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Mining cancer genomes for change-of-metabolic-
function mutations
Kevin J. Tu 1,2,3, Bill H. Diplas4, Joshua A. Regal1, Matthew S. Waitkus 5, Christopher J. Pirozzi6 &

Zachary J. Reitman 1,5,6✉

Enzymes with novel functions are needed to enable new organic synthesis techniques.

Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins

and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico

Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence

rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify

48 candidate mutations, including those previously identified to alter enzymatic function.

Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant

(OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xan-

thosine, a pharmacologically useful chemical that is currently produced using unsustainable,

water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a

refined set of candidates that may impart novel enzymatic functions or contribute to tumor

progression. Thus, METIS can be used to identify and catalog potentially-useful cancer

mutations for green chemistry and therapeutic applications.
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Cancer arises through a process of clonal evolution that
selects for genetic alterations of net benefit to tumor cells.
This evolutionary process occasionally selects for “change

of metabolic function” (COMF) mutations that affect enzymes
and other proteins that regulate cellular metabolism. A notable
example of COMF is that of the p.R132H mutation in cytosolic
NADP-dependent isocitrate dehydrogenase (IDH1), identified in
up to 90% of certain brain tumor subtypes and other cancer
types1,2. While originally hypothesized to be a loss-of-function
variant3, unbiased metabolite profiling experiments ultimately
revealed that IDH1p.R132H exhibited COMF activity that cata-
lyzes the conversion of α-ketoglutarate to R-2-hydroxyglutarate4.
The accumulation of R-2-hydroxyglutarate causes widespread
epigenetic reprogramming that likely drives oncogenesis5–7.

The IDH1 case highlights important insights to identify
cancer-derived COMF mutations, including: (i) focusing on
mutations that are recurrent, (ii) concentrating on mutations in
functional enzyme structures such as the active site (iii) using
unbiased metabolite profiling to reveal unexpected gained
functions.

Production of organic chemicals often rely on synthetic
approaches; however, toxic chemicals and petroleum-based
sources are often required and many natural products are too
complex for conventional synthesis. Therefore, enzymes with new
catalytic activities are needed to enable new organic synthesis
methods and metabolic engineering techniques8,9. We previously
showed that cancer-associated COMF mutations can guide
enzyme redesign to generate novel, immediately useful catalytic
activities. We previously applied the IDH1 COMF mutations to
the distantly related yeast and bacteria homoisocitrate dehy-
drogenase enzymes10. IDH1 and homoisocitrate dehydrogenase
differ in that IDH1 accepts the 5-carbon α-ketoglutarate substrate
while the homoisocitrate dehydrogenases accept the 6-carbon α-
ketoadipate substrate. Applying the R132H mutation from IDH1
to homoisocitrate dehydrogenase conferred a novel catalytic
function to convert α-ketoadipate to (R)-2-hydroxyadipate. Such
a catalytic function had not previously been found in nature.
Further, this catalytic function was sought after to enable a bio-
based method for the production of adipic acid, a valuable
commodity chemical used to synthesize nylon that erstwhile
required fossil fuel substrates for synthesis11. Thus, we showed
that cancer-derived mutations could be applied to generate useful
new catalytic activities and industrial chemistry applications.

Cancer mutational data, therefore, represents a source of
functional diversity to identify mutant proteins with novel
functions, as well as motifs that may be amenable to synthetic
enzyme redesign. These mutations may be used to create new
biocatalysts for a variety of fields. Cancer mutational data has
accumulated at exponential rates with improvements in sequen-
cing technology12. Indeed, more than 11,000 cancer tissues have
now been analyzed by genome-wide sequencing approaches via
efforts such as The Cancer Genome Atlas in the decade since our
initial report of cancer-guided enzyme redesign based on IDH1
mutations10. However, prediction of mutations that lead to
COMF through current variant prioritization strategies and
strictly computational predictions is challenging13. Here, we
sought to mine cancer mutational data for yet-undiscovered
COMF mutations that may confer useful new functions to
enzymes. For instance, we were particularly interested in catalytic
functions that could enable new organic synthesis routes, provide
useful steps in metabolic engineering processes, and/or provide
new tools for fine chiral chemical production14.

In this report, we develop a bioinformatic pipeline to screen
genome-wide cancer sequencing data for candidate COMF
mutations (graphical representation in Supplementary Fig. 1). We
named this approach METIS (Mutated Enzymes from Tumor In

silico Screens). We applied METIS to a comprehensive catalog of
cancer mutations. We then generated a metabolomic profiling
dataset to identify metabolic perturbations that may be caused by
four top candidates from this screen. This dataset identified cel-
lular metabolites uniquely perturbed by the candidate COMF
mutants but not by their wild-type controls, suggesting that the
mutants confer a COMF that affected the cellular metabolome.
The current work presents a pipeline to identify candidate COMF
mutants from cancer sequencing data, provides a catalog of
nominated candidates, and shows a use-case for unbiased meta-
bolite profiling to identify mutation functions.

