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Topological links in predicted protein complex
structures reveal limitations of AlphaFold
Yingnan Hou 1,2, Tengyu Xie1,2, Liuqing He 1,3, Liang Tao 1,3 & Jing Huang 1,2✉

AlphaFold is making great progress in protein structure prediction, not only for single-chain

proteins but also for multi-chain protein complexes. When using AlphaFold-Multimer to

predict protein‒protein complexes, we observed some unusual structures in which chains are

looped around each other to form topologically intertwining links at the interface. Based on

physical principles, such topological links should generally not exist in native protein complex

structures unless covalent modifications of residues are involved. Although it is well known

and has been well studied that protein structures may have topologically complex shapes

such as knots and links, existing methods are hampered by the chain closure problem and

show poor performance in identifying topologically linked structures in protein‒protein
complexes. Therefore, we address the chain closure problem by using sliding windows from a

local perspective and propose an algorithm to measure the topological–geometric features

that can be used to identify topologically linked structures. An application of the method to

AlphaFold-Multimer-predicted protein complex structures finds that approximately 1.72% of

the predicted structures contain topological links. The method presented in this work will

facilitate the computational study of protein‒protein interactions and help further improve

the structural prediction of multi-chain protein complexes.
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Predicting the three-dimensional (3D) structure of a protein
from its primary sequence has long been a topic of great
interest in biology. Recent studies using end-to-end deep

neural network (DNN) methods such as AlphaFold1,2 and
RoseTTAFold3 have made great progress in this field. Reliable
structure prediction of single-chain proteins has further inspired
and facilitated the prediction of the structural details of protein‒
protein interactions (PPIs)3,4, which is pivotal for both the
understanding of biological functions and intervention in dis-
eases. Several recent studies have presented methods to predict
the component identities and interaction modes of PPIs that are
built upon AlphaFold5–8.

Recently, we used AlphaFold-Multimer (v2.2.0)4 to study PPIs
and generated large-scale datasets of predicted protein‒protein
complex structures. We found that some of the predicted com-
plex structures, including the top-ranked ones with the highest
confidence scores, contained unusual topologically intertwining
links formed within short backbone fragments in chains at the
interface (some examples are shown in Fig. 1a–d). Under phy-
siological conditions, folded proteins encounter each other phy-
sically to form interacting complexes with conformational
changes but do not unfold. However, the formation of this kind of
topological links in protein complex structures requires the
unfolding of protein chains, which is nearly impossible to appear
in the experimental structures. In nature, topological links in
protein complexes can be observed, but they always involve
covalently modified amino acids or disulfide bonds, such as in the
structures of virus capsids9,10, or in the intrinsically disordered
proteins11. We thus believe that the special topological links we
observed in the predicted complex structures are likely artifacts
generated from the prediction algorithm.

Topologically complex elements such as knots, slipknots, lassos
and links have been well studied for single-chain protein
structures12–16 including predicted ones17–19, which are con-
sidered to be associated with particular thermodynamic and
kinetic properties20. Algorithms that identify and classify the
topological features of these nontrivial protein structures are well
established21–28, and some researchers have attempted to apply
them directly to multi-chain protein complexes. The identifica-
tion of topological features for a set of closed curves is mathe-
matically complete; however, protein chains are open curves with
N- and C-termini such that determining how to close the curves
represents a major difficulty. Existing strategies for closing a
protein chain can be mainly classified into two categories: finding

loops (e.g., finding covalent bonds and closing
accordingly)9,10,23,29,30 and creating loops (e.g., closing by con-
necting the N- and C-termini)26. The topological feature of a
curve is deterministic, but it may vary according to different ways
the curve is closed. Therefore, the key step is to create properly
closed loops in a protein chain without changing its original
topological feature. To this end, approaches such as the KMT
algorithm14,31, minimal surface analysis32 and the Gauss linking
integrals (GLN) method33 are commonly used to determine the
topological types and locations for protein structures with
“closed” loops.

