
ARTICLE

Adversarial and variational autoencoders improve
metagenomic binning
Pau Piera Líndez 1, Joachim Johansen 1, Svetlana Kutuzova1,2, Arnor Ingi Sigurdsson1,

Jakob Nybo Nissen 1✉ & Simon Rasmussen 1,3✉

Assembly of reads from metagenomic samples is a hard problem, often resulting in highly

fragmented genome assemblies. Metagenomic binning allows us to reconstruct genomes by

re-grouping the sequences by their organism of origin, thus representing a crucial processing

step when exploring the biological diversity of metagenomic samples. Here we present

Adversarial Autoencoders for Metagenomics Binning (AAMB), an ensemble deep learning

approach that integrates sequence co-abundances and tetranucleotide frequencies into a

common denoised space that enables precise clustering of sequences into microbial gen-

omes. When benchmarked, AAMB presented similar or better results compared with the

state-of-the-art reference-free binner VAMB, reconstructing ~7% more near-complete (NC)

genomes across simulated and real data. In addition, genomes reconstructed using AAMB

had higher completeness and greater taxonomic diversity compared with VAMB. Finally, we

implemented a pipeline Integrating VAMB and AAMB that enabled improved binning,

recovering 20% and 29% more simulated and real NC genomes, respectively, compared to

VAMB, with moderate additional runtime.

https://doi.org/10.1038/s42003-023-05452-3 OPEN

1 Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark.
2 Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. 3 The Novo Nordisk Foundation Center for Genomic
Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge 02142, USA. ✉email: jakob.nissen@cpr.ku.dk; simon.rasmussen@cpr.ku.dk

COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05452-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05452-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05452-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-05452-3&domain=pdf
http://orcid.org/0000-0002-3058-5666
http://orcid.org/0000-0002-3058-5666
http://orcid.org/0000-0002-3058-5666
http://orcid.org/0000-0002-3058-5666
http://orcid.org/0000-0002-3058-5666
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0003-2860-7982
http://orcid.org/0000-0003-2860-7982
http://orcid.org/0000-0003-2860-7982
http://orcid.org/0000-0003-2860-7982
http://orcid.org/0000-0003-2860-7982
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
mailto:jakob.nissen@cpr.ku.dk
mailto:simon.rasmussen@cpr.ku.dk
www.nature.com/commsbio
www.nature.com/commsbio


It has been estimated that there are about one trillion (1012)
species of microbes on Earth and that the large majority of
these have yet to be discovered1. Decades ago, the standard

approach to studying novel microbes was to isolate and cultivate
them in the lab2. However, microorganisms establish and rely
upon complex ecosystems that are not feasible to replicate in ex-
natural environment conditions. This so-called “cultivation bot-
tleneck” limits culturing approaches to studying microbes1. In
contrast, metagenomics enables culture-free microbial diversity
characterization by analysing the entire set of genomes present in
a given environmental sample3. Unfortunately, despite advances
in sequencing throughput and bioinformatic tooling, recon-
structing high-quality genomes from short-read sequenced
metagenomics samples remains challenging4.

In particular, it is still not feasible to assemble reads from
shotgun sequences to contigs that each cover whole original
source genomes; instead, recovered genomes are often frag-
mented into many smaller contigs5. To mitigate this limitation of
assemblers, contigs can be clustered into bins that represent their
source genomes in a process called binning.

Hundreds of thousands of Metagenome Assembled Genomes
(MAGs) which have previously been binned are publicly avail-
able, allowing detailed investigations of diverse microbial
communities6–8. Despite the fact that several binners such as
MetaBAT2, MaxBin 2.0, CONCOCT, and Canopy have been
developed, binning performances are still far from optimal9–13.
Recently we have developed a deep learning-based method, called
VAMB, that leverages variational autoencoders (VAEs) to obtain
superior performance compared to previous reference-free
binners14. VAEs are composed of an encoder that transforms
the input features into a latent distribution, and a decoder that
samples from the distribution and attempts to reconstruct the
input from the sample. VAEs are widely used due to their ability
to represent a complex feature space into a continuous latent
distribution, and their inherent sampling process makes them
suitable as generative models15.

VAMB uses a VAE to integrate input contig abundances and
tetranucleotide frequencies (TNF) to a common latent repre-
sentation that can be clustered to yield bins. The regularisation of
the latent space is done using Kullback-Leibler divergence with
respect to a prior distribution, in VAMB’s case the Gaussian unit
distribution14. However, another autoencoder framework is the
adversarial autoencoder (AAE) where the regularisation of the
latent space is achieved using another neural network, hence the
name “adversarial”16. Previous work applying AAEs to images
showed that AAE models could generate latent representations
with sharper and better-confined clusters compared to VAEs16.
We, therefore, hypothesised that the application of an AAE for
metagenomics binning could improve on clustering of near-
complete genomes from the latent space. Furthermore, the ori-
ginal AAE implementation used an additional categorical latent
space alongside the continuous one and showed that the model
learned to cluster the input by assigning each cluster to a cate-
gorical class16,17. We hoped that when applying AAEs to meta-
genomic sequences, the AAE would likewise learn to assign each
genome into a single categorical class in the categorial
latent space.

Here, we present Adversarial Autoencoders for Metagenomic
Binning (AAMB), an extension of our original VAMB program.
AAMB leverages AAEs to yield more accurate bins than VAMB’s
VAE-based approach. We apply AAMB to both synthetic and real
metagenomic benchmark datasets and show that more high-
quality genomes are recovered using AAMB compared to using
VAMB or other binners and that the extra genomes expand the
taxonomic diversity of recovered genomes. We also present a
method for automatically merging VAMB and AAMB, and show

that the resulting ensemble method AVAMB is superior to both
VAMB and AAMB while requiring nothing extra from the user
other than a moderate increase in compute power.

