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Mutual generation in neuronal activity across the
brain via deep neural approach, and its network
interpretation
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In the brain, many regions work in a network-like association, yet it is not known how durable

these associations are in terms of activity and could survive without structural connections.

To assess the association or similarity between brain regions with a generating approach, this

study evaluated the similarity of activities of neurons within each region after disconnecting

between regions. The “generation” approach here refers to using a multi-layer LSTM (Long

Short-Term Memory) model to learn the rules of activity generation in one region and then

apply that knowledge to generate activity in other regions. Surprisingly, the results revealed

that activity generation from one region to disconnected regions was possible with similar

accuracy to generation between the same regions in many cases. Notably, firing rates and

synchronization of firing between neuron pairs, often used as neuronal representations, could

be reproduced with precision. Additionally, accuracies were associated with the relative angle

between brain regions and the strength of the structural connections that initially connected

them. This outcome enables us to look into trends governing non-uniformity of the cortex

based on the potential to generate informative data and reduces the need for animal

experiments.
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In the nervous system, a large number of neurons are repeat-
edly firing as they interact with each other. This scene has been
likened to a symphony of complex spikes1–3. When measuring

neural activity, it is customary for electrophysiologists to discern
from the sound of spikes whether the measurement points are in
contact with active neurons, and then to be satisfied or dis-
heartened. What characteristics does the temporal flow of such
neural activity symphonies have?

It is also known that certain long-time correlations exist in the
spike time series of neural activity4–7, indicating that an activity
state of a neuron population at a time already has some infor-
mation about its future state. The state of whether or not an
individual neuron fires is essentially maintained as an inter-
dependent relationship among multiple neurons, rather than
maintained individually for the inherent activity mode of each
neuron. In other words, it is crucial to simultaneously acquire the
activity of a large number of neurons to understand their
correlation.

The ability to simultaneously record from multiple neurons has
markedly improved over the years, thanks to advances in elec-
trode technologies. From the advent of transistor computers and
microelectrode probes in the 1950s, there has been a remarkable
trend where the number of neurons that can be monitored
simultaneously has approximately doubled every seven years8.
Today, with the advent of novel electrode technologies, we can
record activity from hundreds, thousands, or even tens of thou-
sands of neurons at the same time9–11. These advances have been
fueled in part by improvements in the scalability and accessibility
of input/output interfaces, the reduction of electrode sizes to
afford a higher density and sampling resolution, and the design of
macroporous structures to increase the sampling volume without
causing substantial damage to neural tissues9,10.

Thanks to these advances, we now have the capability afforded
by recording technology necessary to reliably verify how accu-
rately we can generate the future activity of individual neurons
from past activity of the neuron population.

The nervous system is active even in the absence of external
stimuli. Such neural activity is called spontaneous activity. For a
long time, neural activity has been measured while animals
undertake any tasks and the neural activities have been evaluated
in correlation with the task. In fact, more than 80% of the energy
in the brain is expended in the task-free state, and spontaneous
activity consumes most of the energy of neural activity12.

As we will discuss later, it is also known that stimulus-induced
activity is fundamentally rooted in the state of preceding spon-
taneous activity.

In the past, when many neurons could not be measured
simultaneously, temporal changes in the activity of individual
neurons were regarded only as classical stochastic activity.
However, recent measurements have shown that spontaneous
activity is also considered to retain a causal relationship between
activities with a degree of inevitability13,14.

On a macroscopic (anatomical) scale, spontaneous activity has
been observed to produce specific patterns throughout the brain.
A typical example is the default mode network, a pattern of
activity that is inversely correlated with presentations of external
stimuli [Raichle et al.]. It is also clear that there are multiple other
modes in the macroscopic spontaneous activity patterns15.

This massive amount of research on spontaneous activity on a
macroscopic scale forms a huge research field that continues to
this day. The spontaneous functional activity patterns can also be
systematically interpreted by comparing them to structural
wiring16–19.

The measurement and analysis of spontaneous activity of
neurons at the microscale have been pursued both in vitro and
in vivo. Classically, the firing timings of individual neurons have

been quantified as a deviation from the Poisson point process
generated when we regard them as a random time series20,21.
Randomness and simple repetitive patterns have also been
assumed in the activity patterns of multiple neurons.

Recent studies have begun to capture the presence of complex,
but non-random rules within these patterns. One of pioneering
studies, using real-time optical imaging, revealed the patterns of
spontaneous activity observed when multiple neuronal activities
are measured simultaneously. For example, in the rodent visual
cortex, spontaneous activity was found to intrinsically exhibit
variations of spatial patterns in evoked activity even before sti-
mulus presentation22. The same research team also demonstrated
that activity patterns obtained from optical imaging time-locked
to the firing timing of single neurons show clear similarity to
patterns time-locked to evoked activity23.

Such interactions between multiple neurons have sequential
patterns caused by a series of inevitable interactions that are
thought to be mediated by synaptic connections between neurons.

The connections of quantified causal interaction between
neurons drawn as arrows are called effective connectivity. Much
work has also been done to reconstruct structural wiring as
effective connectivity reconstructed from neural activity24–26. It
has also been pointed out that networks reconstructed from
neural activity are closely related to stimulus-dependent evoked
activity of neurons27.

When we consider a symphony of neural activity (i.e., a
coordinated flow in time) as music, we notice an interesting
technical diversion. Polyphonic music includes multiple musical
notes sounding simultaneously as found in piano music and
ensemble music which can be regarded as time series data similar
to multicellular spikes data. We are mapping the pitches of
musical notes to the neurons and the onset time to the time of
firing. The existence of co-occurrence relationships and long-
time correlations between specific pitches is similar for
music data.

Attempts to automatically generate music have been made
since the 1950s28. Many have also utilized Artificial Neural
Networks (ANNs) for music generation29–32. Along with recent
advances in data analysis techniques using ANNs, music gen-
eration techniques based on ANNs have been notably improved.
We can expect that it is also possible to generate spike data with
properties similar to those of real-world music.

Given the similarities between artificial neural networks
(ANNs) and motifs in the nervous system, it might be also
expected that ANNs could be applied to generate spike data with
properties resembling real-world neural activity33. There were
attempts to analyze neural spike data can be traced back to as
early as the 1960s, with seminal work by pioneers such as Wilfrid
Rall, whose mathematical models used differential equations to
describe the temporal dynamics of neuronal electrical activity.
Rall’s work was essential in laying the groundwork for what
would eventually become spiking neural network (SNN) models.
Another notable contributor to this field is Carver Mead, who
made substantial strides in neuromorphic computing, using
SNNs to simulate the behavior of biological neurons. Despite
these historical precedents, the full potential of ANNs for gen-
erating neural spike data has not yet been fully realized and
warrants further exploration.