Results
METIS1: a pipeline to identify COMF cancer mutations. Our
approach to identify candidate enzyme COMF mutations from
somatic cancer mutational data is outlined in Fig. 1 and described
in the Methods. METIS primarily relies on the ability to screen
for recurrent mutations that occur separately in multiple unique
patients’ tumors, indicating that they are likely to be functional.
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Fig. 1 METIS pipeline to identify COMF mutations in cancer
mutational data. Schematic showing pipeline, with number of mutations
filtered at each step.
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We created a mutation filtering scheme based on the assumptions
that COMF mutations are:

1. Recurrent15

2. Missense mutation16

3. Have an “oncogene” mutation distribution17

4. Located in highly-conserved residues18

5. Located in enzyme active site19

We sought to specifically identify mutational distributions that
were likely to confer a COMF by occurring in functional enzyme
active site structures or similarly-important structures. We
initially applied METIS to the Catalog of Somatic Mutations in
Cancer (COSMIC) dataset of mutations identified in genome-
wide and panel-based cancer sequencing studies (COSMIC v59).
Out of the 210,354 missense mutations in the dataset, we filtered
in mutations that occurred in ≥3 patients and also accounted for
>5% of all mutations in a given gene (Supplementary Note). We
further filtered out duplicate mutation entries, mutations that
were likely to be germline polymorphisms, and multiple tumor
samples from the same patient (see Methods). After this analysis,
735 mutations were identified in 125 genes (details of filtered-out
mutation sites in Supplementary Table 1).

We next sought to identify recurrent enzyme mutations most
likely to confer novel COMF activities based on known structural,
functional, and evolutionary information. We focused on the
most frequent recurrent mutation in each gene. Mutations in
proteins with associated enzymatic function were identified based
on an associated Enzyme Commission number for the gene
product. The 48 recurrent enzyme mutations and considerations
for including or excluding them from further analysis are
cataloged in Supplementary Table 2. As expected, the majority
of these enzyme mutations (31/48) were previously known to be
frequently mutated in cancer and thought to confer gain-of-
function activities (for instance, mutations in IDH1p.R132H,
IDH2p.R140Q, EZH2p.Y646F, PIK3CAp.H1047R, and
BRAFp.V600E)20–23. This finding confirms that our pipeline is
able to identify gain-of-function enzyme mutations in cancer
data. In particular, when compared to a gold-standard panel of
previously identified COMFs, the sensitivity of METIS was 86%
given its ability to detect most (36/42) known COMF mutations
(Supplementary Tables 2–4). We also estimated the specificity at
95% given the high number of yet-unestablished COMF
mutations and enzymes involved in metabolic pathways. Overall
accuracy was estimated at 93% (282/300). This estimate suggests
that METIS1 was reasonably effective at identifying known
COMF mutations.

Since we sought to identify novel COMF mutations, the known
gain-of-function mutations were filtered out leaving 17 enzyme-
coding genes associated with recurrent cancer mutations. We
next reasoned that novel COMF mutations would affect residues
that are highly conserved based on the examination of multiple
sequence alignment data in HomoloGene. Additional filtering
steps were taken to focus on enzymes that would be feasible to
manipulate in downstream biochemical analyses (ie, <1500 amino
acid residues). We also removed candidates that appeared to
result from the incorrect annotation of pseudogenes or germline
polymorphisms. For the remaining potential candidates, we
examined available 3D structural data in the Protein Data Bank
(PDB) for the encoded proteins or available homologs. We
reasoned that mutations likely to confer a COMF would reside in
or near the enzyme active site where mutations alter ligand-
binding functions, as in the case of IDH1 and other known
COMF mutations. Therefore we retained only those mutations
that affect residues within 10 Å of the active site or ligand binding
sites. After these filtering steps, four candidate COMF mutations
were obtained (Supplementary Table 3).

Structural features, cancer mutation analysis, and homology
analysis of the top four candidates are detailed further in our
Supplementary Note. We also conducted a rational literature
review to carefully assess the biological functions of the COMF
candidates in the context of cancer. The candidate COMF
mutations included a p.Y371H mutation in the E3 Ubiquitin
ligase Cas-Br-M ecotropic retroviral transforming sequence (CBL,
Fig. 2a–c), a recurrent p.R228C mutation in the protein-UDP
acetylgalactosyltransferase named Williams-Beuren syndrome
chromosome region 17 (WBSCR17, now renamed to GALNT17,
Fig. 2d–f), a recurrent p.R364C mutation in the anion/sugar
transporter Solute Carrier Family 17 (SLC17A5), also known as
Sialin (Fig. 2g, h), and recurrent p.A400T mutations in
oxoglutarate dehydrogenase-like (OGDHL) which likely encodes
an additional isoform of α-ketoglutarate dehydrogenase, which
converts α-ketoglutarate to succinyl-CoA and produces NADH
for the respiratory chain24 (Fig. 2i–k). The CBLp.Y371H and
OGDHLp.A400T mutations have been noted to contribute to
cancer development through cytokine-independent growth and
metabolic reprogramming25,26.

Unbiased global metabolite profiling of candidate COMF
mutants. We hypothesized that the expression of one or more
COMF candidates would cause metabolic changes in cancer cells
that could be detected by global metabolite profiling approaches.
Our screening approach identified candidate COMF mutations
primarily based on their genetic distribution in cancer and is
otherwise agnostic to their function. Therefore, the function that
may be conferred by any given candidate COMF mutation was
not known a priori. To test if any of the candidate mutations may
have a COMF and to provide insights on any putative COMF, we
executed a metabolomic screen (schematic in Fig. 3a). We first
expressed the top four candidate COMF mutants in HeLa cells
(CBL p.Y371H, WBSCR17 p.R228C, SLC17A5 p.R364C, OGDHL
p.A400T). As controls, we compared these to wild-type versions
(CBL-WT, WBSCR17-WT, SLC17A5-WT, OGDHL-WT,
respectively). Further, we included empty vector controls and a
control in which a nonfunctional protein GFP was expressed.