Results
An adversarial autoencoder for metagenomics binning.
Inspired by the original AAE implementation, the AAE in AAMB
uses both a continuous (termed z) and a categorical (termed y)
latent space (Fig. 1a). Therefore, AAMB is able to extract bins
both by clustering z like VAMB does14, and by extracting the bin
label directly from y. This resulted in two sets of bins, AAMB(z)
and AAMB(y), respectively. When we investigated the structure
of the AAMB z space when applied to the CAMI2 short-read
human “toy” datasets (see Methods), we found that distances
between contigs from the same genome tended to be smaller than
distances between contigs from different genomes for all bench-
mark datasets (Supplementary Fig. 1), a prerequisite for clustering
into genomes. AAMB’s z space was more compact than the
VAMB latent space, which we believe was due partly to AAMB’s
ability to encode information in y. When clustering z, it yielded
somewhat worse bins than VAMB, giving a total of 7% fewer NC
genomes compared to VAMB across the CAMI2 and MetaHIT
datasets (Fig. 1c). The clusters of AAMB(y) were likewise inferior
to VAMB, giving on average 39% fewer NC genomes. The relative
performance of AAMB(z) vs AAMB(y) was dataset dependent;
AAMB(z) outperformed AAMB(y) on the CAMI2 Airways,
Gastrointestinal, Oral, Skin, and Urogenital datasets, recon-
structing between 47–102% more NC genomes. On the contrary,
AAMB(y), outperformed AAMB(z), on the MetaHIT dataset, by
reconstructing 164% more NC genomes (Supplementary
Table 1). Interestingly, the MetaHIT dataset has been difficult for
all the binners we have tested, including MetaBAT2, MaxBin2.0
and Canopy. This suggested to us that the z and y spaces con-
tained encodings of different subsets of the total information in
the input data.

The continuous and categorical latent space encodes different
information. The original AAE paper showed how the y and z
space primarily encoded high-level variance (“class”) and low-
level variance (“style”), respectively. We hypothesised that AAMB
behaved similarly, i.e. AAMB(y) would cluster contigs at a higher
taxonomic rank than AAMB(z), which would imply that
AAMB(y) might conflate lower taxonomic ranks. To test this, we
measured the taxonomic distance between randomly selected
contig pairs from the same cluster in AAMB(y) and AAMB(z)
(Supplementary Fig. 2). We found that AAMB(y) conflated
higher ranks more often than AAMB(z), and AAMB(z) conflated
strains more often than AAMB(y), which did not support our
hypothesis. The hypothesis further implied that while most
AAMB(z) clusters would have high strain-level purity, multiple
AAMB(y) clusters representing different higher taxonomic ranks
could sometimes be mapped to the same AAMB(z) space, causing
some AAMB(z) clusters to be the union of otherwise pure strains
from disparate high taxonomic ranks. If that was the case, it
would imply that some contig pairs from the same AAMB(z)
cluster would be from wildly different clades, but we did not
observe this (Supplementary Fig. 3). Further when splitting
AAMB(z) clusters by their y label to decontaminate this potential
contamination, we found the resulting bins were no better
(Supplementary Table 2), contrary to our hypothesis. We thus
concluded that neither AAMB(z) nor AAMB(y) were redundant
with respect to each other, nor did z only capture intra-y variance,
but instead the two latent spaces learned complementary infor-
mation. Therefore, we decided to explore the intersection and
differences in genome reconstruction between VAMB, AAMB(z),

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3

2 COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio

www.nature.com/commsbio


and AAMB(y) (Fig. 2a). We found that NC genomes recon-
structed by AAMB(y) had a Jaccard index of 0.40 and 0.47 to the
NC genomes reconstructed by AAMB(z), and VAMB, respec-
tively (see Methods), while the Jaccard index of NC bins from
AAMB(z) versus VAMB was higher at 0.64. Hence AAMB(z)’s
genomes were more similar to VAMB’s than to AAMB(y)’s. This
was not surprising, as the continuous Gaussian latent space of
VAMB is more akin to the similarly structured z.

Combining the latent spaces AAMB(y) and AAMB(z). Because
AAMB(z) and AAMB(y) reconstructed different sets of genomes,
we developed a technique to de-replicate the genome sets
reconstructed from the two latent spaces. Briefly, we assessed bin
quality with CheckM218 to remove low-quality bins, then for each

bin pair that we deemed to be nearly identical, we removed the
lowest-scoring bin. Finally, any contigs contained in two or more
bins were assigned to the bin whose CheckM2 score would be
improved the most by the addition of these contigs (see Meth-
ods). When comparing this de-replication method to a popular
alternative MAG de-replication tool dRep19, our method pre-
served more genomes, only losing 28 NC bins in the de-
replication process across all the CAMI2 datasets, compared to 40
when using dRep (Supplementary Table 3). Simultaneously, our
approach produced no duplicated contigs, whereas 6 contigs
remain duplicated when using dRep (Supplementary Table 4).
Applying this de-replication process to the union of AAMB(z)
and AAMB(y), we obtained what we termed AAMB(z+ y), and
found that it outperformed VAMB, reconstructing 7% more NC
genomes across all CAMI2 datasets (Fig. 1c). This workflow came

Airways GI Oral Skin Urog MetaHIT
0

20

40

60

80

100

120

140

N
C

 g
en

om
es

 (
n)

VAMB
AAMB(z)
AAMB(y)
AAMB(z+y)
AVAMB

D
is

cr
. z

E
nc

od
er

E
nc

od
er

D
is

cr
. y

D
ec

od
er

(μ, )

...

C/y

Prior C for y  

...

Cat( )

S

z

S/z

(0,I)
Prior S for z  

Coab

TNFs

Coab

TNFs

C

y

VAMB

AVAMB

E

D.y Dereplication

(μ, )

...

D

D.z

AAMB(z) latents
clustering

Sample-wise
AAMB(z) bins

Sample-wise
AAMB(y) bins

(μ, )E D

VAMB latents
clustering

Sample-wise
VAMB bins

Sample-wise
AVAMB bins

AAMB

0.01 0.01 0.930.05 

0.02 0.03 0.040.91 
0 0.71 0.15... 

...
 ... 

0.5 0.11 0.170.22 

# contigs x # samples

Coabundances

0.02 0.93-0.21 

0.01 -0.41.12 ... 0 0.21 -0.3

...
 ... 

0.51 -0.2 1.370.10 

# contigs x 103

... 

... 

TNF

Sn

S...

S2

S1

Contigs

a

b c

Fig. 1 AVAMB and AAMB workflow overview, adversarial autoencoder model schematic representation, and AVAMB and AAMB performance across
the benchmark datasets. a AAMB workflow overview. Tetranucleotide frequencies and abundances across samples are extracted per contig and input to
the AAMB encoder. After training, latent representations z and y are retrieved. Then, the VAMB clustering algorithm was applied to generate clusters from
the z latent representation, and cluster labels were taken directly from y. Finally, bins from z and y are deduplicated to the final AAMB clusters. These can
then potentially be integrated with VAMB generated clusters, in that case named AVAMB. Dark arrows represent forward propagations, grey arrows
represent clustering and de-replication steps performed after training AAMB and VAMB. b Adversarial autoencoder model overview. The encoder-decoder
was optimised to reconstruct the input contig features from the regularized latent representations z and y. Regularisation is achieved by adversarial
competition between the discriminators and the encoder, enforcing the latent encodings to stay close to their prior distributions. Dark arrows represent
forward propagations. Dashed arrows represent sampling processes from the latent and priors. c Number of distinct NC genomes reconstructed from the
six benchmark datasets for VAMB (blue), AAMB(z) (light green), AAMB(y) (dark green), AAMB(z+ y) (light purple), AVAMB (dark purple). GI
Gastrointestinal, Urog Urogenital.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


at some cost of computational power, as training and clustering
time required were 1.9x and 3.4x higher when using GPU or CPU
only, respectively, compared to VAMB (Supplementary Table 5).
Because AAMB(z+ y) had the best performance, we used it as the
default AAMB workflow and will henceforth refer to it as
simply AAMB.