For topological link detection in multi-chain protein complex
structures, determining how to close at least two curves without
changing the original topological features is much more chal-
lenging. The LinkProt database34 established a systematic classi-
fication of the topological links in protein structures with three
categories: deterministic links, probabilistic links and macro-
molecular links. Deterministic links and macromolecular links are
both topological links in structures that already have loops closed
by covalent bonds (e.g., disulfide bonds); for such structures,
there is no need to handle the chain closure problem. Probabil-
istic links are topological features in probabilistic form for
structures with random closures, circumventing the chain closure
problem. Another method of measuring the entanglement of
protein complexes was established by observing the behavior of
chains when pulling at both termini of each chain35, where the
closure of the chains and the results of identification are deter-
mined by the pulling directions. In addition, the Gauss discrete
integral over open chains was suggested for measuring the
entanglement in domain-swapped protein dimers without the
need for closing curves36, which is essentially an approximate
estimation of the topological feature of two closed chains formed
by directly connecting the N- and C-termini of each chain.

As the number of available experimental protein‒protein
complex structures is limited, existing methods have only focused
on the global topological feature for the whole structure when
detecting entanglement in multichain protein complexes. Cur-
rently, the explosively growing number of predicted structures of
protein‒protein complexes, with real or fictitious interactions
together with their more complicated interfaces, bring new
opportunities and challenges for the detection of topological
features of protein complexes. We find that the existing methods
may fail to identify many topological links observed in the
AlphaFold-Multimer-predicted structures. Therefore, there is an

Fig. 1 Topologically linked structures of protein‒protein complexes in E. coli predicted by AlphaFold-Multimer (v2.2.0). The gene names of the proteins
are marked. a) glnB-gspJ-4 (the fourth predicted structure ranked according to the confidence of AlphaFold-Multimer, same below), b) panD-glnK-10, c)
fucO-bamD-1, d) cysK-yoeB-1.
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urgent need for methods of identifying topological links in pro-
tein‒protein complex structures in an accurate and robust
manner.

To fill this gap, we propose an efficient method of detecting
topologically linked structures in protein complexes, by intro-
ducing geometric constraints when measuring topological fea-
tures from a local perspective. Our method provides a solution to
the chain closure problem based on the Gauss integral, by sys-
tematically sliding windows in chains instead of focusing on the
closures of the termini of chains as in other studies. This is a fast
and reliable method with deterministic results regarding how
many topological links exist and where the links occur for a given
protein‒protein complex structure. We demonstrate how this
method can detect topologically linked structures in several sets
of predicted protein complex structures. Our work may further
facilitate the improvement of protein structure predictions and
computational PPI studies.

Results
Identification of topological links in protein complexes. To
demonstrate why new algorithms are needed to identify topolo-
gical links in protein‒protein complex structures, we applied
existing methods to 4 structures predicted by AlphaFold-
Multimer v2.2.0 (Fig. 1a–d) and 4 experimental complex struc-
tures from the Protein Data Bank (PDB, Fig. 2a–d). For these 4
experimental structures, although two chains are entangled, it is
evident that there are no topological links (Fig. 2a–d). However,
all 4 experimental structures are indiscriminately identified as
topologically linked structures with LinkProt34 and the GLN
method23, as well as the pulling method35. These false inferences
are caused by the closure of termini, which creates artificial
topological links, indicating the low specificity of the link iden-
tification of these methods. For the predicted structures with
topological links, LinkProt correctly identified three with Hopf
links, but one (Fig. 1b, the 10th predicted structure of E. coli

protein panD and glnK complex, named panD-glnK-10 hereafter)
was unlinked (Supplementary Table 1). A similar observation was
made according to the close-to-zero whole GLN value (0.117).
This false unlink inference was also caused by the closure of
termini, which eliminated the original links; this happens parti-
cularly often for structures containing topological links formed
with even-numbered windings in opposite directions in two
chains, resulting in a cancellation effect when measuring the
topological features from a global perspective. This is also
demonstrated by the well-known failure in identifying the
Whitehead link by existing methods23. The application of those
methods on the eight examples illustrates that existing state-of-
the-art methods are hampered by the chain closure problem,
creating artificial links or eliminating original links, and show low
sensitivity and specificity in identifying topologically linked
structures in protein‒protein complexes.

To overcome the chain closure problem and to detect
topological links in protein‒protein complex structures, we
propose a novel algorithm by introducing an additional geometric
dimension when systematically characterizing the topological
features from a local perspective. As illustrated in Fig. 3, the
algorithm is mainly composed of three steps: interface selection,
systematic detection of atoms forming topological links and
comprehensive inference. First, the protein chains are simplified
by considering only the coordinates together with the covalent
bonds of backbone N, Cα, and C atoms, which are represented by
an ordered set of atoms. We further isolate the interaction
interface by selecting atoms that are within a cutoff distance D =
10 Å of each other chain, together with the atoms between them,
forming two consecutive open subchains for analysis.