The main goal of this study is to generate neuronal spike data
using one of the techniques described in Fig. 1 that can capture
causal interactions between neurons. Beyond the naive metho-
dology of using correlations between spike’s data, we evaluated
the similarities and differences between real and generated neural
activities in terms of predicting future neural spikes.

The overview of the entire data processing flow in this study is
summarized in Fig. 1.
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This study targeted the analysis of electrical activity of multiple
neurons in the mouse cortex, mainly neocortex, measured with a
multi-electrode array (MEA) (Fig. 1c, d). The neocortex consists
of one to six layers, numbered from the surface in the direction of
the depths. In each brain region, neurons were selected by sliding
a section orthogonal to the cortical surface along the cortical
surface so that all 1–6 layers were included, and a total of 128 cells
were selected and collected into each regional data (Fig. 1e, Refer
method about experiments in detail).

The neural activity recorded with an MEA is called spikes as
mentioned before, which is represented as binary data, where
elements with 1 describe firing timings.

In individual analysis, we prepared a pair of training and test
spike data from two datasets. Training data is used to optimize
the internal parameters of the multilayer LSTM model, enabling
the best prediction within the training data. This is called the
training process. After training is finished (Fig. 1f), we use the
trained network to generate new spike data and compare it with
the test data (Fig. 1a) (Refer to analysis method for more details).
This is called the generating process. In the generating process, we
generated one-step future neuronal spikes with hypothesizing
that we know all neuronal spike sequences.

The test data is also sometimes referred to as target data
because this data is the target of the generation process. The
training and test data were respectively obtained from one of the
16 regions of the neocortex (caption of Fig. 1)34.

The generated data were evaluated using the firing rate and the
Synchronization score (refer to analysis methods). It is important

to note that the ability to generate a highly predictive time series
means that new future neural activity can be generated by
extending the time from existing spike data. We thought that the
above is important because it means that new time series data can
be obtained without the need for new experiments, leading to
fewer physiological experiments in the future.

However, to be honest, at the beginning of our research, we
had a hypothesis that with this generation method, data from the
same brain region would be able to generate each other effec-
tively, but it might be challenging to achieve such effective gen-
eration between neural activities from different brain regions.
Nevertheless, fortunately, as later results showed, there were
instances where generation between different brain regions
worked well. Based on these findings, particularly when evaluat-
ing time series generated by models trained with data from one
brain region against test data obtained from another brain region,
we hypothesized that the generation performance would likely
depend on the relative “closeness” between the two brain regions.
We also assumed that it would depend not only on the geo-
graphical distance but also on the strength of structural con-
nectivity through white matter fibers. In our study, we conducted
analyses in the final subsection results to explore this assumption.

Results
Training process. The internal parameters of the Multilayer
LSTM model were optimized to minimize the prediction error for
~17 minutes of training data.

Fig. 1 The workflow of this study. a We prepared brain slices from individual regions, as illustrated here with orange circles. We used two of these regions
for the training step and the generation step, respectively. b Prior to this, we classified the cortical regions into 16 groups. The abbreviated names of the 16
areas are defined by the following rules: Right and left hemispheres include 8 groups, respectively, and expressed as L or R at the beginnings of individual
names. The name is followed by combinations of O, D, F, and V expressing abbreviations of Occipital, Dorsal, Frontal, and Ventral. (Refer to the supplemental
material. 1 detailed locations of the slices used for the 16 area groups.) Pairs of regions, like the examples in a, were selected from those 16 groups. c We
measured neuronal activity from hundreds of neurons in each region with a multi-electrode device. d An example of a spike train obtained from one of the
measurements. The horizontal axis is time [sec] and the vertical axis is the index of neurons. The timing at which a certain neuron fires is indicated by a dot.
This diagram is called a raster plot in neuroscience. e We used stained images to extract only neuron groups in cortical areas and then divided the neuron
groups with lines orthogonal to the cortex so that only 128 cells were included in each dataset. f Such spike sequence, binary data, is input to the Multilayer
LSTM model to predict one step ahead after learning from the past data. The horizontal axis is time [ms], and the input vector is a binary vector.
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As described in the Method section, based on the result of a
preliminary study testing various parameterizations, we use a
Multilayer LSTM network with three hidden layers, each with 128
LSTM units. We used a focal loss function to quantify the
prediction error. The number of epochs for training was set to
350. This decision was based on the observation that even though
the value of the loss function had converged before 25- epochs,
the precision of the firing rate and the reproducibility of
synchronous firing continued to improve up to 350 epochs
[Fig. 2]. The Adam algorithm was used for optimization35.

Generation with the same region for source and target regions.
The neocortex was divided into 16 regional groups, with two
datasets per regional group. Formally, the first 16 datasets are
collectively named dataset 1 and the remaining datasets are
named dataset 2. In the following sections, we observe the results
of evaluating the data generated as a result of the training in
various cases. Then, we present the average of the results obtained
for these two datasets. The results presented in what follows are
confirmed to be reproducible between the two datasets.

In this section, we first performed generation through the
multilayer LSTM model by dividing the data given by the same
group of brain regions in each dataset into the first half and the
second half on the time axis, and preparing them as training data
and test data, respectively [Fig. 3a, b]

Because the training and test data are different parts of the
same time series, this case is relatively easy to generate and
predict. Therefore, it was expected that it would perform close to
the best prediction performance when the training and test data
were cut out from the same time series.

Multilayer LSTM receives time series data of 128 cells in the
past and outputs information on whether 128 neurons are active
in the future (Fig. 1f). Multilayer LSTM was trained by swiping
data in the first half of the time from time 0 to 17min (Refer in
more detail to the method sections about Multilayer LSTM). In
the second half, the learning process is stopped, and the data is
swiped from 17min to 34 min to evaluate how well the rules
learned in the first half can be used to predict future activity
states. In other words, the similarity between the first half of the

data and the second half of the data is evaluated through the data
generation performance.

To evaluate the quality of generated data, we computed the
firing rates and synchronization scores for both the generated
data and original test data, and analyzed how well their statistical
properties were reproduced. The firing rate, defined for each
neuron, refers to the number of spikes per unit time [spikes/sec].
The synchronization score, defined for each pair of neurons,
represents the amount of deviation in firing frequency of a
neuron during a certain time window after the other neuron fires.
A positive value of this quantity indicates a co-occurrence relation
between the neuron pair and a negative value indicates an
inhibitory relation. See the section about Multilayer LSTM for
precise definitions. A highly positive correlation of the firing rates
or synchronization scores between the generated and real data
indicates that the statistical properties of the real data are
accurately reproduced in the generated data.