Combining the AAMB and VAMB framework. We found that
AAMB (i.e. AAMB(z+ y)) reconstructed a different set of NC
genomes than VAMB (Jaccard index of 0.79) (Fig. 2a, b, d,
Supplementary Fig. 4–9), and so hypothesised that we could
apply the AAMB de-replication approach to also merge VAMB
bins to form a VAMB+AAMB workflow we called AVAMB.
The integrated AVAMB model proved highly performant as it
allowed the reconstruction of 6–35% additional NC genomes
compared to using only VAMB across the benchmark datasets
(Fig. 1c, Supplementary Table 6). Furthermore, a few (2-7) NC
genomes were lost during de-replication of AAMB and VAMB
bins. We then investigated the contribution from AAMB(z),
AAMB(y), and VAMB, and found that 23-50% of the NC gen-
omes were reconstructed by all three methods across the
benchmark datasets. On the other hand, we found that up to 27%
of the NC genomes in a dataset were only identified by one

method (Fig. 2b, Supplementary Table 7). We concluded that
VAMB, AAMB(z), and AAMB(y), each reconstruct different
genomes from the benchmark datasets and that the de-replicated
union of all three methods yields better overall performance. To
check if the gains of AVAMB over VAMB were simply due to the
former being an ensemble method, we merged the bins of VAMB
and MetaBAT2 and compared this VAMB+MetaBAT2 with
VAMB+AAMB. We found that VAMB+AAMB outperformed
VAMB+MetaBAT2 on 5 of the 6 benchmark datasets, although
an ensemble of all three methods did best on 5 of 6 datasets
(Supplementary Table 8). This implies that AAMB has better
synergy with VAMB than MetaBAT2. Since AAMB and VAMB
share much of their pipelines including the computation of inputs
to the encoders and are provided by the same software package,
VAMB+AAMB is also notably faster and easier to use than
VAMB+MetaBAT2. Finally, we compared AVAMB to binners
that beyond contig TNF and abundances, also leverage single-
copy genes or contig taxonomic annotations for binning. Namely,
we benchmarked AVAMB against SemiBin20, SemiBin221, and
MetaDecoder13, and found that they reconstructed 15-36%, 15-
45% and 1%–28% more NC genomes compared to AVAMB on
the CAMI data sets respectively (Supplementary Table 9). In the
case of SemiBin and SemiBin2, performance increase came at a
higher computational cost, taking 35–57 and 14–29 times longer

Strains

Species

Genus

a b

d

VAMB
AAMB(z)
AAMB(y)

AAMB(z+y)
AVAMB

C
orynebacterium

A
ctinobacillus

A
ctinoalloteichus

Janibacter

S
treptococcus

D
einococcus

P
edobacter

P
eptoniphilus

Listeria

S
alinicoccus

A
licyclobacillus

P
revotella

C
itrobacter

K
lebsiella

D
elftia

A
cinetobacter

C
hryseobacterium

G
em

ella

M
oraxella

H
aem

ophilus

N
eisseria

P
ropionibacterium

N
akam

urella

P
seudom

onas

S
taphylococcus

B
radyrhizobium

B
acillus

S
alm

onella

A
erom

icrobium

S
phingom

onas

E
scherichia

s.e. of C
tenarytaina euc.

Finegoldia
A

grobacterium

P
asteurella

c

Airways Gi Oral Skin Urog MetaHIT
0

20

40

60

80

100

120

140

N
C

 g
en

om
es

 (
n)

AAMB(z) unique
AAMB(y) unique
VAMB unique
AAMB(z+y)
AAMB(z) + VAMB
AAMB(y) + VAMB
AAMB(z+y) + VAMB

Airways Gi Oral Skin Urog
0

20

40

60

80

100

120

140

160

N
C

 g
en

om
es

 (
n)

AVAMB + RC
SemiBin2
MetaDecoder

AAMB(z)

AAMB(y)
VAMB

AAMB(y)

VAMB

AAMB(z+y)

0.64 0.47

0.76 0.47 0.79

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.4 Jaccard correlation

Fig. 2 AAMB and VAMB reconstructed genomes analysis and integration with de-replication workflow. a Jaccard correlation between the NC genomes
from all benchmark datasets produced by AAMB(z), AAMB(y), VAMB, and AAMB(z+ y) de-replicated bins. b Contribution and the intersection of AAMB
and VAMB for NC genomes on CAMI2 and MetaHIT datasets. The aggregated height of each bar expresses the total number of NC genomes
reconstructed by VAMB and AAMB when de-replicating. Unique: NC genomes only reconstructed by the given binner; and: NC genomes reconstructed by
all the binner connected with the and operator and not by any other binner; NC: Near complete. c Number of distinct NC genomes reconstructed from the
five CAMI2 benchmark datasets for AVAMB+ RC (purple), SemiBin2 (dark grey), and MetaDecoder (light grey). GI, Gastrointestinal; Urog, Urogenital;
AVAMB+ RC, AVAMB NC genomes when the single-copy genes-based re-clustering from SemiBin2 was applied to AVAMB’s workflow. d Comparison of
strains, species, and genera recovered at NC level by VAMB (blue), AAMB(z) (light green), AAMB(y) (dark green), as well as AAMB(z+ y) (light purple),
and AVAMB (dark purple). S.e. of Ctenarytaina euc., secondary endosymbiont of Ctenarytaina eucalypti.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio

www.nature.com/commsbio


than AVAMB respectively (Supplementary Table 10), whereas
MetaDecoder running time was similar than AVAMB (Supple-
mentary Table 11). Furthermore, we found SemiBin2 quite
dependent on the single-copy genes-based re-clustering, given
that AVAMB produced 0-32% more NC genomes on the CAMI
data sets compared to SemiBin2 when single-copy genes-based
re-clustering was not applied (Supplementary Table 12). In
addition, when the single-copy genes-based re-clustering from
SemiBin2 was applied to the AVAMB workflow, AVAMB out-
performed SemiBin2 and MetaDecoder on 4/5 and 5/5 CAMI2
datasets respectively, reconstructing 21 and 68 more NC genomes
along all CAMI2 datasets, respectively (Fig. 2c, Supplementary
Table 13).