The metabolite profiling data were first analyzed by identifying
metabolites that were significantly altered in each group after
stringent false discovery (FDR) correction. 277 metabolites were
semi-quantified, including 231 with known composition and 46
unique biochemicals with unknown composition (Fig. 3b,
Supplementary Data 1, 2). Each experimental group (n= 3
samples per group) was compared to all other groups and mean
ion count fold change, p-values, and FDR-adjusted q-values were
calculated (Supplementary Data 3).

Importantly, our negative EV and GFP controls were not
associated with significantly altered metabolites. No biochemicals
were considered significantly altered in the CBL mutant,
WBSCR17 mutant, or SLC17A5 mutant groups after FDR
correction.

OGDHL p.A400T was the only COMF candidate associated
with significant changes after FDR correction (q < 0.05, two-tailed
Welch’s unequal variances t-test with Bonferroni correction).
Xanthosine, a key intermediate in purine metabolism, was
increased 2.9-fold in the OGDHL p.A400T group compared to
all other groups (P= 1.2 × 10−9, q= 3.2 × 10−7, Fig. 3c). Flavin
mononucleotide (FMN) was also increased 1.8-fold in the
OGDHL p.A400T group compared to all others
(P= 1.2 × 10−5, q= 0.003). Several biochemicals were signifi-
cantly altered in the wild-type groups, including 26 biochemicals
in the OGDHL WT group (q < 0.05 for each, see Metabolic
Pathway Analysis section below). Thus, unbiased metabolite
profiling revealed highly significant changes in xanthosine and
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FMN associated with the expression of a candidate COMF
mutation in OGDHL.

Metabolic pathway analysis. We next examined metabolic
pathways in the global metabolite profiling data for each candi-
date COMF mutant and directly compared each COMF candidate
to its respective WT control. We noted pathway-level alterations
in amino acid metabolism associated with CBL p.Y371H (Fig. 4a
and Supplementary Fig. 2), lipid metabolism associated with
WBSCR17 p.R228C (Fig. 4b and Supplementary Fig. 3), and
nucleoside metabolism associated with SCL17A5 p.R364C (Fig. 4c
and Supplementary Fig. 4), which are detailed further in the
Supplementary Note.

OGDHL WT caused significant increases in amino acid
metabolism (15 biochemicals with q < 0.05 compared to all other
groups) inducing increases in 11 of the 20 standard amino acids
such as glutamine, glutamate, phenylalanine, tyrosine, trypto-
phan, leucine, valine, methionine, isoleucine, and proline
(Supplementary Fig. 5a). OGHDL WT also caused significant
increases in nucleoside metabolism including in cytidine tripho-
sphate, uridine 5’-triphosphate, and uridine 5’-diphosphate
(Supplementary Fig. 5b). Other metabolites significantly
increased in the OGDHL WT group included phosphate, choline
phosphate, and eight unknown compounds (Supplementary
Fig. 5c). The changes in amino acid and nucleoside metabolism
may relate to OGDHL’s role in metabolizing α-ketoglutarate,
which is reversibly converted by glutamate dehydrogenase to
glutamate. Glutamate can then be directly or indirectly converted
to other amino acids and nucleosides. Thus, OGDHL WT exerts

significant changes on biochemicals that may be related to its
normal enzymatic functions24.

OGDHL p.A400T elicited unique metabolic alterations com-
pared to OGDHL WT, suggesting that this mutant confers a
metabolic COMF. When comparing each group with all other
groups, none of the amino acids or nucleosides altered in the
OGDHL WT group were appreciably altered by OGDHL
p.A400T (Fig. 3b). However, similar to the global analysis,
OGDHL p.A400T is associated with a 2.6-fold increase in
xanthosine compared to OGDHL WT (P= 0.02). Xanthosine is a
key intermediate in the purine degradation pathway. Xanthosine
can be phosphorylated to form xanthosine monophosphate
(XMP). XMP is metabolized to guanosine monophosphate
(GMP) by GMP synthetase, which involves the conversion of
glutamine and ATP to glutamate and ADP and free pyropho-
sphate as part of the reaction. OGDHL p.A400T may affect
glutamine, which was downregulated 0.23-fold (P= 0.058), by
metabolizing α-ketoglutarate, leading to deregulation of GMP
synthase function to lead to xanthosine accumulation (Fig. 3c).
An increase in FMN was seen when comparing OGDHL p.A400T
to all other samples, although this was not statistically significant
when comparing OGDHL p.A400T only to OGDHL WT
(Supplementary Fig. 6a). In contrast, OGDHL p.A400T compared
to OGDHL WT was associated with significantly increased N-
acetyl-aspartyl-glutamate, ribulose, and N-palmitoyltaurine; how-
ever these metabolites were not significantly elevated when
comparing OGDHL mutant to all other groups (Supplementary
Fig. 6b). Thus, while it’s difficult to definitively comment on the
new enzyme functionality, our data support a metabolic COMF
for OGDHL p.A400T, in which the mutant may elicit an increase

D. rerio 311 AHIDGFREGFYLFPDGRTQNPDLTGLCEPSPQDHIKVTQEQYELYCEMGS 360 
M. musculus 325 ALIDGFREGFYLFPDGRNQNPDLTGLCEPTPQDHIKVTQEQYELYCEMGS 374 
H. sapiens 327 ALIDGFREGFYLFPDGRNQNPDLTGLCEPTPQDHIKVTQEQYELYCEMGS 376

C. elegans 319 ALHEGHKEGFYIYPNGRDQDINLSKLMDVPQADRVQVTSEQYELYCEMGT 368 
D. melanogaster 315 ALLDGHREGFYLYPDGQAYNPDLSSAVQSPTEDHITVTQEQYELYCEMGS 364

