the amount of
variation in WES-based HLA alleles that can be explained by
imputed HLA alleles (also referred to as total canonical redun-
dancies). If the variance explained by the imputed alleles is high,

we would not expect a great increase in PRS predictive ability
from using WES-based HLA alleles. Indeed, using CCA (Sup-
plementary Data 25 and Supplementary Fig. 9) for WES-based
HLA alleles with AF > 10%, we found that imputed HLA alleles
can account for 85.1% of the variation in WES-based alleles. This
increased to 88% with AF > 20%. This decreases when we lower
the AF threshold (e.g., decreases to 77.5% for AF > 5%) or add the
non-imputed genes because these are not captured well (or at all)
by imputation. Additionally, as expected, the percentage of var-
iation in WES-based alleles explained by imputed alleles was
driven by the EUR ancestry cohort. These values varied in other
genetic ancestries, with the percentage of variance explained in
the AFR ancestry cohort consistently lower than in other cohorts
(except for the analysis with AF > 0.01% and only using the
imputed genes). However, the considerable differences in sample
size make further comparisons between genetic ancestries difficult
or even impossible (e.g., the analyses could not be performed in
the EAS ancestry cohort).

We then used the LDpred software to compute PRSs from the
seven phenotypes for which complete GWAS summary statistics
were available in the GWAS Catalog. All GWASs contained only
participants of EUR genetic ancestry, except for rheumatoid
arthritis. Two LDpred scores were obtained for each phenotype

Fig. 4 Summary of synonymous variant heterogeneous effect on HLA allele associations. Result of pairwise effect heterogeneity tests for a 3-field allele
to test for the effect of synonymous variants on traits. We compared the effect size of all 3-field alleles associated with any of the 11 phenotypes, with any
other available 3-field allele falling in the same 2-field HLA haplotype (e.g., HLA-A*01:01:01 and HLA-A*01:01:02). Other 3-field allele: direct effect
heterogeneity tests between pairs of 3-field HLA alleles. Dummy allele burden test: effect heterogeneity tests between pairs of 3-field HLA allele and all
other 3-field alleles at that 2-field haplotypes combined in a dummy allele. Colours represent if the heterogeneous effect is due to each pair having an
opposite effect direction (red), the same effect direction (beige), or one of the allele pairs having a non-significant association with the given phenotype
(light blue).
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and each participant: 1) a score from the summary statistics
across the whole genome and 2) another after removing the HLA
region variants. The LDpred scores were then used in an XGBoost
binary classifier for each phenotype, along with age, sex, and the
first 10 PCs. For the classifier using the LDpred scores without the
HLA region, we also added either the imputed HLA alleles or the
WES-based HLA alleles in the XGBoost algorithm. Hence, we
performed three distinct XGBoost PRSs for each phenotype: 1)
LDpred scores alone, 2) LDscores without the HLA region but
with the imputed HLA alleles, and 3) LDpred scores without the
HLA region but with the WES-based HLA alleles. HLA alleles
improved all PRSs to varying degrees with an average absolute
increase in area under the receiver operating characteristic curve

(AUC) of 0.085 (for both alleles containing HLA alleles, see Fig. 5
and Supplementary Data 26). The largest increase was for coeliac
disease: the AUC increased from 0.68 (95% CI: 0.66–0.70) to 0.84
(95% CI: 0.82–0.86) with WES-based HLA alleles (compared to
not using HLA alleles). However, the difference between AUC of
the PRSs using imputed and WES-based alleles was always small
(average of 0.002), with all 95% confidence intervals for the
difference in AUC containing zero (Supplementary Data 26).
Hence, as expected, given our CCA results, HLA allele imputation
explains enough of the variation in the UKB participants’ HLA
alleles to still be useful for PRS purposes. However, this may not
hold for non-EUR genetic ancestry cohorts, given the limited
diversity of available HLA imputation reference panels. Similar

Fig. 5 PRS performance for seven traits. X-axis: false positive rate. Y-axis: true positive rate. Dashed line: 50% AUC representing random diagnostic
performance (i.e., curves further away from the dashed lines represent better models). AUC Area under the curve. See main text for more information on
the four PRS tested.
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results were seen with precision-recall curves (Supplementary
Fig. 10).