AAMB outperformed and complemented VAMB on real
metagenomic datasets. The synthetic nature of the CAMI2
datasets enabled precise benchmarking, but because synthetic
metagenomic datasets are not entirely realistic as they use idea-
lised coverage distributions and read assemblies4, we did not
know if AAMB’s accuracy translated to real datasets. Therefore,
we ran AAMB on two real datasets, a 1000 gut microbiome
dataset from Almeida et al22. and the Human Microbiome Project
2 Inflammatory Bowel Disease cohort with 1306 longitudinal
samples from 90 patients (HMP2 dataset)23, and evaluated
accuracy using CheckM2 (see Methods). We note that evaluating
AAMB using CheckM2 was not entirely unbiased, since AAMB
de-replicate similar bins using CheckM2 scores. Nonetheless, the
observed results mirrored the ones seen on the synthetic CAMI
datasets. AAMB(z) generated more NC bins than AAMB(y) with
1464 and 1963 more on the Almeida and HMP2 datasets,
respectively. AAMB performed better than either AAMB(z) and
AAMB(y) as well as better than VAMB, reconstructing 5077 and
2715 NC genomes, an increase of 9.7% and 2.3% (Fig. 3a, Sup-
plementary Table 14) compared to VAMB. Similarly, AVAMB
did even better, yielding a total of 5733 and 3569 NC bins, which
corresponded to an increase of 1103 (24%) and 914 (34%) NC
bins compared to VAMB. Similarly, we tried to use SemiBin and
SemiBin2 on the Almeida data set, however, it did not complete
within one week. From the samples that SemiBin finished (134),
we estimated that it would take 52 days to complete using a
GPU whereas SemiBin2 did not finish any sample within a week.
In comparison, AVAMB finished in less than one day (22 h)
(Supplementary Table 15). Finally, we benchmarked AVAMB
against MetaDecoder on 30 randomly selected samples from the
Almeida dataset. On those samples, AVAMB reconstructed 148
NC genomes, whereas MetaDecoder reconstructed 82 NC gen-
omes according to CheckM2. Besides the higher performance,
AVAMB was 2.8 faster than MetaDecoder. AVAMB NC genomes
performance did not increase when the single-copy genes-based
re-clustering from SemiBin2 was applied to AVAMB, producing
the same number of NC genomes.

AVAMB recovers more distinct taxa than VAMB at higher
quality. In order to investigate the nature of the additional gen-
omes recovered by AAMB compared to VAMB, we assigned
taxonomy to the NC bins recovered from the Almeida and HMP2
datasets (see Methods). We found that the additional genomes
recovered by AAMB compared to VAMB increased diversity on
the species level, but not higher taxonomic levels. As before,
AVAMB performed better than either binner alone and increased
diversity further on the species level where it recovered 13% and
28% more unique species from the Almeida and HMP2 datasets
respectively, compared to VAMB. Unlike AAMB, AVAMB also
increased diversity on the genus level, where it reconstructed 5.5%
and 14% more genera than VAMB (Fig. 3b, c, Supplementary

Tables 16, 17). To gain a better overview of which clades were
improved using AVAMB compared to VAMB, we created a
phylogenetic tree of core genes from NC bins recovered by
AVAMB (Fig. 4). In the figure, we marked bins that were
uniquely recovered by AVAMB and not VAMB, and also marked
bins that were recovered by both binners, but where the bin
recovered by AVAMB was of better quality. AVAMB improved
the quality of 2091 NC bins also reconstructed by VAMB (Sup-
plementary Table 18). We found that AVAMB recovered more
bins across the entire tree with no apparent biases towards any
particular clades, but that improved bins tended to cluster toge-
ther in smaller clades across the tree. When benchmarking
AVAMB against MetaBAT2, we found that AVAMB recon-
structed 27% and 12% more unique species and genus than
MetaBAT2 from the Almeida dataset (Supplementary Table 19).
Finally, AVAMB performance was also higher than MetaDecoder
on 30 randomly selected Almeida samples, yielding 48% and 25%
more unique species and genera respectively (Supplementary
Table 20).

Discussion
We present AAMB, an adversarial autoencoder for metagenomic
binning. AAMB is a probabilistic deep learning model that
attempts to integrate and denoise contig features into two latent
spaces. AAMB gave better results than VAMB, a state-of-the-art
reference-free binning method. We found that AAMB bins
excellently complemented VAMB bins in number, bin quality,
and taxonomic diversity. Thus, de-replicating the union of
VAMB and AAMB’s bins was found to maximise microbial
genome recovery in both synthetic and real metagenomic
datasets.

De-replicating multiple binnings of the same contig set is not
straightforward, but is simpler than dRep’s goal of de-replicating
arbitrary genomes, because the former case involves duplication
of the exact same contigs which is trivial to detect. Furthermore,
pairs of imperfectly binned MAGs may have a nucleotide identity
profile across the genome that is biologically unrealistic, with
some large sections that are nearly identical, and other large
sections with low nucleotide identity, a circumstance which dRep
might not be built for. Hence, we believe the reason our de-
replication method was more accurate than dRep was that our
method was designed for the more narrow problem of de-
replicating MAGs derived from the same set of contigs.

The increase in complexity of AAMB with respect to VAMB is
not costless. We found that the training and clustering steps of
the pipeline of AAMB were 1.8 to 2.7 times slower on average
compared to VAMB’s when running on a GPU and CPUs,
respectively. Furthermore, de-replication of AAMB and VAMB
bins per sample must be accomplished if optimal bin integration
is to be obtained, extending the total runtime by up to 4.2 min per
sample for the largest datasets evaluated.

Like VAMB, AAMB leverages a multi-sample approach14, and
so is able to use its advantages, including more co-abundance
signal from the same contigs, increased density of contig clusters
by observing homologous contigs in multiple samples, and
increased binning speed. Even while being slower than VAMB,
AVAMB ran 28 times faster on the Almeida dataset than running
MetaBAT2 on each sample and reconstructed 92% more NC bins.
Expectedly, AVAMB reconstructed fewer NC genomes on the
CAMI datasets than the semi-supervised binner SemiBin, Semi-
Bin2 and MetaDecoder. However, this was also expected as being
semi-supervised they use database information to help bin the
contigs at the cost of a substantial runtime increase. On the
contrary, AAMB and VAMB are unsupervised in their approach
to generating the genome bins. Furthermore, when a similar level

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


of supervision was used in AVAMB, AVAMB showed superior
performance on 4/5 CAMI datasets. Further improvement to
AAMB, VAMB, and AVAMB could be done by implementing
self or semi-supervised learning in the binning step itself in an
efficient manner.