As a result, Fig. 3c, d show scatter plots between predicted and
measured values for both the firing rate and the synchronization
score, respectively. In these scatter plots, we observed a
concentrated point on the diagonal for both the firing rate and
the synchronization score, indicating that the generation was
successful [Fig. 3c, d].

Figure 3g plots the correlation coefficients of the Firing rate for
each brain region used in the measurement. In all regions, the
correlation values exceed 0.9, indicating high predictive success,
with the exception in RFV [refer to supplemental material. 1].

For further evaluation of the synchronization score, the first
and third quadrants of the scatter plot were extracted and
histograms were drawn in the direction of the rotation axis.
Examples are shown in Fig. 3e, f. As seen in these results, the
successful generation is reflected in the peaks in the histograms.
From the histogram of synchronization score we calculate the
sharpness in the first quadrant (refer Figs. 3e, 4e), which is
calculated as the ratio of the area around the peak (width of π=4)
to the area at other angles included in the first quadrant
(Θ ¼ 0π=2). The sharpness in the third quadrant is also
calculated in the same way in the third quadrant (θ ¼ π3π=2)
(refer Figs. 3f, 4f).

From these results, it was found that when the training data
and the test data are obtained from the same region, both the
firing rate and synchronization could be nicely reproduced
(Fig. 3g, j).

In the next section, we will observe the case where the training
data and the test data are obtained from different regions. The
results given in this section provided us the approximate values of
every prediction performance in the relatively easy problem of
generating from training to test data cut out from the same time
series (Fig. 3g, j). The performance would give us perspective on
the highest value when generating across different data shown in
the next subsection.

Generation with all brain regions as source and target regions.
While training and generating evaluations were performed on
data acquired from the same brain region in the previous section,
in this section, we also analyze and evaluate the training and
target data recorded respectively from two different brain regions
groups included in the same one of two datasets [Fig. 4a, b]. The
prediction performance was then shown as the average of dataset
1 and dataset 2 [Fig. 4g–k].

By comparing between different data, the similarity of their
neural activity can be assessed by predictability by generating
process rather than by cross-correlation. It should also be noted
that in this in vitro experimental environment, the connections
between the brain regions are broken, so the similarity between
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Fig. 2 Learning procedure. The figure depicts how the loss on the training
data and the loss on the validation data decreases as the multilayer LSTM
model is trained. A decrease in loss indicates that the training of the
Multilayer LSTM has progressed. The loss, common to both data,
decreases sharply at 25–100 epochs. However, the precision of the firing
rate and the reproducibility of synchronous firing continued to improve up
to 350 epochs.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05453-2

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1105 | https://doi.org/10.1038/s42003-023-05453-2 | www.nature.com/commsbio

www.nature.com/commsbio


time series data from two brain regions is by no means produced
by the interaction of the two brain regions.

Again, the quality of generation was evaluated using the firing
rate (Fig. 4g–i) and the synchronization score (Fig. 4j, k) (Refer
method section about Multilayer LSTM).

First, accuracy with respect to firing rate in generation was
evaluated simply by cross-correlation between the firing rate in
the original test data and the firing rate in the generated data
(Fig. 4c). Color maps of the correlation values between the firing
rates of all neurons (Fig. 4g), inhibitory cells only (Fig. 4h), and
excitatory cells only (Fig. 4i) are plotted. Hierarchical clustering
was performed to sort brain regions that show similar patterns in
terms of prediction performance into close indices.

Second, when evaluating the accuracy with respect to the
degree of synchrony in the generation, we used the scatter plot
(Fig. 4d) between the synchronization score in the original test
data and the synchronization score in the generated data.

Then, in the scatter plot, we evaluated the peakness of the
angle-dependent distribution in the first (Fig. 4j) and third
(Fig. 4k) quadrants of the data distribution as the sharpness
(method section). In the synchronization results, the data were
sorted by hierarchical clustering so that regions with similar
characteristics are close to each other.

In all the results so far, the diagonal components are brighter
than in other cases because the generation between the same
region shows a high prediction performance. However, at the
same time, the generation between different regions also some-
times showed high prediction performance at the same level as
the generation from the same region.

In the two sections ahead, we will further analyze how such
brain region pairs of non-diagonal cases, showed similar
prediction performances with the diagonal cases are related to
each other, based on the relative spatial distances (angles) and/or
structural connectivity between brain regions.
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Fig. 3 Results for generation when source and target are the same region. a Both training data and prediction, generation, data are prepared from the
same region in this evaluation. b In the case of example (a), both training data (first 17 minutes) and test data (second 17 minutes) of the same time series
are obtained from area A. c This panel shows the result of predicting the firing rate in this case, where the x axis is the firing rate in the original data and the
y axis is the firing rate in the data generated by training Multilayer LSTM. d This panel shows the result of predicting synchronization score. Again, the x
axis is the synchronization score in the original data, and the y axis is the synchronization score in the generated data. This data was expressed in r-θ
rotational coordinates, and a histogram of the number of data in 0-π/2 with respect to θ, or in the first quadrant, was drawn in e. Finally, f is the histogram
of the number of data in π-3/2π with respect to θ, or the third quadrant. In particular, if the output is coming from inhibitory cells, it is distributed in the
third quadrant. The sharpness of the peaks in these histograms (e, f) was evaluated by sharpness [Refer to the method section]. g Correlations between
expected and true values of firing rates in the inhibitory neurons are plotted for every 16 regions. The two points for every group of regions correspond to
the two datasets, and the line is the averaged value between the two datasets. The meaning of the points and lines is the same for h, j. h Correlations
between expected and true values of firing rates in excitatory neurons are plotted in the same way as in g. i shows correlations between expected and true
values of synchronization score in the first quadrant for every 16 regions. j shows correlations between expected and truth values of synchronization score
in the third quadrant.
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Relationship with connection strength and relative angle.
Finally, in order to study how anatomical “closeness” relates with
the unevenness of performance in intergeneration between dif-
ferent brain regions in the results obtained in the previous section
and the one before that, we evaluated the results in comparisons
to the relative angles between brain regions and the strength of
structural connections.

As shown in Fig. 5a, relative angles were calculated based on
the relative angles from the regions of interest selected from 16
regional groups. First, the relative angle in the group of interest
was set to zero. Then, within the ipsilateral cortex of the group of
interest, the relative angle was incremented by +1 with every one-
angle difference. However, the completely opposite angles were
set to +2 since they are adjacent to each other on the same slice
plane. (Fig. 5a).

We utilized tracer data published by Allen institute with the
Mouse Reference atlas for the structural connections36–38. In
this study, we calculated the connection strength between two

square recording regions in four steps. : First, we enumerated
the cortical areas on the atlas that belonged to the two square
recording regions where electrical activity was measured.
Second, we calculated the strength of the structural connections
between all pairs of the cortical areas belonging to each square
region. Third, the connection strength was normalized by the
percentage of area within the region located at either end of the
connection. Finally, the normalized connection strength was
averaged for all combinations of regions and calculated as the
connection strength between electrode recording regions
(Fig. 5b). See Method section about analyses for the detailed
formula.