D. reiro 201 LKGPLEEYVNKRYPGLIKIVRNQKREGLIRARIEGWKVATGEVTGFFDAH 
M. Musculus 199 LKAPLEEYVHKRYPGLVKVVRNQKREGLIRARIEGWKAATGQVTGFFDAH 
H. sapiens  199 LKVPLEEYVHKRYPGLVKVVRNQKREGLIRARIEGWKVATGQVTGFFDAH

O. sativa          405   G-LSVTTVRKIMQSIGFLGPAFFLTQLSHID--SPAMAVLCMACSQGTDA   451
C. elegans 338   GILSTLNTRRAAMLVALIGQGIFLVASGYCGCGQDVLVIIFITCGMAISG   387
D. rerio 351   FLFRTVIVRKAFTVVGMAGPAVFLVAAGYTGC-NYILAVAFLTISSSLGG   399
M. musculus 356   WNFSTISVRRIFSLVGMVGPAVFLVAAGFIGC-DYSLAVAFLTISTTLGG   404
H. sapiens         356   WNFSTLCVRRIFSLIGMIGPAVFLVAAGFIGC-DYSLAVAFLTISTTLGG   404

D. rerio           398   AAFAGQGVVYETFHLSELPSYTTYGTIHVVVNNQIGFTTDPRMARSSPYP   447
G. gallus          394   AAFAGQGVVYETFHLSDLPSYTTNGTIHVVVNNQIGFTTDPRMARSSPYP   443
M. musculus        418   AAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDPRMARSSPYP   467

R. norvegicus      399   AAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDPRMARSSPYP   448
B. taurus          399   AAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDPRMARSSPYP   448

P. troglodytes     342   AAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDPRMARSSPYP   391
H. sapiens         399   AAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDPRMARSSPYP   448
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Fig. 2 COMF candidates nominated by METIS. a CBL mutational distribution in COSMIC v59 showing recurrent Y371H mutations. b Multiple alignment
with Y371 shown in red. c Structure of human CBL-UBCH7 complex (PDB: 1FBV) with Y371 shown in red, other recurrently-mutated residues shown in
orange, and ligands shown in stick representations. d WBSCR17 mutational distribution in COSMIC v59 showing recurrent R228C mutations. e Homology
alignment for WBSCR17 with R228 shown in red. f Structure of mouse homolog of WBSCR17 (PDB: 1XHB) with R228 in active site pocket shown in green.
g SLC17A5 mutational distribution in COSMIC v59 with recurrent R364C mutations. h Multiple alignment of SLC17A5 R364 region with R364 shown in
red. i OGDHL mutational distribution in COSMIC v59 with recurrent A400T mutations shown. j Multiple alignment of OGDHL with A400 shown in red.
k Structure of SucA domain of Mycobacterium smegmatis alpha-ketoglutarate decarboxylase in complex with acetyl-CoA (PDB: 2XTA) with residue
homologous to A400 shown in red with ligand shown in stick representation. Primary enzymatic function domains are represented by red boxes while
secondary functions are represented by green boxes underneath the mutation plot.
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Fig. 3 Global metabolite profiling to identify biochemicals perturbed by candidate mutants. a Schematic of experiment showing cells transfected with
indicatedmutants, their analogousWT constructs, and empty vector (EV) or GFP controls. bHeat map showing 277 unique biochemicals as rows. Color key on left
indicates biochemical super pathway. Heat map on left shows normalized ion counts for n= 3 independent transfection replicates for each construct (columns).
Heat map on right shows biochemicals with a significant difference when compared between one group and all other groups (-log10 of q-value for Welch’s t-test
with Bonferroni correction). Biochemicals with q < 0.05 for any comparison are named on the right of the heat map. The biochemical with the most significant
q-value named in red (xanthosine). Unique biochemicals of unknown structure are denoted by X-. c Normalized ion counts for xanthosine for n= 3 independent
transfection replicates are shown on left withWelch’s t test p-value shown for comparisons between OGDHL-MUT and OGDHL-WT and for OGDHL-MUT vs. all
other samples. Metabolic pathway for purine degradation and S-adenosyl-methionine (SAM)-mediated xanthosine production shown on right.
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in xanthosine and/or other metabolites through downstream
effects from a putative change in catalytic function or regulation
of the enzyme.

METIS2: Second generation pipeline to identify COMF cancer
mutations. We next sought to improve on the METIS1 approach.
Since METIS1 was deployed in 2012, there have been dramatic
increases in cancer genomic data and new in silico tools have
emerged to model protein structures and characterize the
pathogenicity of mutations. The increased data volume could be
used to identify more COMF mutations in the long-tail dis-
tribution of cancer mutations.

We noted that 65X more missense mutations were identified in
2022 compared to 2012, from 2.1-fold more tumor samples
(Fig. 5a). This led to an 308-fold increase in mutations observed 3
times or more, than our original recurrence threshold, making
this threshold unviable (Fig. 5b). Our second-generation pipeline,
METIS2, is outlined in Fig. 5c. METIS2 improves upon METIS1
by (i) using higher thresholds for recurrent mutations, (ii)
incorporating FATHMM, a pathogenicity prediction tool, to filter
out non-pathogenic mutations, and (iii) using AlphaFold to
predict structures when protein structural data are unavailable
(see Methods).