In the second step, we focus on the detection of atoms that
form topological links in each chain. We systematically create
locally closed loops under geometric constraints, by sliding
windows along each chain to create fragments with varying
lengths, in which each considered fragment is formed by several

Fig. 2 Experimental structures of protein‒protein complexes in which the chains are wrapped but contain no topological links. The PDB codes are
marked. a) 2A68, b)1AV1, c)1A73 and d) 5AUR. N and C represent the N- and C-termini.
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adjacent atoms together with their covalent bonds and is closed
by directly connecting its two ends. The topological feature of
each fragment in the focused chain with respect to the other chain
is measured by the GLN value, and the larger the absolute GLN
value is, the more severe the entanglement of the two
corresponding curves. All the fragments, each represented by its
beginning and ending atoms, correspond to the form of a matrix;
thus, the topological features can be measured by the GLN matrix
constructed in this way. We restrict the systematic scan to
fragments with lengths ranging from Rb= 4 to Re= 36 atoms and
evaluate the topological features according to the GLN values.
Once the corresponding absolute GLN value of a fragment
exceeds a threshold score (Ts = 0.8), indicating a possible
topological link formed between the fragment and the other
chain, the middle atom of the fragment, which contributes most
to the topological link, will be selected and marked for further
analysis in the next step.

In the third step, we infer the number of topological links of
the protein complex structure with a comprehensive analysis of
the marked atoms. Usually, the same topological link can be
identified repeatedly around a set of marked atoms that have
covalent bonds with each other, forming a consecutive fragment.
Therefore, we calculate the number of consecutive fragments
formed by the marked atoms in each chain and use the maximal
one as the number of topological links in the structure, which is
an indicator of whether a structure is topologically linked. In this
way, the algorithm would not only identify whether the complex
structure contains topological links but also locate the exact

regions in which they occur. We note that the algorithm is robust
with respect to the four user-definable hyperparameters (D, Ts, Re,
and Rb).

Analysis of the 8 structures in Figs. 1 and 2 with the present
method correctly found topological links for each of the 4
representative predicted structures and no topological links for
any of the 4 deeply wrapped experimental structures (Supple-
mentary Table 1), demonstrating its superior ability to identify
topological links in protein complex structures. To further
illustrate the design logics of those algorithms, we used 3
representative structures, glnB-gspJ-4 (Fig. 1a), panD-glnK-10
(Fig. 1b) and 2A68 (PDB code, chain A and B, Fig. 2b), as
examples to demonstrate why the addition of geometric
constraints when characterizing topological features (termed
topological-geometric features) from a local perspective makes a
difference in identifying topological links. As shown in Fig. 4a–i,
although glnB-gspJ-4 and 2A68 share the same topological
feature (Hopf link) from a global perspective, they show opposite
topological–geometric features from a local perspective. More-
over, the cancellation effect of topological links from a global
perspective in panD-glnK-10 could be avoided with a local
perspective. Those results indicate that topological–geometric
features could provide additional key information to characterize
protein structures, which can effectively avoid false positives and
false negatives in identifying topological links.

We also tested our method with the protein‒protein docking
benchmark set DB5.037, and only one structure (PDB codes:
1NW9) was identified as containing topological links

Fig. 3 Schematic diagram of the algorithm for detecting topological links in protein‒protein complex structures. Step 1: Interface selection to preserve
the topological relationships between chains. Step 2: Systematically detection of atoms forming topological links by analyzing the GLN matrixes of both
chains. Scanning windows are restricted to fragments whose lengths range between Rb= 4 and Re= 36 atoms (the area between the two black dashed
lines). Elements with absolute GLN values over Ts= 0.8 are highlighted (in red for chain A and orange for chain B), and the corresponding middle atoms
are marked to indicate the points at which topological links occur. Step 3: Comprehensive inference of the number of topological links in the structure by
using the maximal number of marked fragments in the two chains.
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(Supplementary Data 1). Manual inspection revealed a very low-
quality interface structure with an excessive number of missing
residues, causing one broken chain at the interaction interface
and leading to a false topological link (Supplementary Fig. 1).