Then, we evaluated the relationship between either the relative
angle or the connection strength between the electrode recording
regions and either the accuracy of predicting the firing rate or the
sharpness and accuracy of predicting the synchronization score
between the region pairs. This evaluation was performed with the
left and right hemispheres separately (Fig. 5c–v).
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shows the result of predicting the firing rate in a particular case, where the x axis shows the firing rate in the original test data and the y axis shows the
firing rate in the generated test data by training Multilayer LSTM. d This panel shows the result of predicting the synchronization score in a particular case.
Again, the x axis is the synchronization score in the original test data, and the y axis is the Synchronization score in the generated test data. This two-
dimensional distribution was expressed in terms of r-θ rotational coordinates, and panel. e depicted the density distribution of the number of data in 0-π/2
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The statistical test here is a Bonferroni correction for a sample
size of 4 in the panel. First, Fig. 5c–l lists the results for relative
angle. For a difference of 1 relative angle from 0, the predicted
firing rate showed a significant difference (Fig. 5c–g) (p= 0.006,
p < 0.01, Bonferroni correction). However, sharpness, which is the

prediction performance of connection strength, in relation to
relative angle showed no significant trend.

Second, Fig. 5m–v lists the results for the connection strength.
No significant trend was observed in the prediction of firing rate
for connection strength in any condition (Fig. 5m–q). However,
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there was a significant positive correlation between connection
strength and predicted sharpness (Fig. 5s, u) in the first quadrant
(Left hemi.: p= 5.510−9, Right hemi.: p= 2.010−8, p < 0.01,
Bonferroni correction), which was common in the left and right
hemisphere.

In general, the results indicate that the prediction performance
of the index of firing activity in the multilayer LSTM is related to
the relative angles between measurement sites, and the prediction
performance of synchronization is related to both of relative
angles and the strength of the structural connections. We will
address more in-depth discussions of this relationship in the
discussion section.

Discussion
In this study, we developed an approach, novel to the best of our
knowledge, to evaluate the homology between two regions
through the generation and evaluation of synthetic neural spike
data using a Multilayer LSTM network.

Specifically, spiking data for a group of over 100 neurons were
measured from slices taken from 16 cortical regions of the mouse,
and from those 16 regions, 16 × 16= 196 different pairs of
training and test data were prepared.

When interpreting the given results, it is important to keep in
mind that in slices cut from one region, connections to other
regions are physically severed. It was well expected that our
applied spike generation technique between different regions
would not work at all because the recording regions are dis-
connected from each other.

However, surprisingly, the results showed that there are hidden
rules in the spike data that allow the Deep Neural Networks used
in this study to generate complex spike sequences to the point of
reproducing them with nontrivial accuracy. It is extremely diffi-
cult for the human eye to decipher the rules utilized in their
generation.

It should also be emphasized that even if one creates a detailed
computational model of neural systems, it is actually very difficult
to prepare a computational model that generates spikes that

somehow reproduce the synchrony among the many pairs of
neurons in the system39–41. The findings of this study can be
summarized in the following three categories:

First, the case of learning and generation among time series of
different time periods in the same data showed clearly significant
prediction performance, not only in terms of firing rate, but also
in terms of the degree of synchrony.

Second, even in the predicted performance among the regions
measured from different regions, surprisingly, there were some
combinations that came close to the performance for the
same data.

This indicates that the characteristics of electrical activity
within cortical local circuits have enough commonality or uni-
versality to generate each other even if the regions are different.
There is no precedent for showing this commonality through the
mutual generation of activity.

Third, we compared the prediction performance of firing rate
and synchronization with the relative angle between the measured
regions and the strength of the structural connections. The results
showed that there was a significant difference in the prediction
performance of firing rates between generations made between
the same region and those made between regions that were one
relative angle adjacent to each other. Moreover, and more sur-
prisingly, although no significant correlation was observed
between structural connection strength and prediction perfor-
mance of firing rate, significant correlations between structural
connection strengths and sharpness, which is prediction perfor-
mance of synchronization score, were observed in both left and
right hemispheres or in one hemisphere in the region of the first
quadrant.

We need to notice that it is also important to keep a dis-
passionate attitude in considering observed high prediction per-
formance. For example, in the relation between the prediction
performance of the firing rate and the relative angle, there was a
significant difference in the prediction performance of the firing
rate between the case of generations made between the same
regions and the case of generations made between one adjacent

Fig. 5 Comparison between generation performance and spatial relative position or structural connections. a shows the definition of a score calculated
based on the relative angle from a certain region of interest (in this case, the Left Frontal Dorsal region). The score at the region of interest was set to zero,
and the score was added by one for every shift of one angle from the region of interest. However, the score for the region completely opposite to the region
of interest was reduced to +2 because that region is located at the same slice surface as the region of interest and adjacent to the region of interest.
b illustrates the definition of the values required to calculate the strength of the structural connections between the square recording regions where
electrodes were placed. We downloaded the original connection strengths and atlas data from open data shared by Allen institute (https://connectivity.
brain-map.org), and reconstructed the connection matrices. In this illustration, the two squares represent the areas (e.g., Slice A, Slice B) where electrical
measurements were made. In addition, two examples of connections between them are expressed as pipes. The connection strength between the atlas
areas included in the square region of the electrical recording was calculated for each connection as a normalized value in terms of the percentage of the
area, expressed as a dark red area in Fig. 5b, of the intersection of the region of the electrical recording with the area of the atlas at both ends of the
connection. The normalized value as a percentage of the area, expressed as a dark red area in Fig. 5b, was calculated for individual connections (Refer to
the method section for details). In the square region of the electrical recording, the normalized value, expressed as a dark red area, was calculated for each
connection as a percentage of the area of the intersection of the region of the electrical recording with the area of the atlas at both ends of the connection).
The normalized value as a percentage of the area was calculated for individual connections (Refer to the method section for details). Then, the connection
strength between the regions of electrical recording was calculated as an averaged quantity of connection strength in all connected pairs of atlas areas at
both ends. c~l plot the prediction results for the relative angles between the measurement regions. Among them, d~g plot scatter plots with the predicted
firing rates for the relative angles between the regions, and c summarizes the correlation values and p values for the points between Angle= 0 and
Angle= 1 in d~g as a four-bar graph corresponding to the order from d–g. Among d–g, d represents results to excitatory neurons in the left hemisphere,
e to inhibitory neurons in the left hemisphere, f to excitatory neurons in the right hemisphere, and g to inhibitory neurons in the right hemisphere. i through
l are plotted as scatter plots with sharpness, prediction performance of Synchronization score, as the vertical axis relative to the relative angles between the
measurement regions. The difference in the meaning of the x axis in the i~lmeans results to the first quadrant of the left hemisphere, j to the third quadrant
of the left hemisphere, k to the first quadrant of the right hemisphere, and l to the third quadrant of the right hemisphere. h The correlation values and p
values for the points at Angle= 0 and Angle= 1 in i~l are summarized as bar graphs. n~q and s~v are the same as the d~g and i~l, except that the horizontal
axis is the connection strength. Then, the correlation values and p values at n~q are summarized in m, and the correlation values and p values at s~v are
summarized in r. The significance level is set at about p= 0.01 and the dotted lines are overlaid, and it can be read that the p values corresponding to s and
v are much lower than that level.
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region. Remember, however, that there is a possibility that the
advantage of being cut from the same data (beyond being in the
same region) worked in the prediction between the same regions.
Therefore, further verification is necessary to check if it is not an
artifact. Nevertheless, the trend in the first quadrant that syn-
chronization score increased with each increase in structural
connectivity is a nontrivial trend that cannot be explained by such
reasoning.