AAMB, the de-replication workflow, and AVAMB have been
implemented using Python 3.9.16 and Snakemake24, and are
shipped with the newest release of VAMB. From a software user
perspective, it thus presents minimal differences with respect to
the normal VAMB workflow.

Methods
Overview of AAMB. The AAMB workflow consists of the fol-
lowing main steps (Fig. 1a). First, Tetra Nucleotide Frequencies
(TNF) and per sample co-abundances (Coab) are extracted from
the contigs and BAM files of reads mapped to contigs, and input
to the AAMB model as a concatenated vector. The AAMB model
encodes a continuous latent space (z) and a categorical latent
space (y) and reconstructs the input from these two as the output.
After training, two sets of contig clusters will be generated, one set

from continuous latent space (z clusters) and another set from the
categorical latent space (y clusters). The z space is clustered using
the clustering algorithm of VAMB14. The y clusters are implicit
from the one-hot categorical latent space and can simply be
extracted as the categorical vector. Therefore, all contigs are
present twice, both in the y and z output. The two sets were then
split by sample of origin to per sample-specific bins using the
principle of multi-split binning from the VAMB framework.
Finally, the bins were filtered based on CheckM218 scores and
then de-replicated as described below.

Datasets. We used the same synthetic benchmark datasets used in
VAMB. For hyperparameter tuning, we used the short read
Airways (n= 10), Oral (n= 10), and Urogenital (n= 9) from the
Critical Assessment of Metagenome Interpretation (CAMI2)
short-read ‘toy’ human datasets4. Furthermore, we used the
MetaHIT ‘error-free’ dataset as a training set as well25. The
remaining two CAMI2 toy human datasets, CAMI2 Gastro-
intestinal (n= 10), and CAMI2 Skin (n= 10) were used
for model validation. We further evaluated the methods on a

Almeida HMP2
0

1000

2000

3000

4000

5000

6000
N

C
 b

in
s 

(n
)

Species Genus Family
0

100

200

300

400

500

600

700

800

Ta
xo

no
m

ic
 d

iv
er

si
ty

 (
n)

0

50

100

150

200

250

Ta
xo

no
m

ic
 d

iv
er

si
ty

 (
n)

Species Genus Family

a b c
Almeida HMP2

0

500

1000

1500

2000

N
C

 b
in

s 
(n

)

Almeida

VAMB = AAMB
VAMB > AAMB

AAMB > VAMB
AAMB only

VAMB only
VAMB = AAMB

VAMB > AAMB
AAMB > VAMB

AAMB only
VAMB only

0

200

400

600

800

1000

N
C

 b
in

s 
(n

)

HMP2
d e

VAMB
AAMB(z)
AAMB(y)
AAMB(z+y)
AVAMB

Fig. 3 AAMB performance on real datasets. a Number of NC bins reconstructed from the Almeida and HMP2 datasets for VAMB (blue), AAMB(z) (light
green), AAMB(y) (dark green), AAMB(z+ y) (light purple), AVAMB (dark purple). b Number of taxa with at least one NC bin genome from VAMB, the
de-replicated set of bins generated by AAMB, and the de-replicated set of bins generated by AVAMB from the Almeida dataset. NC bins were classified
with GTDB-Tk. Taxa reconstructed by VAMB (blue), taxa reconstructed by AAMB (light purple), and taxa reconstructed by both AAMB and VAMB
(dark purple). c Same as B for the HMP2 dataset. d Almeida NC bins quality comparison between VAMB and AAMB. VAMB and AAMB bins were
considered equal if belonging to the same sample with 100% identity over at least 75% of the smallest bin. NC: Near complete. V=A: VAMB and AAMB
NC bins with exact same score. V > A: VAMB NC bins with a higher score than AAMB NC bins, A > V: AAMB NC bins with a higher score than VAMB NC
bins, V unique: VAMB NC bins not reconstructed by any AAMB NC bin at the selected identity settings, A unique: AAMB NC bins not reconstructed by
any VAMB NC bin at the selected identity settings. e Same to D for the HMP2 dataset.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3

6 COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio

www.nature.com/commsbio


1000-sample human gut microbiome dataset collected by
Almeida et al22. and processed by Nissen et al14.. Additionally, we
evaluated the methods on a dataset from the Human Microbiome
Project 2 (HMP2) Inflammatory Bowel Disease (IBD) cohort
consisting of 1338 samples from a total of 27 healthy controls, 65
Crohn’s Disease, and 38 Ulcerative Colitis patients from Lloyd-
Price et al23. and processed by Johansen et al.26.

Contig pre-processing. Contig sequences were transcribed into
numerical vectors following the same procedure described for
VAMB14 and summarised below. TNFs were obtained by
counting frequencies of all possible tetramers not containing
ambiguous bases per contig. Subsequently, TNFs were projected
into a 103-dimensional orthonormal space27. Contig co-
abundances (Coab) were calculated by counting the individual
reads mapping per contig. In case a read mapped to n contigs, it
counted 1/n for each contig. For the MetaHIT dataset25, contig
abundances were defined by the original authors whereas, for the
CAMI24, Almeida22, and HMP223 datasets the contig abundances
were determined as done by Nissen et al14. In short, contigs for
each sample were merged into a catalogue, and reads from each
sample were aligned using minimap2 (v.2.15r905)28 to the cata-
logue. For the HMP2 dataset, we used minimap2 version v.2.6.
Abundances were calculated using the program jgi_summar-
ize_bam_contig_depths from MetaBAT2 (v.2.10.2)12. When input
to VAMB and AAMB, the abundances were normalised across
samples for the same contig to sum to one in order to mimic a
probability distribution that a random mapping read will come
from each sample. TNFs were calculated using the method as
described in VAMB, i.e. projected into 103 orthonormal dimen-
sions as originally described by Kislyuk et al27. and normalised by
z-scaling each tetranucleotide across the contigs in order to
increase the relative inter-contig variance14. As done in VAMB,
each contig TNFs and Coab vector was concatenated into a vector

of a number of samples + 103, constituting the model input
vector [TNFs, Coab]T.