In this study, HLA imputation was performed using the same
imprecise algorithm in both the training and the test set. In real-
world applications, one would use a PRS developed with the HLA
alleles from one imputation algorithm in a separate population,
probably using a different HLA typing method (e.g. another
imputation software). To mimic this scenario, we used the
XGBoost weights from our PRS developed with imputed HLA
alleles, and we used WES-based HLA alleles for the testing set’s
input features. This did not lead to large differences in AUC. HLA
imputation provided a small improvement except for coeliac
disease (AUC decreased from 0.84 to 0.81, absolute difference:
−0.03, 95% CI: −0.06 to −0.0004). We conclude that HLA allele
imputation may be useful for PRS, but most phenotypes will not
benefit beyond the inclusion of the tag variants in the HLA region
of the genome.

Amino acid association studies. Using the 2-field allele calls, we
performed amino acid residue fine-mapping at all protein-coding
genes for all 11 phenotypes. The same analytic method was used
as in the HLA allele association studies above. As expected, we
found many more associations (p < 5 × 10−8/11) for amino acid
residues than HLA alleles. We found 5,556 associations in our
multi-ancestry meta-analyses, with 2134 for autoimmune thyroid
disease, coeliac disease, or psoriasis (Supplementary Data 18).
However, the correlation structure of those residues is sig-
nificantly more complicated than for HLA alleles LD, making
causal inference even more complex. For example, while it is clear
that residue 57 of the HLA-DQB1 protein is the main determi-
nant of type 1 diabetes mellitus at this gene (as reported before in
refs. 43–45), with an odds ratio of 1.72 (96% CI: 1.64–1.80,
p= 5.4 × 10−116), it is not as clear which amino acid is the main
driver at HLA-DQA1 (Fig. 6a). Nevertheless, these amino acid
association studies can still provide important insights into the
genetic underpinnings of the HLA, especially when considering
potential interactions between amino acids. Specifically, the HLA-
DQA1 and HLA-DQB1 proteins form a heterodimer and should
be analyzed together, and when performing normal mode ana-
lysis of this heterodimer (to see which amino acid move together
in space, see Fig. 6b) or when looking at the distance between
amino acid in 3-dimensional space (Fig. 6c), it becomes clear that
residues 53–57 of HLA-DQB1 are in close contact with amino
acids 60–80 of HLA-DQA1. Notably, residues 60 to 80 are part of
a segment of the HLA-DQA1 proteins (residues 45–80) with
nearly identical p-values (5.81 × 10−58) and high LD. Indeed,
these two segments are in close contact and are part of the ligand
binding groove of the HLA-DQA1/HLA-DQB1 heterodimer
(Fig. 6d). Hence, WES-based HLA allele calling and amino acid
fine-mapping can provide additional biological evidence on the
role of the HLA in human disease.

Lastly, in contrast to HLA alleles, we observed significant
heterogeneity in amino acid associations for the auto-immune
thyroid disorders, type I diabetes mellitus phenotypes, and
asthma to a lesser extent (Supplementary Fig. 8). This was
especially the case in class II HLA genes DOB, DRB1, DRB5, and
DQB1 (Supplementary Data 20). This potentially represents
amino acid residues which are neither causal, nor highly
correlated with causal genetic variants, but more research would
be needed to confirm this hypothesis.

Discussion
Here we report an increased accuracy in WES-based HLA allele
calling compared to imputation-based approaches. This gain in
accuracy was greater for rare variants and non-EUR genetic

ancestry UKB participants. This improved accuracy allowed us to
identify 360 allele associations at 3-field resolution for 11 auto-
immune phenotypes. At 2-field resolution, we found 341 asso-
ciations, of which 129 were likely novel. The increased resolution
(from 2-field to 3-field) afforded by WES also allowed us to better
characterize the association between synonymous variants in
HLA alleles and human diseases. We found that for at least 25%
of 2-field haplotypes exhibiting synonymous variants in the UKB,
the resulting 3-field haplotypes showed statistically significant
heterogeneous effect sizes. This observation and the fact that
2-field accuracy decreased the number of allele associations we
found (from 360 at 3-field to 341 at 2-field) supports the
hypothesis that the increase in accuracy also improved statistical
power, as the collapse of multiple 3-field alleles into one 2-field
allele would hide potential HLA allele disease associations. Given
that previous HLA association studies usually do not consider the
effect of synonymous variants, this represents an advance in our
understanding of the HLA. Lastly, we showed that using HLA
alleles from either imputation or sequencing may improve PRS
accuracy, while WES-based HLA alleles may improve their
external validity. More specifically, we showed that for some
diseases, using a different method to assign alleles to participants
in the training cohort than in the test cohort may decrease the
accuracy of the PRS. This is likely even more important for non-
EUR genetic ancestries, which are under-represented in HLA
research. Hence, WES-based HLA allele calling provides addi-
tional insights into the complex role of the HLA in human dis-
eases. These insights will likely be important for future
translational research programs on the HLA and its application to
therapeutic drug development. Importantly, these HLA allele calls
for all UKB participants will be made available to the scientific
community.