We extended our analysis to an additional dataset consisting of
22,003 high-quality experimental protein complex structures
from the PDB database after applying two filters requiring 2
chains per assembly and a resolution better than 2 Å. Our method
identified 57 structures containing topological links, as detailed in
Supplementary Data 2. Upon manual inspection, we found that
19 of these structures have incomplete interaction interfaces with
at least 8 missing residues, leading to false topological links.
Furthermore, sequence alignment using BLAST confirmed that
17 of these structures contain annotation errors, as the linked two
chains are essentially the same chain. We additionally identified
3 structures that contained anomalies in residue or chain
indexing. Excluding these structures, we found 18 domain-
swapped dimers with deeply entangled chains, some of which
coupled with disulfide bonds, resulting in an approximate rate of
0.082%. This analysis further underscores the utility of our
algorithm in identifying potential entanglements and links in
protein complex structures.

Applications to protein complex structures predicted with
AlphaFold-Multimer. Our algorithm allows quick identification
of topologically entangled structures from a large number of

predicted protein‒protein complex structures. We used
AlphaFold-Multimer to predict protein‒protein complex struc-
tures for 1,669 experimentally established interacting protein
pairs and quantified the number of topologically linked struc-
tures. Specifically, we generated two PPI datasets, consisting of
841 protein pairs from Homo sapiens and 828 protein pairs from
Drosophila melanogaster, respectively. These datasets were
obtained from the positive PPIs benchmark datasets38 and ori-
ginally collected from the public Database of Interacting Proteins
(DIP) dataset39, where protein‒protein interactions were con-
firmed through experimental measurements such as two‒hybrid
screening and co‒immunoprecipitation (co-IP)39. The sizes of the
protein complexes range from 132 to 1,534 residues.

We generated 21,025 and 20,700 predicted structures for the
841 and 828 PPIs using AlphaFold-Multimer (v2.2.0), respec-
tively, with 25 predicted structures for each PPI pair. We applied
our method on these datasets and found that 641 and
565 structures contained topological links, respectively (Table 1).
Focusing on the structures with the highest model confidence
according to AlphaFold-Multimer, i.e., the top-ranked structures
among the 25 predictions for each pair, we identified 21 out of the
841 structures (approximately 2.50%) and 16 out of the
828 structures (approximately 1.93%) as containing topologically
linked structural elements (see examples in Fig. 5a–b and
Supplementary Fig. 2a–b). Besides, the most entangled predicted
structure in these datasets contains 10 topological links
(Supplementary Fig. 2c).

Fig. 4 Comparison of the differences in characterizing topological features from global and local perspectives. a, d, g) The representative structures are
two predicted structures (a: glnB-gspJ-4 and g: panD-glnK-10) and one experimental structure (d: PDB code 2A68, chain A in purple and chain B in cyan),
respectively. b, e, h) The topological feature of these protein complexes characterized from a global perspective in which two closed chains are formed by
directly connecting the N- and C-termini of each chain. c, f, i) The addition of geometric constraints to the topological features in these protein complexes
from a local perspective, which create reasonable locally closed loops along each chain.
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A potential application of AlphaFold-Multimer is to compu-
tationally screen candidate PPIs from combinations of proteins
with unknown interactions40,41. To investigate whether
AlphaFold-Multimer predictions for protein complexes with
unknown interactions would contain topological linked elements,
we generated a dataset by reorganizing protein‒protein complexes
from some known PPIs in the Escherichia coli protein
interactome and predicting their structures with AlphaFold-
Multimer. We randomly selected 20 PPIs from a benchmark set
of the E. coli protein interactome42, with sizes of the complexes
between 167 and 1422 residues (Supplementary Data 3). We split
the two chains of each of the 20 PPIs into the bait and prey
categories following the co-IP terminology, constructed 400 (=20
× 20) paired protein complexes from the two categories and
generated 10,000 predicted structures of the 400 protein

complexes using AlphaFold-Multimer. We note that the inference
of complex structures was very fast, as the need for MSA was
greatly reduced (only 40 proteins involved).

We applied our method to this dataset and found that
60 structures contained topological links (Table 1 and Supple-
mentary Fig. 3a–d). Focusing on the structures with the highest
model confidence according to AlphaFold-Multimer, 4 out of the
400 structures were identified as containing topologically linked
structural elements (Fig. 1c–d and Supplementary Fig. 3a–b). We
confirmed that the 175 predicted structures of the 7 PPIs, whose
experimental structures are available at PDB before 2018/5/1
(Supplementary Data 3) and thus may be included in the training
set of AlphaFold-Multimer, contain no topological links.