Adversarial autoencoder architecture. The AAE architecture
was composed of three modules: The encoder-decoder, the z
latent space discriminator, and the y latent space discriminator, as
done in the original work from Makhzani et al16. (Fig. 1b). The
encoder-decoder module learns the contig features and encodes
them into the z and y latent spaces. The discriminators for the z
and y latent spaces restrict the latent to be similar to their priors,
thus performing the regularisation of the model, which imposes a
structure on the latent space that makes it clusterable. The
encoder is a sequence of two dense layers with 547 units of dense
layers, each with LeakyReLU activation function29 and batch
normalization30. The encoder is connected to the dense layers μ,
σ each with 283 units parameterizing z, and to the y layer with
700 units. Softmax31 activation is applied on the y latent layer to
mimic a probability distribution. The decoder reconstructs the
contig features using a sample of the Gaussian distribution z ~
N(μ, σ), and the y vector. Its architecture is identical to the
encoder. Considering that Coab was normalised across samples to
sum to one, softmax was applied to the Coab output units. The
two discriminators of the z and y space, Dz and Dy, are both
networks with the same architecture as the decoder model, except
without batch normalisation, where the final output layer is one
single node. Each discriminator is trained to discriminate between
samples taken from the latent spaces (z, y) and the priors. The
prior for the Dz is the unit Gaussian distribution N(μ= 0, σ= I).
For Dy, the prior is the RelaxedOneHotCategorical32 distribution
Cat(τ), with the temperature τ = 0.15. The discriminators were
optimised for a binary classification task, therefore the softmax
activation function was used for the output node in order to
interpret the output as a probability. All three modules are
optimised with Adam32, and are implemented using PyTorch
(v.1.7.1)32, with CUDA (v.8.0.61) being used when a GPU is
available. For the results in this paper, we used an NVIDIA Tesla
V100 GPU, and an Intel Xeon Gold 6230 CPU.

Loss functions. The two discriminators were trained to minimise
the difference between their binary prediction and the ground
truth using binary cross entropy (BCE) on a pair of samples from
the prior and the latent space, and hence use the loss:

LDz ¼ 1=2BCE Dz zð Þ; 0� �þ 1=2BCE Dz S�N 0; Ið Þð Þ; 1� � ð1Þ

LDy ¼ 1=2BCEðDyðyÞ; 0Þ þ 1=2BCEðDyðC � CðτÞÞ; 1Þ ð2Þ
Where LDz and LDy is loss of the discriminators Dz and Dy,

respectively, and S � Nð0; IÞ and C � CatðτÞ are samples from
the priors, namely the standard normal distribution and the
Gumbel-softmax distribution33 with temperature parameter τ.

The encoder/decoder pair’s loss function is the sum of two
terms: Reconstruction loss Lrec and regularisation loss Lreg. Lrec
encourages the networks to faithfully encode the input data’s
information and was implemented as done in VAMB14. In short,
the cross entropy (CE) loss was used for reconstructions of the
abundances of the contigs (Ain vs Aout) and mean squared error
(MSE) for the reconstruction of the TNFs (Tin vs. Tout). These
two terms are weighted with hyperparameters wcoab and wTNF.

Lrec ¼ wcoabCE Ain;Aout

� �þ wTNFMSE Tin;Tout

� � ð3Þ
Lreg encourages the latent space to be similar to their priors and

is the sum of two terms, which measure the ability of the
discriminator to correctly identify the samples from the latent
spaces:

LRz ¼ BCEðDzðzÞ; 1Þ ð4Þ

Tree scale: 1

Quality of VAMB > Quality of AAMB
Quality of VAMB < Quality of AAMB

VAMB total NC bins

AAMB unique NC bins

Fig. 4 Maximum-likelihood phylogenetic tree of the NC bins
reconstructed by VAMB and AAMB from the Almeida dataset. GTDB-tk
was used to generate the multiple sequence alignment, IQ-tree to produce
the tree, and iTOL to visualise the tree. Red stripe: bins reconstructed by
VAMB with a higher score than AAMB, golden stripe: reconstructed by
AAMB with a higher score than AAMB, blue range: bins reconstructed by
VAMB, green range: bins reconstructed only by AAMB and not by VAMB.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


LRy ¼ BCEðDyðyÞ; 1Þ ð5Þ

Lreg is then calculated as the sum of LRz and LRy, weighted by
the slr hyperparameter:

Lreg ¼ 1� slrð ÞLRz þ slr LRy ð6Þ

Lreg ¼ 1� slrð Þ � LDz þ slr � �LDy ð7Þ
The final model loss L is computed by weighing Lrec and Lreg

using the hyperpameter sl:

L ¼ 1� slð ÞLrec þ sl Lreg ð8Þ

Benchmarking. For the CAMI2 dataset, strains, species, and
genus were defined exactly by the original authors4. For the
MetaHIT dataset, strain definition was defined as the genomes
used to generate the dataset, while species and genus were defined
using NCBI taxonomy of these strains34. Calculation of AAMB
bin quality within each taxonomy clade was done as in VAMB:14

At the strain level, AAMB bin precision and recall were computed
using the vamb.benchmark tools for all genomes in the dataset.
Here precision quantifies the purity of the genome in a bin, and
was defined as follows for pair (B, G) of bin B and genome G:

PrecisionB;G ¼ bp of G covered by B contigs
bp of any genome covered by B contigs

ð9Þ

Similarly, recall quantify genome retrieval and was defined for
bin B and genome G as follows:

RecallB;G ¼ bp of G covered by B contigs
Total bp in G

ð10Þ

For a higher taxonomic clade L (e.g. species or genus), RecallB,L
and RecallB,L was defined by

RecallB;L ¼ max
G2L

RecallB;G ð11Þ

precisionB;L ¼ ∑
G2 L

precisionB;G ð12Þ
Binner performance is then given as the number of genomes

reconstructed at some recall/precision threshold (typically 0.9/0.95)
in any bin. SemiBin20 v0.7.0 was run using the multi_easy_bin
mode. SemiBin221 v1.5.1 was run using the multi_easy_bin with the
--self-supervised flag. In the run time comparison, we used 20 CPU, 1
GPU, 20 GB of RAM, for VAMB, AAMB, and AVAMB, and 1
GPU, 20 CPU, 150 GB of RAM for SemiBin and SemiBin2.
SemiBin2 without re-clustering was run using the multi_easy_bin
with the --self-supervised and --write-pre-reclustering-bins flags.
MetaDecoder13 v1.0.17 was run using the coverage, seed and cluster
commands, and we used 20 CPU, and 60 GB of RAM.