Our results highlight some limitations and areas for future
research. First, the UKB WES program was not designed with the
specific aim of HLA calling, and it uses a short read technology. It
is known that HLA-specific assays with longer reads will perform
better for this region, and an increased accuracy would be
expected from such technology46. Additionally, as the UKB will
release whole-genome sequencing data for its entire cohort (still
only available for around 150,000 participants at the time of
writing this manuscript), a comparison between WES and WGS
will be needed, as the optimal trade-off between better non-
coding region coverage and depth of sequencing in the HLA is
unclear. Second, newer imputation algorithms have been devel-
oped since the UKB first released their HLA imputation results,
and these may fare better with rare alleles and non-EUR ancestry
individuals than our current comparator. Nonetheless, the cur-
rent best-performing algorithm from the Michigan Imputation
Server had a lower concordance rate than HLA-HD when com-
pared with the 1000 G panel18,47 (e.g., 100% concordance at HLA-
DRB1 for HLA-HD, and between 90.9% to 96.9% for the
Michigan Imputation Server, depending on ancestry, both at 2-
field). This server also currently only provides imputation for 9
genes. Hence, using HLA sequencing when available appears
preferable. Third, HLA-HD does not provide 4-field resolution,
which would be necessary to study non-coding variants, including
those that may be tagging synonymous variant, explaining the
signal we found when comparing 2-field to 3-field. Given our
findings on potential the non-negligible role of synonymous HLA
variants in human disease, we expect that non-coding variants
would also be important to study more thoroughly. The
upcoming release of the full UKB participant whole-genome
sequencing data should shed light on this issue. However, this will
need the development of an HLA calling algorithm capable of
handling 4-field resolution while also being scalable on cloud
computing architecture.
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Fourth and most importantly, new and more accurate tech-
nology is only one piece of the puzzle to better understand the
role of the HLA in diseases. There are still many unresolved
questions relating to haplotypes LD and HLA protein interactions
(since HLA proteins form complexes) that remain to be solved. In

the past, cross-ancestry comparative genetics has been used to
better determine causal variants, and the study of the HLA would
benefit from the sequencing of more non-EUR genetic ancestry
individuals. Further, it was previously described that using HLA
alleles instead of single nucleotide polymorphism increases the

Fig. 6 HLA-DQ heterodimer and its association with type I diabetes mellitus. HLA-DQ heterodimer is encoded by HLA-DQA1 and HLA-DQB1, and their
interaction needs to be accounted for when studying amino acid residue associations, such as here for type I diabetes mellitus. a Summary of HLA-DQA1
and HLA-DQB1 type I diabetes mellitus association study. The X-axis represents residue positions, with colours corresponding to the chain they are a part of
(e.g., alpha-1 chain of HLA-DQA1). The Y-axis represents the smallest p-value at each position (on the -log10 scale). Only residue positions with
polymorphisms can be shown. As can be seen, the HLA-DQA1 results likely suffers from the high correlation in amino acid residue inheritance as residues
45 to 80 all show a similar association with type I diabetes mellitus. This isn’t affecting HLA-DQB1, where residue 57 (on the beta-1 chain) is the most
significant. b Normal mode analysis of the HLA-DQ heterodimer shows that residues 53–57 of HLA-DQB1 interact with some residues of the 45–80 HLA-
DQA1 protein (the square formed by the 4 dotted lines), which is also observed in c The contact map. Colours on the contact map show distances. d A
3-dimensional view of the HLA-DQ heterodimer showing that residues 53–57 of HLA-DQB1 likely interact with the more distal residues of the HLA-DQA1
45–80 segment, which directly interacts with the HLA-DQ ligand binding. The blue segment represents residues 53–57 of HLA-DQB1. The green segment
represents residues 45–80 of HLA-DQA1. The yellow segment is a ligand binding the dimer (here CD74). Pale green and pink cartoon protein
representations show the rest of HLA-DQB1 and HLA-DQA1, respectively.
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yield of HLA genes in expression quantitative trait loci studies48.
Hence, a large-scale association study of HLA allele determinants
of HLA gene expression, splicing, and protein level using gen-
ome/exome sequencing and HLA calling algorithm would shed
much-needed light on how HLA polymorphisms affect diseases.
Finally, the best way to incorporate HLA alleles in PRS also
deserves further research. For example, by modelling HLA allele
interactions, previous literature showed improved PRS perfor-
mance compared to the method we used in this paper30. It would
be of interest to see how this translates using WES/WGS tech-
nology and HLA allele calling, especially in non-EUR ancestries.