The expectations of COMF mutations were held constant with
the addition of the assumption that they are generally pathogenic.
We used the COSMIC v96 database of genome-wide and panel-
based cancer sequencing studies. Based on the larger number of
samples analyzed and baseline mutation rate, we estimated that

recurrence in 9+ unique patients’ tumors and accounting for
>25% of recurrent (9+ ) mutations in a gene would be extremely
unlikely to occur by chance alone and would indicate positive
selective pressure for the missense mutation (see Supplemental
Note). We chose to use a FATHMM threshold score of −3, as this
would minimize the number of false positives in the analysis
(specificity of 0.99, sensitivity of 0.45)27. Examination of protein
structure using available protein structure data or AlphaFold
revealed 8 “hits” within 10 A of the predicted enzyme ligand
binding site and 8 hits with the mutation located 10–15 A from
the active site or putative active site (Supplementary Table 5).
This structural analysis filtered 18 candidates that were distant
from enzyme ligand-binding sites. Two germline polymorphisms
were disregarded, leaving 6 potential COMF mutations.

METIS2 hits included OGDHLp.A400T (as in METIS1). We
also identified 5 other candidate COMF mutations: an R283W
mutation in D-Amino Acid Oxidase (DAO), which is commonly
employed as industrial biocatalysts in the production of semi-
synthetic cephalosporins and enantiomerically pure amino
acids;24 an L99F mutation in Microtubule Associated Monoox-
ygenase 2 (MICAL2), a protein that has been shown to be a
tumor-promoter;28 two mutations, D638A and H639P, in
Sphingomyelin Phosphodiesterase 3 (SMPD3); and A199P in
TIMP Metallopeptidase Inhibitor 3 (TIMP3), a gene known for
its potent tumor suppressive functions29. All of these mutations
were recurrent, occurred at a conserved residue, and were located
within the active site of the enzyme (Fig. 6a–l) .

Importantly, METIS2 identified OGDHLp.A400T as a COMF
mutation candidate, consistent with the findings from METIS1

Fig. 4 Comparisons between candidate COMF metabolomes and WT controls. Volcano plots show fold-change (x-axis) and p-value (Welch’s t-test, y-
axis) for biochemical abundance in cells expressing each mutant (n= 3 biological replicates) compared to the respective wild type (WT) controls (n= 3
biological replicates). a CBL Y371H (MUT) vs. wild type (WT); b WBSCR17 (MUT) vs. wild type (WT)R228C; c SLC17A5 R364C (MUT) vs. wild type
(WT); d OGDHL A400T (MUT) vs. wild type (WT). Biochemicals are colored based on metabolic super pathway. Significant metabolites increased in the
mutant group (P < 0.05, Welch’s t test, without FDR correction) and select metabolites increased in the WT groups are called out.
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Fig. 5 Second-generation pipeline to identify COMF mutations in cancer mutational data. a Number of total missense mutations by year. b Number of
3+ , 4+ , … 9+ , 12+ recurrent mutations with COSMIC v59 (left) vs. COSMIC v96 (right) mutational data evaluated using METIS. An exponential
Malthusian growth regression was used. c Schematic showing pipeline, with number of mutations filtered at each step.

Fig. 6 COMF enzymatic candidates nominated by METIS2. a DAO mutational distribution in COSMIC v96 showing recurrent R283W mutations.
b Multiple alignment with R283 shown in red. c Predicted structure of human DAO complex with R283 highlighted. d–f Same for MICAL2-L99F. g–i Same
for SMPD3-D638A. j–l Same for SMPD3-H639P. Primary enzymatic function domains are represented by red boxes while secondary functions are
represented by green boxes underneath the mutation plot. Enzymes without currently defined domains are annotated as such.
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and the metabolomic screen. In the context of the additional 10
years of cancer mutation data and the implementation of more
stringent filtering criteria, this finding supports the original
filtering parameters in METIS1 and their continued use in
METIS2. Moreover, as increased cancer mutation data is collected
and stricter filtering parameters are introduced, we expect METIS
to increase in its predictive power to accurately find COMF
mutations.

This also may explain why METIS2 did not identify the other
mutations identified by METIS1. The relatively few cancer
mutations included in COSMIC ten years ago limited our ability
to implement stricter parameters, which may have resulted in
more false positives, as demonstrated by our metabolomic screen
only confirming OGDHL A400T as a COMF (Supplementary
Fig. 7a). In parallel, as METIS’s predictive power increases, we
also expect METIS to become more effective at finding COMF
mutations. In particular, we expect METIS-like approaches to
find a saturating number of “true” COMF mutations as available
COSMIC mutational data increases and to level off at the total
number of COMF, which previous studies have estimated 5% of
mutations (Supplementary Fig. 7b).

Discussion
Here we demonstrated an approach to mine cancer data for
mutant proteins that can alter cellular metabolism, which pro-
vides new tools to enable novel metabolic engineering technolo-
gies. We applied a computational attempt at this approach to a
cancer mutational dataset containing >200,000 missense muta-
tions. A number of known and yet-unknown candidate COMF
mutants were recovered. We generated a global metabolite pro-
filing dataset for four of the novel candidate mutants. These data
show that one or more of the candidates is uniquely perturbing
the cellular metabolome due to a COMF. Recent datasets with
exponentially more available cancer mutational data and updated
analysis tools may provide more accurate COMF predictions.
These results characterize a new approach to identifying novel
COMF mutations, which may be useful to enable sustainable
organic synthesis techniques and metabolic engineering pro-
cesses. A graphical representation of our results can be found in
Supplementary Fig. 7.