Hyperparameter searches. We did two random searches to select
the hyperparameters of the AAMB model. During the first ran-
dom search (RS1), the evaluated hyperparameters were selected to
optimise the binning performance of the normally distributed
latent space z (Supplementary Fig. 10). Because adversarial
models can be more unstable during training compared to var-
iational models, the categorical latent y was not included. We first
evaluated the reconstruction/regularisation scaling factor sl, and
number/shape of the encoder/decoder hidden units, as these are
important for stable competition between the encoder/decoder
and the discriminators. Then, we added the categorial y latent,
and optimised the related parameters slr and τ in a second ran-
dom search (RS2), as these determine the model complexity for
learning and encoding, respectively. (Supplementary Fig. 11). For
each iteration, the hyperparameters were randomly sampled

within a given range, training the model independently on each of
the training datasets: CAMI2 Airways, CAMI2 Urog, CAMI2
Oral and MetaHIT. Performance was evaluated based on the
number of reconstructed genomes with precision above 0.9 and
recall above 0.9. The final hyperparameters were sl = 0.0964, slr
= 0.5, τ= 0.1596, with encoder and decoders of two hidden
layers with 547 hidden nodes per layer, 283 nodes in the latent z
layer, and 700 nodes for the categorical y layer. However, the
categorical y layer dimension could be always adjusted depending
upon the estimated taxonomic diversity. Thus, we decided to
increment the y layer size for the Almeida and HMP2 datasets
since Nissen et al14. reported a higher diversity with respect to the
CAMI2 and MetaHIT datasets.

De-replicating genomes between latent spaces. Because the
latent spaces each encode every contig, the contigs are binned
multiple times, and the same bin may be output multiple times in
AAMB. Therefore, we devised a technique to de-replicate the sets
of genomes. First, we ran CheckM218 v0.1.3 to assign complete-
ness and contamination to all genomes and removed all genomes
that were not NC (i.e. completeness >0.9, contamination <0.05).
Each genome was assigned a score computed as

score ¼ completeness� 5 � contamination ð13Þ
We then identified all “near-identical” pairs of bins, where at least

75% of the smaller bin’s nucleotide content was present in the larger
bin. For each of these pairs, we removed the bin with the lowest
score. For each contig still shared by multiple bins, we created a bin
without that contig and scored it with CheckM2. The contig was
then assigned the bin to which its removal would result in the largest
score drop. (Supplementary Fig. 12). To compare this technique
against dRep19, we ran dRep v3.0.0 on each sample independently
using default parameters. We decided to score the bins with
CheckM2 instead of CheckM35 v1.2.2 since we found that overall,
CheckM2 better estimated the CAMI datasets contamination and
completeness with respect the real metrics (Supplementary Fig. 13).
We acknowledge that using CheckM2 both during the de-replication
process and the binning evaluation might introduce some biases.
However, such biases mainly apply to the bins’ selection process
from AAMB(z), AAMB(y), and VAMB, rather than to the bin
generation process. In addition, according to the lower performance
of CheckM compared to CheckM2 on bins generated from CAMI2
(Supplementary Fig. 13), we consider using CheckM for binning
evaluation not optimal (Supplementary Table 21).

AAMB and VAMB complementarity tree. NC bins from
AVAMB were de-replicated and scored (see De-replicating gen-
omes between latent spaces sub-section). If a pair of bins, one
from VAMB and the other from AAMB was identified as near-
identical, then we consider the retained of the two bins to be
recovered from both AAMB and VAMB. From the de-replicated
AVAMB bins, we ran GTDB-tk36 v.2.1.0 on the bins both to
assign taxonomies to each bin, and to obtain a multiple sequence
alignment, from which we inferred a phylogenetic tree under the
LG amino acid substitution model using IQ-TREE37 v1.6.8. We
annotated and visualised the tree with iTOL38.

Single-copy genes-based re-clustering. Single-copy genes infor-
mation can be used to postprocess AAMB and VAMB bins. After
running AAMB(z) and VAMB, latents of bins with a mean number
of single-copy genes greater than one are re-clustered using the
weighted k-means clustering algorithm from SemiBin221. Re-clustered
bins replace the corresponding original AAMB and VAMB bins and
are further de-replicated with the de-replication workflow (see De-
replicating genomes between latent spaces sub-section).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3

8 COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio

www.nature.com/commsbio


Statistics and reproducibility. We found the de-replication
pipeline to be completely reproducibly regarding the number of
NC bins, composition, and quality scores, whereas we observed
some variation on the bins’ ids defined after processing AAMB
and VAMB latent spaces.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Acknowledgements
We would like to acknowledge Nicolas Rascovan for his insights on the de-replication
workflow interface. P.P., J.J., J.N.N., A.I.S. and S.R. were supported by the Novo
Nordisk Foundation grant NNF14CC0001. Furthermore, P.P., J.N.N., and S.R. were
supported by the Novo Nordisk Foundation grant NNF20OC0062223. In addition, S.R.
and S.K. were supported by the Novo Nordisk Foundation grant NNF19SA0059348.
Finally, this work was also supported by the Novo Nordisk Foundation grant
NNF21SA0072102.

Author contributions
S.R. conceived the study and guided the analysis. P.P. developed AAMB and AVAMB
and wrote the software and performed the analysis. Additionally, J.N.N. also performed
analyses and wrote the software. J.J. and A.I.S. provided guidance and input for the
analysis. S.K. contributed to the analysis of re-clustering. P.P., J.N.N., and S.R. wrote the
manuscript with contributions from all co-authors. All authors read and approved the
final version of the manuscript.

Competing interests
The authors declare no competing interests.

Data availability
The sequence data used in this study are publicly available from the respective studies or
ENA. The semisynthetic MetaHIT dataset was downloaded from https://portal.nersc.gov/
dna/RD/Metagenome_RD/MetaBAT/Files/ as the files depth.txt.gz and assembly-
filtered.fa.gz. The simulated CAMI2 datasets were downloaded from https://data.cami-
challenge.org/participate from ‘2nd CAMI Toy Human Microbiome Project Dataset’.
The Almeida de novo assemblies were downloaded from http://ftp.ebi.ac.uk/pub/
databases/metagenomics/umgs_analyses/benchmarked_assemblies.tar.gz and the reads
were downloaded from ENA as specified in their publication. The HMP2 data was
originally obtained from the European Nucleotide Archive accession PRJNA398089 and
assembled as described in Johansen et al., 2022. Source data for the graphs in the main
figures are available as Supplementary Data 1.

Code availability
AVAMB is freely available at https://github.com/RasmussenLab/vamb/tree/master/
workflow_avamb. AVAMB can also be installed and tested from Zenodo39.

Received: 6 July 2023; Accepted: 11 October 2023;

References
1. Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev.

Microbiol. 5, 384–392 (2007).
2. Gulati, M. & Plosky, B. As the microbiome moves on toward mechanism.Mol.