Although this is not a result obtained in this study, it should be
noted that there have been numerous previous studies on struc-
tural connectivity. First, the hierarchy of information processing,
which is described in terms of structural connectivity patterns
between cortical areas, has been logically defined based on dif-
ferences in laminar patterns along the cortical depth direction.
This is the definition conventionally employed in the analysis of
wide-ranging structural connectivity patterns, mainly for the
visual system42.

Some researchers have attempted to understand the hierarchy
of information processing by integrating this pattern with the
auditory and somatomotor systems in informatic ways43. The
understanding of the hierarchical structure of information pro-
cessing was then extended to an understanding of hierarchy in
the sense of going from peripheral areas closely connected to the
peripheral nervous system of information processing to central
core areas corresponding to the association cortex44.

We can also confirm that the hierarchy of information pro-
cessing reflected in connection structure patterns is related to cell
density45. Furthermore, as we obtained better systematic data on
connection strength, it became clear that there is a clear empirical
relationship between connection strength and spatial distance46.

Various studies have reported that the pattern of structural
connections is similar to the pattern of functional connections
defined on the basis of synchronization of activity between joined
brain regions47–49. The investigation of how such characteristics
are related to the activity generation between disconnected brain
regions, as observed in this study, will be a future task and will be
discussed in the next subsection.

Even with the important background knowledge described in
the above subsections, it is quite surprising that we were able to
achieve high performance in generating activity between different
brain regions, and also that we observed a significant positive
correlation between structural connection strength and sharpness
for the first quadrant (for example, Fig. 5s). Our experiments
involved measuring neural activity from brain regions after sec-
tioning them as slices. This means that the connections between
those brain regions are severed, and as a result, these regions do
not have shared input. Therefore, the factors from outside these
two regions that would normally preserve the similarity in neural
activity between them are absent.

Structural connectivity patterns in mice have been measured
and analyzed on a large scale with increased resolution in a way
that also integrates with genomics or transcriptomics
studies36,50,51. This study also aided the structural wiring pattern
information obtained in those studies38.

Such genes and transcription factors are internalized char-
acteristics of each brain region. In other words, these studies
indicate that brain regions connected by structural wiring possess
similarities in terms of their internal activity generation char-
acteristics. In our research findings, the reason for successful
generation between disconnected brain regions is understood to
leverage the similarity of activity generation characteristics that
each brain region inherently possesses. In essence, connecting the
dots, there is a possibility that the similarity of genes and tran-
scription factors is related to the ease of mutual generation of
neural activity in each brain region, which we have discovered.

Therefore, it is a future challenge to investigate the relationship
between these genomics and transcriptomics and the internal
characteristics of activities within individual brain regions. To
understand the connection between genes, transcription factors,
and neural activity characteristics, it is crucial to continuously
grasp the multi-layered hierarchy of how proteins produced from
genes govern the chemical properties of neurons, such as their
structural and chemical channel characteristics, leading to the
emergence of electrical properties specific to each cell group.

One of the other issues is the improvement of the generation
method using multilayer LSTMs and the evaluation method.
When generation does not work well, the disappearance of the
diagonal component in the scatter plot of the relationship
between the predicted and correct answers generally occurs.
Although this report does not go into detail, several characteristic
patterns were observed following the disappearance of the diag-
onal component in the scatter plots. By classifying these char-
acteristic patterns and exploring their causes individually,
guidelines for their generation and evaluation at high perfor-
mance will be more mature than now.

In this study, we chose the region that brings together the cell
groups as the square recording region in the electrical measure-
ments. In other words, the brain regions of the atlas provided by
the Allen institute were grouped together within the square
measurement area, and the analysis was performed to compare
them with the structural connections. Another future task is to
analyze cell groups separately according to the atlas brain area
segmentation provided by the Allen institute. This will allow for a
more stable combination of cell groups, including those within a
single region, which will positively affect the generation and
prediction results. -This could have a positive effect on prediction
performance.

Furthermore, in this study, we selected the same 128 cells
within the recording area for each of the 16 regions, which
resulted in varying cell densities and spatial sizes proportional to
each other across regions. However, some form of normalization
is necessary for the analysis, and we believe that the chosen
approach in this study is a natural method among the possible
choices. In future research, we aim to conduct analyses where the
number of cells varies across regions while keeping the spatial size
fixed. Then, new ideas will be also necessary to deal with the fact
that the number of cells in each region differs due to the differ-
ence in size of each region.

This study collectively analyzed populations of neurons exist-
ing in the square region used for electrical measurements.
However, there may be cases where histologically distinct brain
areas coexist within these square recording regions. Therefore,
one of the future tasks is to analyze the neuron groups according
to segmentations of brain atlases such as the Allen brain atlas.
This will allow us to include only neuron groups within a single
region, and to make the groups of neurons belonging to each
individual group more uniform. As a result, we expect that this
will have a positive influence on the performance of the genera-
tion and prediction. However, new ideas are necessary because
the number of cells within a region should be different due to
differences in sizes of these regions.

Utilizing more recent neural network architectures than the
multilayer LSTM model also has the potential to improve the
performance of data generation, even though new models do not
necessarily improve performance due to the size and character-
istics of the data. For example, the Transformer model52, which
uses the self-attention mechanism to deal with correlation in
sequential data, can potentially learn even longer temporal cor-
relations than the LSTM model.

This study showed that the activity of multiple neuron groups
in the cortex can sometimes be generated reciprocally, even
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between different regions. We also showed that the non-
uniformity of the reciprocal generation can be explained, to
some extent, by the relative positional relationships and structural
wiring.