We further tested our algorithm on three other sets of
predicted protein‒protein complex structures, among which one

Table 1 Summary of link detection by the proposed method on the six sets of AlphaFold-Multimer (v2.2.0) predicted structures.

Species All predicted structures Top-ranked structures

Bait proteins Prey proteins Total Linked Percentage Total Linked Percentage

Experimental PPI of H. sapiens 21025 641 3.05% 841 21 2.50%
Experimental PPI of D. melanogaster 20700 565 2.73% 828 16 1.93%
E. coli E. coli 10000 60 0.60% 400 4 1.00%
H. sapiens H. sapiens 18000 65 0.36% 720 3 0.42%
H. sapiens SARS-CoV-2 14350 169 1.18% 574 5 0.87%
Measles virus & Human herpesvirus H. sapiens 6425 58 0.90% 257 3 1.17%
Total 90500 1558 1.72% 3620 52 1.44%

Fig. 5 Topologically linked structures of protein‒protein complexes predicted by AlphaFold-Multimer (v2.2.0). a, b) Two representative predicted
structures (Orc6-Orc3-1 and RPL4-RPS20-1) of PPIs. c, d) Two representative predicted structures (6D11-IL6-16 and 1ZA6-IL2R-1) of antibody-interleukin
complexes in Homo sapiens. The complementarity-determining region (CDR) loops in the chain where topological links occur are colored orange. The PDB
codes of the antibodies and the gene names of the interleukins are provided, with L indicating the light chain and H indicating the heavy chain. e One
representative predicted structure of complexes formed by human MFS transporters and NSPs of SARS-CoV-2 (SLC16A6-nsp5-1). f One representative
predicted complex structure of pathogenic virus and human membrane proteins (vIL-6-CD200R1-1).
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set concerns antibody–antigen interactions. Using 40 antibodies
with known structures and 18 human interleukins (including IL2
and IL6, details in Supplementary Data 3), we generated 18,000
(40 × 18 × 25) predicted structures of antibody-interleukin
complexes with AlphaFold-Multimer. To mimic practical appli-
cations in studying host‒pathogen interactions, we used the
nonstructural proteins (NSPs) of SARS-CoV-2 together with
measles virus hemagglutinin glycoprotein (H) and human
herpesvirus interleukin-6 homolog protein (vIL-6) to construct
protein complexes with human proteins including the major
facilitator superfamily (MFS, details in Supplementary Data 3),
resulting in two datasets with 14,350 and 6425 structures
predicted by AlphaFold-Multimer. We note that in these datasets,
most protein pairs will probably not interact under physiological
conditions. Applying our method, topologically linked structures
were identified in 65 out of 18000, 169 out of 14350, and 58 out of
6425 structures, respectively. For the antibody–interleukin
dataset, consisting of flexible human interleukins, and the virus-
human datasets, characterized by proteins with very large sizes,
the percentages of detected topologically linked structures were
consistent with those in the other datasets. For the top-ranked
predictions with AlphaFold-Multimer, approximately 0.7% of
structures were identified as topologically linked structures in the
three sets (Table 1).

For these identified topologically linked structures of predicted
antibody–interleukin complexes, we found that all the topological
links occur between the antibody chains and the interleukin
chain, while none of them occur between the heavy chain and the
light chain of the antibody. This is probably due to the larger
number of heavy chain–light chain interactions in the training
data of AlphaFold. We manually inspected most of the identified
topologically linked structures, especially the top-ranked ones,
and confirmed the existence of topological links based on the
location information provided by the method (Supplementary
Fig. 4a–b). In particular, we observed that more than half of the
topological links occur around the complementarity-determining
region (CDR) loops of the antibodies, as highlighted in orange in
Fig. 5c–d and Supplementary Fig. 4b for three representative
structures. In addition, there are 2 predicted structures in which
the interleukin chains form topological links with both the heavy
chain and the light chain of the corresponding antibodies
(Supplementary Fig. 5a–b). A recent study also pointed out the
limitations of AlphaFold-Multimer in predicting
antibody–antigen co-structures43. Inspection of the identified
topologically linked structures in the other two datasets of virus
and human protein complexes show similar results, and some
exemplary structures are illustrated in Fig. 5e–f and Supplemen-
tary Figs. 6–7.