In conclusion, using WES for HLA allele calling improves the
accuracy of ascertainment and, therefore, statistical power to
associate HLA alleles with diseases. This should help solve the
problem of the HLA’s highly polymorphic character and LD.
Doing so is particularly important for genetic ancestries under-
represented in research and for rare variants. This is important
since, by increasing HLA typing accuracy, a better understanding
of the genes responsible for diseases at HLA is possible, which
could be translated into actionable therapies.

Methods
Statistics and reproducibility. Many analyses were performed,
the following method sections were written with the aim of
facilitating its reproducibility. References to all data, software,
code, sample size and statistical tests are described in details in
the following sections.

HLA allele sequencing. We used WES data from 454,824 indi-
viduals in the UKB to call HLA alleles. First, CRAM WES
alignment files were converted to fastq files using Picard tools49

and the GRCh38 human reference genome50. Second, HLA-HD18

(v1.4.0) was used to call all possible HLA alleles. For the allotted
coverage in the WES data, this corresponded to the following 31
genes or pseudogenes (see resource 3803 of the UKB for target
regions details): HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G,
HLA-H, HLA-J, HLA-K, HLA-L, HLA-V, HLA-Y, HLA-DMA,
HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPA2,
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6,
HLA-DRB7, HLA-DRB8, HLA-DRB9. HLA-HD uses Bowtie247 to
align WES data to the reference genome. Only segments of 50
base pairs or longer were used, as the Bowtie2 aligner doc-
umentation recommended. We used the IPD-IMGT/HLA release
3.45.0. The entire pipeline was implemented on DNAnexus (Palo
Alto, California, USA) using the Workflow Description Language.
Two separate Docker51 images were used in the workflow: 1) the
broadinstitute/gatk52 image to convert CRAM files to fastq, and
2) a Docker image containing HLA-HD and its dependencies for
the HLA calling.

HLA allele calls processing. Final HLA allele calls were first
transferred to our local computing cluster. While these files will
be made available through the UKB return of data program, for
the remainder of the analyses in this paper, we only used HLA
calls with a total coverage of 20 reads at exon 2, except for HLA-
DRB2 and HLA-DRB8, where a total coverage of 20 reads at exon
3 was used since these two genes do not have a second exon.

We used an additional heuristic approach to assign alleles at
the HLA-DRB3, HLA-DRB4, and HLA-DRB5 genes. Like other
HLA allele calling from sequencing technology algorithms, HLA-
HD may provide calls for the HLA-DRB3-4-5 genes if some reads
aligned to one of these genes, even if a participant may not truly
carry a copy of them (in which case this alignment would be
incorrect). This is because while everyone has two copies of the

HLA-DRB1 gene (maternal and paternal), each copy can
sometimes (but not always) be inherited along with a copy of
either HLA-DRB3, HLA-DRB4, or HLA-DRB5, for a total of 2 to 4
HLA-DRB genes: two HLA-DRB1, and a combination of zero to
two of any of the other three genes. Hence, it is not sufficient to
use the HLA-HD calls at these genes; one must also quantify the
number of reads at these genes and compare them to a reference
to decide which of these genes (if any, and how many) are carried
by each individual. Here, a natural reference would be the
quantity of HLA-DRB1 measured in a participant since these
genes are in high LD. Intuitively, a participant with a very low
quantity of HLA-DRB3-4-5 compared to HLA-DRB1 should not
carry any of the HLA-DRB3-4-5 genes. On the other hand, if the
quantity of HLA-DRB3-4-5 is the same as that of HLA-DRB1,
then the participant should have 2 of these genes (any
combination of HLA-DRB3, 4, or 5). A similar logic applies to
participants who carry only one copy of an HLA-DRB3-4-5 gene,
as they would be expected to have half as many reads at these
genes than at HLA-DRB1. Hence, we compared the number of
reads at exon 2 at the HLA-DRB genes to decide which one to
assign and used this heuristics-based approach to assign alleles at
HLA-DRB3-4-5. For every participant, if one of their HLA-DRB3-
4-5 allele calls had a total coverage of 60% of the HLA-DRB1
coverage (and still more than 20), we used the two alleles for this
gene as called by HLA-HD. For example, if a participant had a
mean HLA-DRB1 coverage of 100 and a mean HLA-DRB4
coverage of 60, we assigned both HLA-DRB4 alleles to this
participant. Otherwise, if one or more of their alleles had a mean
coverage of 30% or more of the HLA-DRB1 coverage, we assigned
them the first called allele by HLA-HD from the respective genes.
For example, the same participant with an HLA-DRB1 coverage
of 100 having an HLA-DRB4 coverage of 30 and an HLA-DRB5
coverage of 30 would be assigned the first allele of each of these
genes. If no alleles from HLA-DRB3-4-5 fulfilled these conditions,
the participant was assigned no alleles from those genes.