The methods developed in this study have very important
significance for the fundamentals of animal experimentation. In
neurophysiological experiments, synchronization still plays an
important role in quantifying neural representations of neural
interactions and cognitive functions53–56. If such spiking data can
be generated from artificial models with high accuracy, there is no
need for redundant experiments. As a result, they can contribute
to the 3 R principle, Replacement, Reduction and Refinement,
regarding animal experiments57. Such techniques will become
even more important for rare data, where large amounts of data
are difficult to obtain58,59. Therefore, it is likely that research
schemes to quantify the similarity of different datasets measured
under different conditions in terms of their inter-generational
capabilities will expand in the future.

In such a method, the combination of the original data and the
target data to be generated is very broad. In the future, as the
physiological interpretation is deepened and the prediction per-
formance is improved, it will become the basis of a method to
“measure” physiological data through mathematical models
instead of experiments, and is expected to contribute to the
comparison of experimental data among animal species and the
performance evaluation of model animals as well as the 3Rs. This
method is expected to contribute not only to the 3Rs but also to
the comparison of experimental data among animal species and
the evaluation of model animal performance.

In this study, we demonstrated for the first time that the
activity of groups of multiple neurons in the cerebral cortex can
often be mutually generated, even between different brain regions.
We also suggested that the non-uniformity of performance in
mutual generation can be somehow explained by relative spatial
positions and structural connections.

It should be emphasized that such a generation method allows
a very wide range of choices in what data to use for the combi-
nation of original data and target data to be generated. In other
words, this method allows us to evaluate similarities between a
wide range of neural activities.

Methods
Experiments
Data acquisition of neuronal activities. We used neuronal spike
data recorded and studied in detail in our past study. Here, we
briefly explain the experimental procedure utilized in the past
study34,60,61. The whole experimental processes are also now
open in a video journal62.

We used female C57BL/6 J mice (n= 32= 16 × 2, aged
3–5 weeks). This study grouped the cortex (mainly the neocortex)
into 16 groups, and prepared two sets of data for each of these
groups (Fig. 1b, supplemental material. 1). All animal procedures
were conducted in accordance with the guidelines of animal
experiments of Kyoto University (KU), and have been approved
by the KU Animal Committee.

This study recorded neuronal spikes from cortical slices with a
MEA system (Maxwell Biosystem, MaxOne) with refluxing an
artificial cerebrospinal fluid (ACSF) solution that was saturated
with 95% O2/5% CO260,62.

Prior to slice preparation, mice are thoroughly anesthetized
(1%-1.5% isoflurane), cervical vertebrae was dislocated, and
brains are removed. We immersed the removed brain in a cutting
solution, an ice-cold solution used to prevent brain deterioration,
and bubbled it with oxygen continuously. The brain was cut with
a vibratome (NLS-MT, DOSAKA EM CO., LTD), scanned, and

sliced by a slicer in the target region of the brain. 300-μm slices
were made by changing the height of the cutter. The slices were
immersed in an ACSF solution, saturated with 95% O2/5% CO2,
for one hour before electrical measurements were taken.

The recording area of the MEA used was 1 × 2 mm2, and
26,000 electrodes were uniformly arranged at 15-μm intervals (on
the order of cell spacing distance). This high-density electrode
arrangement enables accurate determination of neuron location.
For the main measurement, we used on the 1020 electrodes,
selected, as receiving strong input from the neurons, in the 20-
minute pre-scan. The pre-scan refers to a procedure conducted
before the main recording, where we restrict the placement of
electrodes only to regions where activity is likely to be observed.
This procedure is implemented in the application of the device we
are using to effectively perform the main measurements. The
number of electrodes, 1020, is sufficient for placing electrodes
around the active cells in the 1 × 2 mm2 recording area within
the slice.

We performed spike sorting (Spyking Circus software) from
the time series obtained in the main measurement and converted
to time series binary data of the activity of the cell population.
Refer to the following references about the details of the
experimental procedure34,60,62,61. In these papers, we also use
stained image data to extract 128 cells included in the region
enclosed by two lines in the depth direction of the cortex,
covering all layers 1–6 of the cortex, and the surface and the
deeper side. Each cell’s time series is then fed as input to one node
of the LSTM model. This aspect is described in detail, particularly
in ref. 61.

MRI acquisition. This study measured 3D T-weighted (T2W)
images of the whole brain in each mouse. For this purpose, a 7 T,
210 mm horizontal bore, preclinical scanner (BioSpec 70/20 USR,
Bruker BioSpin MRIGmbH, Ettlingen, Germany) MR system
equipped with a 440 mT/m, 100 μs ramp time gradient system
was used for relaxation enhancement (RARE) sequence was used;
for RF excitation and signal reception, an orthogonal volume
resonator (35 mm i.d., T9988; Bruker BioSpin) was used.

We also used a protocol called TurboRARE-3D (Bruker
BioSpin), and the specific acquisition parameters are as follows. :
Repetition time (TR) 2000ms; Echo time (TE) 9ms; Effective TE
45ms; RARE factor 16; Acquisition matrix size 196 × 144 × 144;
Field of view (FOV) 19.6 × 14.4 × 14.4mm; Acquisition bandwidth
75 kHz, axial (coronal direction in scanner setting): bandwidth
2.6 ms-Gaussian π/2 pulse for fat suppression and spoiler gradient
with 1051Hz bandwidth, 2 dummy scans, averaging number 3,
acquisition time 2 h 42m, excitation pulse 2.59ms, re-convergence
pulse 1.94ms, pulse shape: π/2 pulse, bandwidth 1051Hz, fat
suppression averaging number was 3. Pulse shape was sinc3,
bandwidth was 2400Hz.

The software for the measurements was ParaVision 5.1. The
cortical surface images were extracted from the measured MRI
images using FSL. For details, see Ide et al. 2020.

Slice preparation and electrophysiological recording. In this study,
we recorded neuronal spikes from neocortical slices using the
MEA system. For this purpose, mice were first sufficiently anes-
thetized with 1%-1.5% isoflurane, then transferred it to a petri
dish (100 mm × 20mm) containing ice-cold cutting solution with
air flow containing 95% O and 5% CO. The extracted brain was
cut into two blocks and then sliced into 2–5 slices (300-μm thick)
in a diagonal angle to the cortical surface using a vibratome (Neo
Linear Slicer NLS-MT; DOSAKA EM CO., LTD).

We selected cutting speed, frequency, and swing width as
12.7 mm/min, 87-88 Hz, and 0.8-1.0 min, respectively, and
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slowed the speed down if the brain needed to be cut carefully for a
temporary period.