As expected, the majority of these predicted COMFs (77/125)
primarily encoded transcription factors and signaling molecules
well-known to be frequently mutated in cancer, such as GNAS,
KRAS, and NRAS. The pipeline also identified several mutations
in tumor suppressors such as TP53, NF1, and NF2 that likely
represent particularly damaging missense mutations that inacti-
vate the gene, rather than COMF mutations. Similarly, METIS
candidates were also involved in tumor biology. For instance,
OGDHL has been identified as a prognostic biomarker for
hepatocellular carcinoma due to its role in reprogramming glu-
tamine metabolism26,30. Further, CBLp.Y371H hyper-activates
signaling downstream of hematopoietic growth factor receptors31.

The novelty of integrating cancer genomics into metabolic
engineering is promising, as has been demonstrated by other
attempts to build predictors of GOF mutations. For instance,
Coban-Akdemir et al. sought to identify potential GOF muta-
tions, but this analysis was limited to mutations that cause pre-
mature termination codons, a relatively rare genomic event29.
Shroff et al. used deep learning of protein structure to predict
GOFs but could not link their relevance to human disease or
larger metabolic pathway changes32. Liu et al. did not investigate
mutations but rather individual amino acid positions within
genes and their potential for GOFs. Unfortunately, it is difficult to
draw direct comparisons between these methods and METIS as
they were built for different purposes, with different data type

inputs, and with different types of mutations as outputs as out-
lined in Supplementary Table 6.

Compared to other state-of-the-art biocatalyst development
techniques, such as directed evolution33, METIS’s strengths lie in
its scalable, computational approach to identifying COMF
mutations. Similarly, METIS will become increasingly high-
throughput and accessible as publicly available cancer mutation
data grows exponentially. METIS’s filtering parameters are also
highly customizable, which allows for purposeful screening that
could be utilized for different biocatalyst development needs and
even has implications for better understanding cancer metabo-
lism. Towards this, METIS could easily be combined with other
approaches to accelerate enzyme development to make up for its
shortcomings: for example, METIS could suggest potential initial
mutations for directed evolution to validate and build upon.

On the other hand, METIS also seems prone to type I errors, or
the identification of false positives. This is evidenced by the
candidate mutations in WBSCR17 and SLC17A5, which did not
alter the metabolome of cells that were transfected with the same.
This highlights the need for metabolic validation as well as the
need for rich, abundant mutational data. False positives likely
came about due to sparse data, as METIS1 was effective at pre-
dicting previously defined COMFs at “hotspot” mutations, such
as IDH1 R132H. In fact, of its 48 hits, 34 were previously well-
documented COMF mutations. In comparing METIS1 and
METIS2, we also observed that, though there was an increase in
the number of mutations that were filtered out by HomoloGene
and protein structure analysis in METIS2, the ratio of these
mutations to the number of recurrent mutations decreased from
2012 (Supplementary Fig. 7a). This likely is a result of the more
stringent recurrence criteria set forth in METIS2, which perhaps
decreased the likelihood of false positives in the screen. We expect
METIS-like approaches to find a saturating number of “true”
COMF mutations as available COSMIC mutational data increases
and to level off at the total number of COMF, which previous
studies have estimated 5% of mutations (Supplementary Fig. 7b).
A method of avoiding false positives involves metabolic data,
which may distinguish between COMFs and loss of function
mutations. Considering that the original discovery of 2HG pro-
duction by mutant IDH1 was found by noting a > 80-fold change
in a metabolomic experiment, we posit that large effects would be
more likely due to COMF than LOF4.

The metabolomic data indicated that OGDHL A400T conferd
a COMF that resulted in increased xanthosine production (2-fold
increase). The fact the OGDHL-WT did not significantly alter
xanthosine metabolism but the mutant did suggests that the
COMF is a neomorphic function. While the direct substrates of
mutant ODGHL (ɑ-ketoglutarate and succinyl-CoA) were not
detected within the screen, we did detect near-significant changes
in several metabolites that are closely related to wild type
OGDHL functions as shown in the Fig. 3c schematic. For
instance, when comparing WT to mutant groups, glutamine was
increased (Supplementary Fig. 8a, 4.3-fold, p= 0.06), which may
reflect production of ɑ-ketoglutarate; adenosine was increased
(Supplementary Fig. 8b, 1.2-fold, p= 0.06); adenosine dipho-
sphate was increased (Supplementary Fig. 8c, 2.6-fold, p= 0.07);
and S-adenosylmethionine (SAM) was increased (Supplementary
Fig. 8d, 1.7-fold, p= 0.08). In contrast, the OGDHL mutant
appeared to completely lack the ability to cause the metabolic
changes associated with OGDHL-WT (Supplementary Fig. 8a-d).
This indicates that the OGDHL mutant completely loses wild
type OGDHL activity, and may catalyze a novel reaction that
either directly or indirectly results in xanthosine accumulation in
cells. We have so far been unable to identify the substrates and
products of a putative neomorphic OGDHL mutant reaction.
Since OGDHL is an oxidoreductase, one possibility is that mutant
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OGDHL could carry out an oxidoreductase reaction on a new
substrate that could help generate ketone or other groups seen on
xanthosine, or on a metabolite that ultimately is converted to
xanthosine.

Purine alkaloids, which are derived from xanthosine, occur in
and are largely derived from plants for industrial and medical
applications. Purine alkaloids such as caffeine (coffee), theophyl-
line (antiasthma drug), and theobromine (chocolate), play a sig-
nificant role in pharmacology and food chemistry34. Traditional
production of purine alkaloids relies on cultivation and com-
pound extraction from plant biomass. These laborious strategies
face long production times and intensive resource requirements
from growing natural plant hosts. They not only have environ-
mental implications but also result in a low or fluctuating supply
of essential medicines35. Thus, the current production process of
these important compounds are a significant barrier toward
inexpensive and sustainable pharmaceutical development and
commercial use. Furthermore, the chemical synthesis of xantho-
sine derivatives, in particular, is difficult due to the challenges in
achieving selective alkylation or modification of each of the
nitrogen atoms36. The desire to implement scalable, sustainable
synthesis strategies has led to the desire to design metabolic
engineering strategies to produce valuable plant-derived com-
pounds. Our results suggest that METIS was able to identify
COMF mutations, such as OGDHL.pA400T for the increased
production of xanthosine. These mutations could be key to create
relatively efficient cell-based synthesis strategies for key chemical
compounds in a wide variety of chemical applications.