Using these allele calls, we also assigned amino acid
polymorphisms at each position of the 19 protein-coding genes:
HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, HLA-DMA,
HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1,
HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB3,
HLA-DRB4, HLA-DRB5. We then converted these allele and
amino acid calls into VCF53 (with dummy positions) and
PLINK54 binary files for our analyses. For the 2-field HLA allele
analyses, we trimmed the 3-field alleles to two fields by removing
the 3rd field and the change in expression suffix (when present).
All data processing was performed using R55 (v4.1.0), BCFtools56

(v1.11-1-g87d355e), and PLINK (v1.9).

Genetic ancestry assignment and principal components. We
used the somatic chromosomes imputed genome-wide genotypes
from the UKB to assign 1000 Genome continental genetic
ancestry to every participant (AFR, AMR, EAS, EUR, and SAS).
To do this, we first selected variants with minor allele frequency
(MAF) > 10%, call rate > 95%, Hardy-Weinberg equilibrium p-
value > 10−10, and which are part of the 1000 G reference panel.
We trained a random forest classifier for genetic ancestries using
the first 6 PCs of the 1000 G reference. We then projected the
pruned UKB genotypes on the 1000 G reference PCs and assigned
genetic ancestries using the majority call from our classifier.

To compute PCs to use as covariates in our association tests,
we split participants by their genetic ancestry group and kept only
variants with MAF > 1%, minimum allele count > 100, call rate
> 95%, and Hardy-Weinberg equilibrium p-value > 10−10. These
were then LD pruned with the r2 < 0.2 threshold, and the
resulting variants were used to obtain PCs. For the European
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ancestry group, we used fast approximate PCs due to the large
number of individuals, as implemented in PLINK57 (v2.0).

All analyses and computations for this section were done using
PLINK (v1.9 and v2.0), BCFtools, or R.

Comparisons with UK Biobank HLA allele imputation. HLA
calls were compared to the available UKB imputed HLA alleles
obtained with HLA:IMP*213 (data field 22182) for the following
genes: HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-
DPA1, HLA-DPB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-
DRB5. Alleles ending in 99:01 were considered unimputed, and
alleles with imputation dosage less than 0.8 were set to 0 as per
UKB documentation. We also used a liberal threshold of 0.66 (the
most liberal threshold ensuring a maximal number of alleles of 2
per genes), and a strict threshold of 0.9 for comparisons. The
strategy and results of comparison between the imputed and
sequenced alleles are presented in Supplementary Data 6–11.
Individual-specific allele frequency was computed as the mean of
the frequencies of the two corresponding alleles. For each gene,
concordance was calculated by summing the number of matching
alleles between imputed and called alleles across participants and
dividing by twice the number of participants. Since this did not
take changes in IMGT-HLA into accounts, we also calculated an
adjusted concordance using only sequenced alleles that were also
found in the imputation tool’s reference database.

HLA allele LD. We computed multiallelic asymmetric LD23 for
each HLA gene. This was done for each ancestry separately as
well as globally for the entire cohort. In each analysis, we assigned
a dummy allele to unsequenced alleles and alleles with frequency
< 1%. This analysis provides conditional LD for any pair of genes
(e.g., LD of HLA-A conditional on HLA-B, and vice versa). We
then took the average of the conditional LD pair to create a
correlation heatmap clustered using the R hclust function with
the “average” clustering method. The first 5 hclust clusters were
highlighted by rectangles in the heatmaps. This section was done
with R.