Discussion
Proteins physically interact with other proteins to function in
many physiological processes, such as signal transduction and
immune response. Recent advances in protein structure predic-
tion have opened a new door to computationally determining the
structures of protein‒protein complexes using only the knowledge
of their primary sequences. Currently, predicted protein struc-
tures are widely used by biologists. However, the booming
number of predicted structures also raises new questions that
need to be addressed. Clearly, evaluating predicted structures will
be the next research focus after protein structure prediction. In
this study, we focus on the topological links observed in predicted
complex structures using the current version of AlphaFold-
Multimer (v2.2.0) and then focus on detecting them. We devel-
oped an algorithm to identify topologically linked structures for
protein complexes by providing a solution to the chain closure

problem from a local perspective, that is, systematically sliding
windows along each chain instead of closing the N- and
C-termini. The algorithm has high sensitivity, as all the topolo-
gically linked structures it identified in this work were confirmed
by manual inspection. The method runs in seconds per structure,
although the exact runtime varies depending on factors such as
the size of the protein complex and the degree of entanglement.
For example, using a single Intel Xeon E5-2650 v4 CPU core, the
average computation time is 8.10 s per complex structure (with an
average of 891.2 residues) for the two PPI datasets and 4.37 s per
structure (with an average of 721.5 residues) for the E. coli
dataset, respectively. This makes the method computationally
efficient and convenient for large-scale scanning of structures for
topological links.

We observed that the confidence scores acquired by
AlphaFold-Multimer tend to be relatively low in regions where
topological links occur (Supplementary Fig. 8). To investigate the
qualitative relationship between the presence of topological links
in predicted protein-protein complex structures and the quality of
AlphaFold-Multimer predictions, we consider two quality mea-
surements: the overall pTM+iPTM and the average pLDDT score
at the interaction interface. As summarized in Supplementary
Table 2 and Supplementary Figs. 9–10, no correlation between
the number of topological links and the quality of predicted
structures was identified. We computed the Pearson correlation
coefficients using either quality measurement for each dataset,
and all the absolute correlation coefficients were less than 0.06.
We confirmed that topological links may occur in structures
whose overall pTM+iPTM exceeds 0.8 (Supplementary Fig. 9a).
Besides, the average pLDDT scores at the interface range from
17.3 to 90.8 for the predicted topologically linked structures, with
456 structures above 70 (Supplementary Table 2), suggesting that
topological links may be present in predicted structures that are
believed to be high-quality. Two examples of topological links
with confident pLDDT scores at the interface of the predicted
structures were shown in Supplementary Fig. 11. We further note
that the average interfacial pLDDT can be related to a predicted
DockQ score (pDockQ) to distinguish high confidence protein
complex structures from incorrect models6. When focusing solely
on AlphaFold-Multimer predictions with pDockQ > 0.5, 271 out
of 5483 and 156 out of 2488 complex structures (4.9% and 6.3%)
are identified as containing topological links in the two PPI
datasets, respectively (Supplementary Table 3). We also analyzed
the distributions of the maximal, minimal, median, and average
pLDDT scores of the topologically linked regions within 1,558
AlphaFold-Multimer predicted structures that contains links
(Supplementary Fig. 12). Among these structures, we observed
that 271 structures (approximately 17.4%) have an average
pLDDT value in the topologically linked regions greater than 70.

We further curate a dataset of 306 protein complex structures
to benchmark the accuracy of our method and LinkProt; the
dataset includes 203 structures with topological links and 103
without. Our method correctly identified 203 linked structures
and accurately excluded 100 of the 103 structures lacking topo-
logical links, achieving 100% sensitivity and 97.1% specificity
(Supplementary Table 4 and Supplementary Data 4). It is
important to note that we should not directly compare our
method with LinkProt, as LinkProt was not originally designed
for this specific task.