This work provides a framework for future efforts to com-
prehensively identify useful cancer-derived COMF mutations. We
intentionally used extremely stringent filtering criteria and an
early COSMIC database for these initial attempts at identifying
cancer-derived COMF mutations, recovering <50 total candidates
in these attempts. One group estimated that up to 5% of cancer
mutations may be change of function mutations17, raising the
possibility that numerous cancer-derived COMF mutations may
await discovery. Thus, future METIS efforts could use recent
larger cancer mutation datasets, relaxed filtering thresholds,
metabolic screen approaches with increased coverage, and
improved statistical approaches to comprehensively identify a
larger number of candidate cancer-derived COMF mutations.
Confirmation in multiple cancer cell lines would be helpful to
catch lineage-specific COMFs, such as CBL Y371H, which was
identified in leukemia cells but not the HeLa cells used in this
study31. Further optimization could also employ additional pre-
diction methods to further estimate mutational effects on enzyme
activity, such as MuPro and mahine learning approaches37. While
the current work focused exclusively on missense mutations,
future iterations of this approach could also be applied to identify
fusions, deletions, or other structural alterations that may confer
useful functions. Future work will also benefit from tools that
were not widely available at the outset of this work. In particular,
CRISPR can be used to introduce knockout mutations for
metabolite profiling screens more faithfully and efficiently than
our overexpression-based approach. Further, combinatorial
CRISPR-Cas9 metabolic screens can allow high-throughput
screening of COMF candidates38. This would greatly increase
the rate at which METIS can confirm COMF mutations and
identify the function that the mutation confers. Ultimately, future
METIS improvements will increase the rate at which novel, useful
catalysts can be developed using cancer mutational data.

Methods
The METIS bioinformatic pipeline. COSMIC, v59, May 23,
2012 was used. R version 2.15.0 was used. The R code is supplied

(Supplementary Code 1). Briefly, this code takes as input all
coding mutations from a COSMIC database download. It filters
for missense mutations, removes duplicate entries, and filters for
mutations that occur in 3+ unique patient tumor samples, and
those that account for >5% of all mutations in a given gene. A
summary table is output. Analysis of the remaining candidate
mutations is then carried out by excluding mutations as indicated
in Supplementary Table 2. While not used for the current report,
instructions to implement these filtering steps in Excel 2013 are
also provided (Supplementary Code 2). HomoloGene was used to
determine conservation. Proteins with available structures in the
Protein Data Bank (PDB), or with homologous proteins in the
PDB, were visualized using UCSF Chimera v1.539. Possible
germline mutations were identified using dbSNP and filtered out
if MAF score > 0.01. PDB 2XTA was used for OGDHL, 1XHB for
WBSCR17, and 1FBV for CBL, respectively. The statistical rea-
soning we used to determine recurrence cutoffs are described in
the Supplementary Note. For comparative analyses, the number
of missense and recurrent mutations were determined in the same
manner as described above using COSMIC, v96.

Plasmids. cDNAs for CBL p.Y371H, WBSCR17 p.R228C,
SLC17A5 p.R364C, OGDHL p.A400T were generated along with
wild-type controls, GFP, or empty vector (see Supplementary
Table 7 for sequences). For the OGDHL cDNAs, an open reading
frame from OGDHL transcript variant 3 (NM_001143999.1) was
used. This OGDHL cDNA was selected since it is shorter than
other OGDHL transcript variants to facilitate cDNA transduc-
tion, but still contains the entire OGDHL enzyme domain of
interest. In this OGDHL ORF, codon Ala191 is equivalent to the
Ala400 codon associated with a candidate COMF mutation. SgfI/
MluI restriction site ends were added by PCR to these cDNAs and
cloned into pCMV6-Empty vector with C-terminal Myc-Flag
epitope tags as described5.

Cell culture. HeLa cells were obtained from ATCC. Cells were
grown in DMEM media with 10% FBS and 1% Pen-Strep and
split 3 times weekly using 0.05% trypsin. 10 cm were seeded with
5 × 106 cells, and 24 h later when plates reached approximately
80% confluency were transfected with 10 ug of each plasmid using
Lipofectamine 2000 according to the manufacturer’s instructions.
Media was exchanged after 6 h at 37 °C in 5% CO2. At 24 h post
transfection, media was removed, cells were washed with 5 ml
PBS, cells were immediately scraped into 1.7 ml tubes, pelleted at
3000 x g for 4 min, washed with 1 ml PBS, centrifuged at 3000 x g
for 4 min, supernatant removed, and stored at −80 °C for further
processing5.

Metabolomic profiling. Metabolite profiling was carried out in
collaboration with Metabolon as described previously5. The
sample preparation process was carried out using the automated
MicroLab STAR® system from Hamilton Company. Recovery
standards were added prior to the first step in the extraction
process for quality control purposes. Sample preparation was
conducted using a proprietary series of organic and aqueous
extractions to remove the protein fraction while allowing max-
imum recovery of small molecules. The resulting extract was
divided into two fractions; one for analysis by liquid chromato-
graphy (LC) and one for analysis by gas chromatography (GC).
Samples were placed briefly on a TurboVap® (Zymark) to remove
the organic solvent. Each sample was then frozen and dried under
a vacuum. Samples were then prepared for the appropriate
instrument, either LC/mass spectroscopy (MS) or GC/MS.