Allele frequency comparison to reference panel. To compare
allele frequencies from WES HLA calling to reported reference
frequencies, we used the AFND24 to find cohorts with reported
HLA allele frequencies and with genetic ancestries comparable to
those in the UK Biobank. Specifically, for each 1000 Genome
continental genetic ancestry (AFR, AMR, EAS, EUR, and SAS),
we found a similar cohort in the AFND based on reported
ancestry and country of origin. When multiple cohorts were
available, we prioritized the one with the largest sample size. We
only looked for cohorts with a sample size larger than 500 and
reported as high quality (“gold population standard” option).
Additionally, we only used cohorts if the sum of all reported allele
frequencies for each gene was 1. Lastly, we used allele frequencies
reported at an accuracy of 2-field since the largest high-quality
cohorts did not report frequencies at 3-field. Note that this ana-
lysis was restricted to classical HLA genes, given the sparsity of
high-quality data on other genes in the AFND. A complete list of
AFND cohorts used as comparators can be found in Supple-
mentary Data 27. Lastly, all allele frequency comparisons between
the UKB WES HLA allele calls and the selected AFND reference
cohort were made separately for each genetic ancestry.

Phenotypes classifications. We selected 11 phenotypes with
known associations with HLA alleles to have multiple true posi-
tive and true negative results to check for in our association
results. We used either ICD-10 codes from hospitalization elec-
tronic medical records data (data fields 41202 and 41204),

disease-specific data fields (e.g., data field 6152, option 8, for
asthma), or self-reports (data field 20002), depending on the
disease. The choices of data fields and ICD-10 codes (Supple-
mentary Data 18) were based on previous studies26,27,58 validat-
ing their use and reviewed by a board-certified physician (GBL).
These data fields were aggregated directly on the DNAnexus web
service.

HLA allele and amino acid association studies. Regenie36

(v2.2.4) was used for all association tests (2-field HLA alleles,
3-field HLA alleles, and amino acids). Regenie works in two steps.
In the first one, a risk score for the given phenotype is assigned to
each chromosome for each participant by ridge regression. In this
step, we used the ancestry-specific pruned whole-genome geno-
typed data, the same as for the ancestry-specific PCs described
previously. In the second step, each chromosome score is used as
a covariate in the association model to adjust for kinship structure
and polygenic background. To avoid proximal contamination,
this association model does not use the score of the chromosome
where the variant is located (so-called LOCO scheme) since this
score may already include the effect of the given variant. Hence,
in Regenie’s second step, we used PLINK binary files with
assigned chromosome 6 and a dummy chromosomal position for
each HLA allele and amino acid. This ensured that kinship was
accounted for without adjusting for the effect of variants on
chromosome 6 in the null model. Our association model also
included age, sex, and the first 10 PCs as covariates. The
approximate Firth regression method was used for all association
tests to provide unbiased effect estimates even for rarer alleles and
amino acids while accounting for case-control imbalance. For
amino acids, we used alignment provided by the IMGT-HLA59 to
determine residue positions, and we excluded indel sequences
from the analysis (i.e., those that correspond to either an insertion
of additional amino acid residues to the protein or to a deletion of
residues from the same protein). Other specific Regenie para-
meters included a minimal case count of 50, a genotype size
blocks of 1000 in step 1 and 400 in step 2 (based on Regenie’s
UKB documentation), a Firth regression p-value threshold of 0.1
with back-corrected standard error (--firth-se), a minimum allele
count of 1, and the --htp option. All analyses were done sepa-
rately per ancestry, then meta-analyzed using fixed effect inverse
variance weights in METAL37. For the statistical significance
threshold, we mimicked the common situation where a researcher
performs the HLA association study following the result of a
GWAS with a locus at the HLA. Hence, we used the usual
5 × 10−8 genome-wide significance threshold60 divided by 11 (the
number of phenotypes used). Given the use of rare alleles which
may lead to unstable p-values and an increase in type 1 error, we
also used negative controls phenotypes (osteoporosis, atrial
fibrillation, non-insulin dependent diabetes mellitus) to ensure
that this threshold and the Firth regression was enough to control
the type 1 error rate. These phenotypes are expected to have no
strong HLA association, except for non-insulin dependent dia-
betes mellitus which is often contaminated by Type 1 diabetes
mellitus cases in large registries. As expected, none of these
phenotypes showed significant HLA associations with our HLA
alleles at p < 5 × 10−8/11 (see Supplementary Fig. 11 and Sup-
plementary Data 28).