All slices analyzed in this study were taken oblique to the
cortical surface in any region. The angle cutting slices was
carefully chosen, and the coordinates of the sections, including
anterior-posterior coordinates and hemispheres, were recorded in
a format when the brain sections were cut, and the slices were also
reconfirmed and accurately recorded by embedding them within
the MRI space acquired during the MR measurements described
above [Ide et al., 2019].

The slices were incubated for 1 hour in a beaker filled with pre-
warmed ACSF (~34 °C), then we selected one slice per animal and
moved with a thick plastic pipette onto the MEA array and
positioned the slice with a soft brush to record properly from a
specific brain region including the cortex. The MEA array is
rectangular in shape (2.0 mm × 4.0 mm), with 26,000 electrodes
uniformly distributed and the distance between adjacent electro-
des was 15 μm (Maxwell Biosystem, MaxOne; https://www.
mxwbio.com/).

Prior to the main electrical recording, a so-called pre-scan of 30
[sec] was performed by recordings from adjacent 1020 sensors
combinationally covering the all sensors, and up to 1020 sensor
sensors that responded more strongly than 0.03 mV and more
frequently than 0.1 Hz were selected.

The main electrical recording of spontaneous neural activity
from the selected sensors was then performed for ~2.5 hours. In
our experimental setting, the firing rate did not decay in this
2.5 hours. This long recording is an important factor in achieving
high performances of connectivity estimation.

During this pre-scan and main measurements, the slices were
still perfused at 1 mL/min with ACSF that was saturated with 95%
O/5% CO while controlling the temperature of the perfusate
around 34 °C.

Brain surface scan. We recorded the brain surface in three dif-
ferent 3D scans: the whole brain immediately after extraction, the
brain block cut into two blocks, and the brain block remaining
after slicing into slices. For each object, the brain itself is mea-
sured at least twice, flipping up and down as needed. In addition,
between one measurement from the same object, 16 images are
scanned by rotating the object. For its 3D scanning, a scanning
system based on 3D structural optical technology (SCAN in a
BOX; Open Technologies) was used. Before scanning, it is
extremely important to lightly wipe the brain surface with a
microfiber cloth to prevent diffuse reflections62. The scanned
images were processed using the 3D scanning and processing
software IDEA (including SCAN in a BOX).

First, the automatic alignment option of that IDEA was used to
correct small disagreements between its 16 images, and integrated
them. The merged image was obtained for the number of times it
was recorded from the same object.

Next, the merged images were superimposed and merged using
the manual alignment option. The optimization algorithm was an
iterative closest point (ICP) algorithm without nonlinear
deformation, which is often applied to rigid 3D objects63. After
scanning, all scan planes were verified to be nicely overlapped.

Third, a high-resolution meshed object was created from the
merged objects using the mesh generation option, saved in stl-
binary format, and superimposed on the mesh image of the brain
surface obtained from the individual MRI images using IDEA.

By the normalization process of FSL, the cross sections of the
superimposed brain slices are grouped together in the same
normalized brain space.

Arrangements of data formats to input into the analytical model.
The spike data can be represented as a binary matrix Xti where t

and i are time and neuron indices: if neuron i is firing at time t,
then Xti = 1, and otherwise Xti = 0. We sorted the neurons so that
inhibitory neurons have earlier indices than excitatory neurons.
Within each set of neurons, neurons are sorted in the order of
layers (from 6 to 1). Each segment of spike data was split into
training and test data. After removing the first 30 minutes, two
17-minute-long segments, earlier segment (30–47 min) and later
segment (48–65 min), were cut out. The reason for excluding the
first 30 minutes is that during the observation of raw data, it was
confirmed that there are data points where the firing rate is not
stable within the initial 30 minutes of the experiment. In the same
region cases, we used the earlier segment as training data and the
later segment as test data. In contrast, in the different region
cases, one of the earlier segments from the two regions was used
as training and the other one as test data.

Analysis
How to connect different data?. In this study, we use a Recurrent
Neural Network (RNN) with long short-term memory (LSTM)
units for generating spike data. Hochreiter, Schmidhuber64. An
RNN takes time series data as input and outputs time series data
of the same length, and it iteratively processes a time-sliced
(vector) data at a time instant. Thanks to its design, the infor-
mation accumulated from the past data is to be utilized along
with the current input.

Simple RNNs have difficulty for dealing with long-range
dependence and have limited ability to learn the influence of data
from the distant past. The LSTM units are proposed to alleviate
this problem by introducing an architecture to deal with long-
term memory. An LSTM unit contains three gates: “input”,
“output” and “forgetting”. These gates determine the degree to
which information is allowed to pass through depending on the
conditions. The LSTM unit can store information more efficiently
by gradually changing the long-term memory while maintaining
the RNN structure itself.

Here, let us describe the history of LSTM. In 1997, Hochreiter
and Schmidhuber et al. proposed LSTMs with cells and input and
output gates, and in 1999 Gers et al. introduced an oblivious gate
in the LSTM structure. In 1999, Gers et al. introduced an oblivion
gate in the LSTM structure, which allows the LSTM itself to reset
its own state. In 2000, Cummins et al. added peephole
connections to allow cell-to-gate coupling; in 2014, Cho et al.
proposed a gated regression unit, and a subsequent speech
recognition using LSTM showed a 95.1% recognition accuracy.
The LSTM network has been applied to speech recognition65,
language modeling66, and many other tasks. The model is still
widely used today.

We utilize a multilayer LSTM network, which can learn even
longer-range dependence on the data than a single-layer LSTM
network can (Fig. 6). The following hyperparameters of the LSTM
network, which are different from the parameters to be trained
from data, were used in this study.

First, the number of layers in the LSTM network is five,
including the input and output layers. The number of LSTM
units, which is the dimension of data in the intermediate layers,
was 128 (same for all intermediate layers). The dimension of the
input and output vectors, which are the number of neurons, was
also 128.

The input of our LSTM network at time t is the vector Xt
=(Xti), and the output at time t is the vector of probabilities π tþ1ð Þi
that neurons i will be firing at tþ 1ð Þ (each element π tþ1ð Þi takes a
real value between 0 and 1).

The network is trained with a loss function defined in the next
section.
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After training, to generate spike data, we use the test data as
input and apply thresholding to the output πti: neuron i is
regarded to be firing at time t if πti > h, where h is a threshold
value. The whole code we used is shared at https://github.com/
ShimonoMLab/GenerativeNeurosci_ML-LSTM/.

Loss function. The binary cross entropy loss function is often used
for training a neural network for data generation.

It is formulated as

LCE ¼ �Σt;i Xtilnπti þ 1� Xti

� �
ln 1� πti
� �� � ð1Þ

where πti denotes the network’s output and Xti denotes the
training data.