Cell 78, 567 (2020).
3. Andersen, S. B. & Schluter, J. A metagenomics approach to investigate

microbiome sociobiology. Proc. Natl Acad. Sci. 118, e2100934118 (2021).
4. Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation—a

benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).
5. Lapidus, A. L. & Korobeynikov, A. I. Metagenomic data assembly – the

way of decoding unknown microorganisms. Front. Microbiol. 12, 613791
(2021).

6. Chen, C. et al. Expanded catalog of microbial genes and metagenome-assembled
genomes from the pig gut microbiome. Nat. Commun. 12, 1106 (2021).

7. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the
human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

8. Singleton, C. M. et al. Connecting structure to function with the recovery of
over 1000 high-quality metagenome-assembled genomes from activated
sludge using long-read sequencing. Nat. Commun. 12, 2009 (2021).

9. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning
algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics 32, 605–607 (2016).

10. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition.
Nat. Methods 11, 1144–1146 (2014).

11. MetaHIT Consortium et al. Identification and assembly of genomes and
genetic elements in complex metagenomic samples without using reference
genomes. Nat. Biotechnol. 32, 822–828 (2014).

12. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and
efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359
(2019).

13. Liu, C.-C. et al. MetaDecoder: a novel method for clustering metagenomic
contigs. Microbiome 10, 46 (2022).

14. Nissen, J. N. et al. Improved metagenome binning and assembly using deep
variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

15. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat] (2014).

16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. & Frey, B. Adversarial
autoencoders. arXiv 1511, 05644 [cs] (2016).

17. Ge, P., Ren, C.-X., Feng, J. & Yan, S. Dual Adversarial Auto-Encoders for
Clustering. (2020).

18. Chklovski, A. et al. CheckM2: a rapid, scalable and accurate tool for assessing
microbial genome quality using machine learning. Nat Methods 20,
1203–1212 (2023).

19. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and
accurate genomic comparisons that enables improved genome recovery from
metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

20. Pan, S., Zhu, C., Zhao, X.-M. & Coelho, L. P. A deep siamese neural network
improves metagenome-assembled genomes in microbiome datasets across
different environments. Nat. Commun. 13, 2326 (2022).

21. Pan, S., Zhao, X.-M. & Coelho, L. P. SemiBin2: self-supervised contrastive
learning leads to better MAGs for short- and long-read sequencing. bioRxiv
2023.01.09.523201 (2023) https://doi.org/10.1101/2023.01.09.523201.

22. Almeida, A. et al. A new genomic blueprint of the human gut microbiota.
Nature 568, 499–504 (2019).

23. IBDMDB Investigators. Multi-omics of the gut microbial ecosystem in
inflammatory bowel diseases. Nature 569, 655–662 (2019).

24. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 34, 3600–3600 (2018).

25. Bgi & Bgi. Assemblies of 760 MetaHIT metagenomes used in a pangenomic
study. (2018) https://doi.org/10.26036/CNPHIS0002808.

26. Johansen, J. et al. Genome binning of viral entities from bulk metagenomics
data. http://biorxiv.org/lookup/doi/10.1101/2021.07.07.451412 (2021).

27. Kislyuk, A., Bhatnagar, S., Dushoff, J. & Weitz, J. S. Unsupervised statistical
clustering of environmental shotgun sequences. BMC Bioinforma. 10, 316
(2009).

28. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

29. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann
machines. https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf.

30. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv [cs.LG] (2015).

31. Bridle, J. S. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. in
Neurocomputing 227–236 (Springer Berlin Heidelberg, 1990).

32. Paszke, A. et al. PyTorch: An imperative style, high-performance deep
learning library. arXiv:1912.01703 [cs, stat] (2019).

33. Jang, E., Gu, S. & Poole, B. Categorical Reparameterization with Gumbel-
Softmax. arXiv [stat.ML] (2016).

34. MetaHIT Consortium et al. A human gut microbial gene catalogue established
by metagenomic sequencing. Nature 464, 59–65 (2010).

35. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W.
CheckM: assessing the quality of microbial genomes recovered from isolates,
single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

36. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a
toolkit to classify genomes with the Genome Taxonomy Database.
Bioinformatics btz848 (2019).

37. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast
and effective stochastic algorithm for estimating maximum-likelihood
phylogenies. Mol. Biol. Evol. 32, 268–274 (01/2015).

38. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for
phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296
(2021).

39. Lindez, P. P. RasmussenLab/avamb: avamb 4.1.1. (2023). https://doi.org/10.
5281/zenodo.8430404.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio 9

https://portal.nersc.gov/dna/RD/Metagenome_RD/MetaBAT/Files/
https://portal.nersc.gov/dna/RD/Metagenome_RD/MetaBAT/Files/
https://data.cami-challenge.org/participate
https://data.cami-challenge.org/participate
http://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses/benchmarked_assemblies.tar.gz
http://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses/benchmarked_assemblies.tar.gz
https://github.com/RasmussenLab/vamb/tree/master/workflow_avamb
https://github.com/RasmussenLab/vamb/tree/master/workflow_avamb
https://doi.org/10.1101/2023.01.09.523201
https://doi.org/10.26036/CNPHIS0002808
http://biorxiv.org/lookup/doi/10.1101/2021.07.07.451412
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
https://doi.org/10.5281/zenodo.8430404
https://doi.org/10.5281/zenodo.8430404
www.nature.com/commsbio
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-05452-3.

Correspondence and requests for materials should be addressed to Jakob Nybo Nissen or
Simon Rasmussen.

Peer review information This manuscript has been previously reviewed at another
Nature Portfolio journal. Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editors: Gene
Chong and George Inglis. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05452-3

10 COMMUNICATIONS BIOLOGY |          (2023) 6:1073 | https://doi.org/10.1038/s42003-023-05452-3 | www.nature.com/commsbio

https://doi.org/10.1038/s42003-023-05452-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Adversarial and variational autoencoders improve metagenomic binning
	Results
	An adversarial autoencoder for metagenomics binning
	The continuous and categorical latent space encodes different information
	Combining the latent spaces AAMB(y) and AAMB(z)
	Combining the AAMB and VAMB framework
	AAMB outperformed and complemented VAMB on real metagenomic datasets
	AVAMB recovers more distinct taxa than VAMB at higher quality

	Discussion
	Methods
	Overview of AAMB
	Datasets
	Contig pre-processing
	Adversarial autoencoder architecture
	Loss functions
	Benchmarking
	Hyperparameter searches
	De-replicating genomes between latent spaces
	AAMB and VAMB complementarity tree
	Single-copy genes-based re-clustering
	Statistics and reproducibility
	Reporting summary

	Acknowledgements
	Author contributions
	Competing interests
	Data availability
	References
	Code availability
	References
	References
	Additional information