Determining if a sequenced HLA allele association was novel.
We used two sources to determine if an allele association was
novel. We first used the HLA-SPREAD database39, which used a
natural language processing algorithm to scan 28 million PubMed
abstracts for HLA allele associations. If an allele association was
reported in the database, it was not deemed novel. For the
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remaining potentially novel associations, we performed the same
HLA allele association analysis as above but used the imputed
HLA alleles instead of the WES-based ones. If an allele was
genome-wide significant in both (p < 5 × 10−8/11), the WES-
based HLA allele association was considered potentially not
novel, as it could have been reported in a previous study using the
UKB, though we recognize that we may still be the first to report
it formally and that this is likely an overly conservative assess-
ment of novelty.

Conditional analyses. To further confirm the novelty of the allele
associations found above, we used GCTA-COJO61 to perform
conditional analyses (--cojo-cond with --cojo-joint) on each sig-
nificant phenotype-allele combinations found in the 2-field
analysis.

Replication analyses in the Estonian Biobank. The Estonian
Biobank is a population-based biobank with 212,955 partici-
pants in the current data freeze (2022v2). All biobank partici-
pants have signed a broad informed consent form and
information on ICD codes is obtained via regular linking with
the national Health Insurance Fund and other relevant data-
bases, with majority of the electronic health records having been
collected since 200462. The diagnosis of autoimmune diseases
were based on ICD-10 and ATC codes listed in Supplementary
Data 18. Analyses were restricted to individuals with European
ancestry.

HLA imputation of the Estonian Biobank genotype data was
performed at the Broad Institute using the SNP2HLA tool12. The
imputation was done for genotype data generated on the Global
Screening Array v1. We performed separate additive logistic
regression analysis with the imputed HLA alleles using SAIGE
v1.0.7 with standard binary trait settings63. Logistic regression
was carried out with adjustment for current age, age², sex and 10
PCs as covariates, analyzing only variants with a minimum minor
allele count of 2.

Synonymous variant association tests: comparisons of two field
and 3 field HLA allele associations. We compared association
results of 3-field HLA alleles belonging to the same 2-field class
to check if adding synonymous variants would change asso-
ciation results. To do this, we limited our analyses to 2-field
HLA alleles for which there was at least one statistically sig-
nificant 3-field HLA allele for any given phenotype
(p < 5 × 10−8/11). We then examined four scenarios: 1) In cases
with more than one statistically significant 3-field allele, we
compared beta estimates of all alleles to the one with the lowest
p-value using the t-test for unequal variances in R (Welch’s
t-test using the beta and standard error from Regenie in the
HLA association studies above). 2) In cases with only one sta-
tistically significant 3-field allele and one or more statistically
non-significant 3-field alleles, we also directly compared the
beta estimate of the significant 3-field allele to the beta estimate
of each of the other alleles using Welch’s t-test. 3) In cases with
only one significant 3-field allele and multiple non-significant 3-
field alleles, we collapsed all non-significant 3-field alleles into a
single allele. We then performed an association test of carrying
this collapsed allele using the same covariates as our association
tests above and compared the beta from that collapsed allele to
the beta from the significant 3-field allele using Welch’s t-test.
For example, if the HLA-A*01:01:01 allele was significant for a
phenotype, but the HLA-A*01:01:02 and HLA-A*01:01:03 were
not. We collapsed the latter two alleles into one and obtained a
score of 0, 1, or 2 for each participant if they had none of these
alleles, any one of the two, or any two of them, respectively.

This score was then used as our regressor. Note that this is
equivalent to performing a gene-based burden test at any given
HLA gene (here HLA-A), using only the count of statistically
non-significant alleles (here HLA-A*01:01:02 and HLA-
A*01:01:03) as the burden measurement to use as a regressor.
This is precisely the way it was coded in Regenie to perform the
analyses across HLA genes (either “--build-mask sum” or
“--build-mask comphet” options). These burden tests were
performed again separately for each ancestry and meta-analyzed
as above. 4) Lastly, if there were multiple statistically significant
3-field alleles, but there remained non-significant 3-field alleles
too, we also compared the non-significant 3-field alleles to the
most significant 3-field alleles as per situation 2 or 3 above,
depending on how many non-significant 3-field alleles there
were. To determine if Welch’s t-test was statistically significant,
we used a Bonferroni correction for the number of Welch’s
t-tests divided by the number of tests performed in this section
(i.e., p < 0.05/307).