In addition to the characterization of the topological features of
complex structures, our method provides a measurement for
evaluating complex structure prediction programs. For example,
AlphaFold-Multimer v2.2.0 generated 1.72% topologically linked
structures on average during the prediction of protein‒protein
complexes, while a previous version (v2.1.0) produced 30.54%
topologically linked structures (Supplementary Table 5). This
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suggests a notable improvement in structure prediction for multi-
chain protein complexes, which can be attributed to the well-
documented enhancement in avoiding overly compact models via
the added loss function introduced in v2.2.04. Besides, the quality
of AlphaFold predictions could potentially be improved using
aggressive sampling techniques, such as additional recycles and
iterations44. However, such an approach was not pursued in this
study due to the considerable increase in time and computational
resources required for structure generation. Nevertheless, our
results demonstrate the systematic persistence of topologically
linked structures in AlphaFold-Multimer v2.2.0 predictions,
which cannot be eliminated by constraining interfacial residues to
prevent crashes, nor through the selection of the most confident
(top-ranked) structures from the predictions.

Topological links between subchains of the same protein chain
can be formed during the folding process, while topological links
between different chains of protein‒protein complexes may not
represent a physiologically relevant phenomenon. Therefore, we
believe that the topologically linked structures of protein com-
plexes predicted by AlphaFold-Multimer occur due to the algo-
rithm’s failure to distinguish between inter-chain and intra-chain
interactions, indicating an intrinsic flaw in applying current end-
to-end structure prediction algorithm, such as AlphaFold, to
protein‒protein complex structures. This limitation might man-
ifest itself in the prediction of super-large protein complexes and
assemblies, and greatly compromise the prediction accuracy.
Overcoming this limitation would also be necessary for the fur-
ther development of computational methods to understand the
dynamics and kinetics of protein–protein interactions.

Avoiding topological intertwining in the PPI interface is not
trivial for structure prediction45,46. The algorithm for capturing
the topological–geometric features can be used as an additional
loss function to constrain the feasible space in the deep learning
network of AlphaFold-Multimer, which may be helpful in redu-
cing the number of abnormal structures during prediction. We
hope this research will further facilitate the improvement of
protein structure predictions and computational PPI studies.

Methods
Algorithm for identifying topological links
Selection of the interactive interface. A protein complex with two
chains (chain A and chain B) is taken as an example, as a complex
composed of M(≥3) chains can be split into M(M − 1)/2 combi-
nations of two-chain complexes. Only backbone heavy atoms (N,
Cα and C) together with their covalent bonds are considered, and
only atoms within a cutoff distance D of each other’s chain toge-
ther with the atoms between them are preserved; their coordinates
are used for further analysis with the indexes rearranged. The first
15 residues from either the N- or C-termini of each chain are
removed to reduce the possible impact of their flexibility.

Detection of atoms that form topological links. To take a local
perspective on topological links and to reduce the computational
complexity, one chain (A) is systematically scanned locally in a
sliding-window manner, and the other chain (B) is closed by
directly connecting its two endpoints. Any fragment formed by
adjacent atoms in chain A with a reasonable scanned window
length is closed by directly connecting its two endpoints. Toge-
ther with the simply closed chain B, the detection of the topo-
logical feature of the two closed curves is straightforward. The
contribution of topological features from the fragment rather
than the end-connected part can be represented by the GLN
value; the larger its absolute value is, the more severe the winding
of the fragment to the closed chain B. Fidelity in link identifica-
tion is ensured by filtering out inappropriate connections of

fragment ends, which can be achieved by setting a threshold score
for the GLN values.

Let N1 and N2 represent the numbers of atoms in chain A and
chain B, respectively. Let S1 2 RN1 ´N1

� �
represent the GLN matrix

that measures all the fragments of chain A that wind around a
closed chain B, where the element S1k;l 1≤ k; l ≤N1

� �
in the kth row

and the lth column of S1, represents the GLN value of the
fragment of chain A from the lth atom to the kth atom winding
around chain B. Note that S1 is a lower triangular matrix, i.e.,
S1k;l ¼ 0 8 1≤ k≤ l ≤N1

� �
. Similarly, S2 2 RN2 ´N2

� �
, representing

the GLN matrix that measures all the fragments of chain B that
wind around a closed chain A, will be analyzed in the same way.

To detect the atoms that form topological links, we focus on the
fragments of the open chains whose lengths range from Rb to Re (0
< Rb < Re ≤ min{N1, N2}). Let 4s1i;jðRb ≤ j≤Re; 1≤ i≤N1 � jÞ
represent the absolute GLN values of the fragment from the ith
atom to the (i + j)th atom in chain A, where
4s1i;j ¼ jS1iþj;ij ¼ jS1iþj;1 � S1i;1j. Here, we state that if 4s1i;j ≥Ts,
where Ts is an empirical threshold score, then the ⌊i + j/2⌋th atom,
i.e., the middle atom of the corresponding fragment, is selected and
marked because it may form topological links in chain A with
respect to chain B. Note that one atom may be marked several times
in fragments of different lengths.