In the spike data, most elements in Xti are 0 since the firing
rates are small. In such a situation, the binary cross entropy loss
often makes the network learn to output very small firing
probabilities, which hinder the appropriate generation of spike
data. To deal with such imbalances between states, a refined loss
function called focal loss has been proposed67.

The loss function has an additional parameter γ and is given as

LF ¼ �Σt;i Xti 1� πti
� �γ

lnπti þ 1� Xti

� �
πti

γln 1� πti
� �� � ð2Þ

Here, the parameter γ > 0 induces the two terms to balance since
the non-firing probabilities 1-πti are much larger than the firing
probabilities πti.

We use the value γ= 2 as suggested in the original study67.
The number of epochs for training was set to 350. We chose

this number because, although the loss value had converged in
about 150 epochs, the prediction performance of the firing rate
and the reproduction performance of synchronous firing
improved as the training further proceeded. The Adam
optimizer35 was used for training. The batch size, which is the
number of data segments used in one update of the training
process, was set to 64.

Evaluation of similarity between generated and real data. We
analyzed the probability of synchronous firing between neurons
to evaluate generated data with respect to the reproducibility of
the property that the timings of neuron firing are synchronized
between two cells with a specific delay. To formulate an

evaluation metric, suppose a situation where after neuron i fires
neuron j fires with an acceptable delay D.

If the firing of neuron i has a positive effect on the firing of
neuron j, then we expect a larger firing probability of neuron j
within some acceptable delay D than its mean firing probability
(i.e. firing rate).

Let us express the conditional probability that neuron j fires at
least once within delay D after neuron i fires as q jji; D� �

. If
neuron i and neuron j are not synchronous (i.e. they are
independent), the conditional probability is given as

q jji; D� � ¼ 1� 1� pj
� �D

¼ �q j; D
� � ð3Þ

where pj expresses the firing rate of neuron j. We used the
following indicator Z to evaluate how much the actual conditional
probability q j; j; i; D� �

is biased from the null hypothesis �q j; D
� �

:

Zðjji;DÞ ¼
C jji;D� �� Ni�qðj;DÞ
Ni�qðj;DÞ 1� �qðjDÞ

h i ð4Þ

where Ni is the number of firings of neuron i,
C jji; D� �

=Ni jji; D
� �

is the number of times that neuron j fires
at least once within delay D after neuron i fires, and the
denominator represents the standard deviation in the null
hypothesis.

We call this quantity synchronization score. We obtained a
scatter plot of the synchronization score plotted with the original
test data on the horizontal axis and the generated data on the
vertical axis (refer to Figs. 3d, 4d), and a histogram with the
rotation angle θ from 0 degrees as the main axis.

From the histogram of synchronization score we calculate the
sharpness in the first quadrant (refer to Figs. 3e, 4e), which is
calculated as the ratio of the area around the peak (width of π=4)
to the area at other angles included in the first quadrant
(Θ ¼ 0 � π=2). The sharpness in the third quadrant is also
calculated in the same way in the third quadrant (θ ¼ π � 3π=2)
(refer to Figs. 3f, 4f).

Just before detecting those peaks, we performed a linear
regression on the histogram, and only the trend of the slope of the
line was removed. The acceptable delay D was set to 1 ms. The
reason is that the sharpness for other values of D had a negative

Fig. 6 Muti-layer LSTM model. This study utilizes multilayer LSTMs (multilayer LSTMs), which are networks of LSTMs layered on top of each other to
allow for even longer-term learning than single-layer LSTMs. The input is a prediction of the probability of firing, and the output is the result of the target
prediction. Whether or not a target has fired is determined by whether or not the measurement results exceed a threshold value.
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effect on observing the relationship between the generated and
real data, blurring the diagonal components of the scatter plot
than when D= 1.

Definition of relative angles between recording regions. The angles
between regions were classified into eight groups in 45-degree
increments in the direction of rotation with the line connecting
the left and right ears as the axis. In other words, the left and right
hemispheres were taken into account and classified into 8 ´ 2 ¼
16 groups (Fig. 5a). Note that in this study, the angle between two
groups is also called the relative angle between two groups. 16
groups are named as explained in the caption of Fig. 1, with two
data belonging to each region (Refer to the supplemental
material 1).

Definition of connection strength. In this study, we superimposed
the cutout position of each slice on the Allen reference atlas
(ver.3, https://mouse.brain-map.org/static/atlas) and extracted the
brain region in the Allen atlas that each slice includes.

Now, as shown in Fig. 5b, we consider two slices and call them
slice A and slice B.

Then, focusing on brain regionsa1; a2; ¼ ; an included in slice
A (divided by the atlas) and brain regions b1; b2; ¼ ; bm included
in slice B, We obtained the connection strength Wij between ai
(i ¼ 1 � n) and bj (j ¼ 1 � m) for all pairs.

Next, calculated the ratio Rai = sai/Sai (i ¼ 1 � n) of the area
Sai of the entire brain region on the slice A cross-section to the
area sai that is in the recording region on the slice A. Similarly, Rbj

(j ¼ 1 � m) is calculated for slice B. Then, for example, WijRai
Rbj

was calculated for a connection pair of regions i and j.
Finally, we obtained the connection strength between slice A

and slice B regions by adding it between all i and j,

∑n
i¼1 ∑m

j¼1WijRaiRbj

� �
.

Statistics and reproducibility. In this study, we generate activity
using methods of deep learning. Therefore, there is no opportu-
nity to use statistical tests on that aspect. Tests are used to
measure the degree of agreement between the generated activity
and the activity of the response. Essentially, we observe the cor-
relation in the scatter plot in two dimensions between the pre-
dicted values and the true values, and those values are
consistently above 0.5 compared to an expected value of 0,
making the significance self-evident. The need to verify sig-
nificance arose in the context of verifying whether the prediction
accuracy represented by that correlation value is related to the
relative distance in the brain or the strength of structural wiring.
There, we used the Mann–Whitney U test, and for the p values,
we applied a Bonferroni correction using the repetition count of 4
in each panel as the sample size when repeatedly calculating the
correlation at each stage, to evaluate the significance of the
correlation.

Data availability
The training and prediction data pairs used for spike prediction, as well as the data
needed to reproduce the figures, are stored on the same GitHub page while maintaining
the appropriate relative path relationships. A non-commercial, academic UGent license
applies.

Code availability
The code used in this study for predicting spike data is available as a zip file named
“home_dir_runLSTM.zip” at https://github.com/ShimonoMLab. Running this code will
likely generate a learning curve figure similar to Fig. 2 in this paper. Additionally, the
code to reproduce Figs. 3–5 of this paper is also available as a zip file named
“home_dir_finalplot.zip” on the same GitHub page.
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