Canonical correlation analysis. We used CCA64 to find the total
fraction of sequenced HLA alleles variance accounted for by the
imputed HLA alleles. We assigned a value of 0, 1, or 2 to each
allele (imputed and sequenced) based on whether it was absent,
heterozygous, or homozygous, respectively. We then used the
resulting two matrices as input to the yacca CCA R package65,
and obtained the total canonical redundancy66 for sequenced
HLA alleles (i.e., how much the imputed alleles were able to
explain the sequenced alleles). This was done at multiple levels of
sequenced allele frequencies: > 0.01%, > 0.1%, > 1%, > 5%, > 10%,
and > 20%.

Polygenic risk score. We used polygenic risk scores to determine
if the additional precision obtained from HLA sequencing at
3-field resolution would improve disease prediction performance.
We first used the GWAS Catalog67 to find GWAS summary
statistics for our 11 phenotypes. We limited our search to studies
with complete summary statistics, excluding those which only
shared the most significant associations. We found complete
summary statistics for 8 of those phenotypes: asthma26, coeliac
disease68, type I diabetes mellitus69, multiple sclerosis/demyeli-
nating disease70, psoriasis33, rheumatoid arthritis71, and ulcera-
tive colitis72. Unfortunately, all found GWAS were on
participants of European genetic ancestry, except for rheumatoid
arthritis, which also contained East Asian ancestry participants
(34.5% of the 103,638 participants in the GWAS). However, we
used the entire UKB cohort for our polygenic risk score training
and testing (regardless of ancestry assignment).

We computed a polygenic score from those summary statistics
using the LDpred software73 with the European HapMap74 pre-
compiled reference panel obtained from the LDpred developers
(i.e. 1,054,330 variants). We used LDpred’s genomic best linear
unbiased predictor method (LDpred-inf, i.e., snp_ldpred2_inf in
R). This was done in two ways: 1) using the GWAS summary
statistics genome-wide, and 2) after removal of the chromosome 6
MHC region +/−500 kbp (i.e., GRCh37: 27,977,797 to
33,948,354; GRCh38: 28,010,120 to 33,980,577). Two LDpred
scores were then assigned to each participant in the UKB (with
and without the HLA region).

We then randomly split the participant set into a training set
and a testing set at an 80/20 ratio and trained an XGBoost75

random forest binary classifier using age, sex, the first 10 PCs
(those projected on the 1000 G reference), and either of the
following three sets of variables: 1) using only the LDpred score
(with the HLA region), 2) using the LDpred score without the
HLA region, and the imputed HLA alleles and 3) using the
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LDpred score without the HLA region, and the sequenced HLA
alleles at the 3-field resolution. The HLA alleles were assigned a
value of 0, 1, or 2, as described in the CCA section above. The log
loss was used with 5-fold cross-validation on the training set. We
used a Bayesian optimization algorithm to tune the following
XGBoost hyperparameters: max_depth, min_child_weight, eta,
gamma, subsample, colsample_bytree, and max_delta_step. After
training, we tested our 3 risk scores in the testing set and
compared them using the AUC of the receiver operator
characteristic curve. XGboost model training and testing was
done on R.

Protein normal mode analysis and contact map. To study the
interaction between the HLA-DQA1 and HLA-DQB2 hetero-
dimer, we used the PDB file from the 5KSV entry of the Protein
Data Bank76,77, which gives the crystal structure of the HLA-
DQ2.5 heterodimer (proteins of the HLA-DQA1*05:01 and HLA-
DQB1*02:01, with part of its CD74 ligand). Normal mode ana-
lysis was done using the C-alpha model with default options with
the bio3d package78 (v2.3-0) on R. Contact map was also done
using the bio3d package.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The primary data used for all analyses (i.e., WES CRAM files) is available through the UK
Biobank DNAnexus research analysis platform. All summary statistics can be found in
the supplements. All HLA-HD allele calls and their associated quality control metrics
have been returned to the UK Biobank for sharing with authorized researchers. Source
data underlying Fig. 1 are available in Supplementary Data 3, 4. Source data underlying
Fig. 3 are available in Supplementary Data 20. Source data underlying Fig. 4 are available
in Supplementary Data 24. Source data underlying Fig. 5 are available in Supplementary
Data 26 (with exceptions, see below). For Fig. 6, the source data for the proteins is
accessible publicly, and references are provided in the manuscript methods. The rest of
the source data for Fig. 6 is available in Supplementary Data 20. For figures pertaining to
UK Biobank participant-level data (e.g., Fig. 2, parts of Fig. 5, and Supplementary Fig. 1),
primary data had been returned to the UK Biobank for sharing with authorized
researchers as explained above.

Code availability
All code is available on https://github.com/DrGBL/HLA_UKB79.
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