The LC/MS portion of the platform was based on a Waters
ACQUITY UPLC and a Thermo-Finnigan LTQ mass
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spectrometer, which consisted of an electrospray ionization (ESI)
source and linear ion-trap (LIT) mass analyzer. The sample
extract was split into two aliquots, dried, then reconstituted in
acidic or basic LC-compatible solvents, each of which contained 11
or more injection standards at fixed concentrations. One aliquot
was analyzed using acidic positive ion optimized conditions and the
other using basic negative ion optimized conditions in two
independent injections using separate dedicated columns. Extracts
reconstituted in acidic conditions were gradient eluted using water
and methanol both containing 0.1% Formic acid, while the basic
extracts, which also used water/methanol, contained 6.5 mM
Ammonium Bicarbonate. The MS analysis alternated between
MS and data-dependent MS2 scans using dynamic exclusion. For
ions with counts greater than 2 million, an accurate mass
measurement could be performed. Accurate mass measurements
could be made on the parent ion as well as fragments. The typical
mass error was less than 5 ppm. Ions with less than two million
counts require a greater amount of effort to characterize.
Fragmentation spectra (MS/MS) were typically generated in data
dependent manner, but if necessary, targeted MS/MS could be
employed, such as in the case of lower level signals.

The samples destined for GC/MS analysis were re-dried under
vacuum desiccation for a minimum of 24 h prior to being
derivatized under dried nitrogen using bistrimethyl-silyl-
triflouroacetamide (BSTFA). The GC column was 5% phenyl
and the temperature ramp is from 40° to 300 °C in a 16 min
period. Samples were analyzed on a Thermo-Finnigan Trace DSQ
fast-scanning single-quadrupole mass spectrometer using electron
impact ionization. The instrument was tuned and calibrated for
mass resolution and mass accuracy on a daily basis. The
information output from the raw data files was automatically
extracted as discussed below.

Compounds were identified by comparison to library entries of
purified standards or recurrent unknown entities. Identification
of known chemical entities was based on comparison to
metabolomic library entries of purified standards. As of this
writing, more than 1000 commercially available purified standard
compounds had been acquired registered into LIMS for
distribution to both the LC and GC platforms for determination
of their analytical characteristics. The combination of chromato-
graphic properties and mass spectra gave an indication of a match
to the specific compound or an isobaric entity. Additional entities
could be identified by virtue of their recurrent nature (both
chromatographic and mass spectral). These compounds have the
potential to be identified by future acquisition of a matching
purified standard or by classical structural analysis.

Immunoblots. For each of the ten groups (four mutants, four
corresponding WT controls, empty vector control, and GFP
control), an additional 10 cm plate of HeLa cells was transfected
in parallel with the cells used for global metabolite profiling. At
24 h post-transfection, this parallel plate was washed twice with
PBS, 600 ul of lysis/loading buffer with protease inhibitors was
added as described previously8, and cells were scraped into 1.7 ml
tube, and incubated at 4 °C overnight. 20ul of each lysate was then
added to 20 ul of Laemmli sample buffer (BioRad) containing 5%
b-mercaptoethanol, boiled at 100 °C for 5 min, centrifuged 10 min
13,000 rpm at 4 °C and the supernatants were loaded onto a
4–12% Tris-glycine gel. Immunoblots were carried out using anti-
FLAG (1:1000, TA100011, OriGene) as described previously40.
To optimize immunoblots for membrane-associated proteins in
SLC17A5-expressing cell samples, the same procedure was car-
ried out without a boiling step. Instead, the samples were soni-
cated for 5 min in 30-s on, 30-s off pulses prior to adding 1X
Laemmli sample buffer.

Sensitivity Analysis. To roughly assess the accuracy of our
METIS1 pipeline, we selected n= 42 gold-standard COMF
mutations (Supplementary Table 4). These mutations were all
well-known COMF mutations, including IDH1p.R132H and
EZH2p.Y646F. We conservatively estimated a priori the presence
of approximately 300 enzymes involved in cancer-related meta-
bolic pathways. True positives were mutations that existed both
on the gold-standard list and the list of predicted mutations. False
positives were mutations that were loss of function tumor sup-
pressors (such as TET2p.I1873T). True negatives were mutations
not identified as COMFs that fell into the 258 mutations/genes
that were not included in the gold-standard panel. False positives
were mutations that were predicted by COMFs but did not fall
into the gold-standard panel.

Statistics and Reproducibility. For pair-wise comparisons of
metabolomic data (WT vs. mutant, and in-group vs. out-group),
Welch’s t-tests were used with Bonferroni correction for multiple
hypothesis testing. For multi group statistical designs repeated
measures ANOVA was used. Statistical analyses are performed
with the program “R” http://cran.r-project.org/.

Data availability
The mutation and metabolomic datasets generated during and/or analyzed during the
current study are available in the supplemental materials and COSMIC database (https://
cancer.sanger.ac.uk/cosmic). The metabolomic datasets generated during and/or
analyzed during the current study are also available on Figshare (https://doi.org/10.6084/
m9.figshare.21293739) or from the corresponding author on reasonable request.

Code availability
Code used in this manuscript is available in the supplementary information and was also
deposited into Figshare (https://doi.org/10.6084/m9.figshare.21293739).
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