Calculation of the topological link number. After a systematic scan
of all the fragments in the length interval [Rb, Re] in each chain,
the same topological link can typically be identified repeatedly
around a set of marked atoms, which are next to each other and
form a consecutive fragment. Therefore, we calculate the number
of consecutive fragments formed by the marked atoms in each
chain and use the maximal one among all the chains to define the
number of topological links in the structure of the protein
complex. We call one structure a topologically linked structure if
the number of topological links exceeds zero. In addition, the
rearranged indexes of the marked atoms are mapped back to the
whole structure, and the locations of the topological links in the
form of residue indexes are returned by the algorithm.

There are four user-definable hyperparameters in the algo-
rithm, i.e., the upper (Re) and lower (Rb) limits of the length
range, the threshold score (Ts) and the cutoff distance between
chains (D). The default values (D = 10 Å, Ts = 0.8, Rb = 4 and Re

= 36) are empirically set without being elaborately crafted, which
seems to be suitable for detecting topologically linked structures
on the protein‒protein interaction interfaces in this work. We do
note that among these four hyperparameters, Re, which is the
maximal fragment length in the scanning windows, is the most
sensitive, so we smoothed the method by automatically adding 3
to Re for structures whose maximal absolute GLN value for the
searched fragments was less than Ts but greater than 0.9Ts.

Dataset generation. The two PPIs datasets were obtained from the
positive PPIs benchmark datasets38 and originally collected from the
DIPs39, which were filtered to include protein pairs with less than
1536 total residues as suggested in4, and excluded one protein pair
whose structural prediction failed. The protein sequences in this
work were downloaded from the UniProt database (https://www.
uniprot.org/), except that the sequences of the 40 antibodies were
taken from PDB (https://www.rcsb.org/), SARS-CoV-2 NSPs were
taken from the NCBI database (https://www.ncbi.nlm.nih.gov/),
human virus were taken from PDBe (https://www.ebi.ac.uk/pdbe/)
and human membrane proteins were taken from the human protein
atlas (https://www.proteinatlas.org/). Detailed sequence information
is provided in the Supplementary Data 3. The predicted structures of
the protein‒protein complexes were generated by AlphaFold-
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Multimer (v2.2.0). For multiple sequence alignment (MSA) gen-
eration, we used UniRef90 v2019_10 (https://ftp.ebi.ac.uk/pub/
databases/uniprot/previous_releases/release-2019_10/uniref/), BFD
(https://bfd.mmseqs.com/), Uniclust30 v2018_08 (https://wwwuser.
gwdg.de/~compbiol/ uniclust/2018_08/), and MGnify clusters
v.2018_12 (https://ftp.ebi.ac.uk/pub/databases/metagenomics/
peptide_database/2018_12/). The sequence search tools were
JackHMMER and HHblits (v3.3.0). For MSA pairing, we
used UniProt (https://ftp.ebi.ac.uk/pub/databases/uniprot/current_
release/knowledgebase/complete), downloaded on Feb 11, 2022. For
the template search, we used “pdb_mmcif” from the PDB database
as of Feb 10, 2022. The template search tools were hmmsearch and
hmmbuild of HMMER (v3.3.2). All predicted structures were
refined using the built-in Amber force field.

Statistics and Reproducibility. All quantitative results of topo-
logical link detection were presented as integers, with the same
outcome when the calculations were repeated at least two addi-
tional times. Although the predicted structures generated by
AlphaFold-Mulimer for a specific protein sequence may be
influenced by random factors, the percentage of predicted
structures containing topological links is expected to yield similar
results when tests are conducted at the current data scale (in total
90,500 predicted structures).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data used in this work are available at https://github.com/JingHuangLab/topoLink
and Supplementary Data 1–4. Supplementary Data 5 is a.xlsx file that includes data for
reproducing the GLN matrices in Fig. 3. Additional information is available from the
corresponding author upon request.

Code availability
The source code has been deposited in a GitHub repository (https://github.com/
JingHuangLab/topoLink).
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