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A data-driven network decomposition of the
temporal, spatial, and spectral dynamics
underpinning visual-verbal working memory
processes
Chiara Rossi 1,2✉, Diego Vidaurre3,4, Lars Costers1,5, Fahimeh Akbarian 1,2, Mark Woolrich 4,

Guy Nagels1,6,7 & Jeroen Van Schependom 1,2✉

The brain dynamics underlying working memory (WM) unroll via transient frequency-

specific large-scale brain networks. This multidimensionality (time, space, and frequency)

challenges traditional analyses. Through an unsupervised technique, the time delay

embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of

magnetoencephalographic data from 38 healthy subjects acquired during an n-back task.

Here we show that this model inferred task-specific networks with unique temporal (acti-

vation), spectral (phase-coupling connections), and spatial (power spectral density dis-

tribution) profiles. A theta frontoparietal network exerts attentional control and encodes the

stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-

band frontoparietal network with a P300-like temporal profile leads the retrieval process and

motor response. Therefore, this work provides a unified and integrated description of the

multidimensional working memory dynamics that can be interpreted within the neu-

ropsychological multi-component model of WM, improving the overall neurophysiological

and neuropsychological comprehension of WM functioning.
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Working memory (WM) is a higher-order cognitive
function that enables the temporary maintenance and
manipulation of a limited number of items1. Any

cognitive task, from language comprehension to mathematical
reasoning, relies on WM, prompting neuroimaging research and
neuropsychological understanding2–4. WM functioning is
accomplished by the unfolding of cognitive subprocesses, i.e.,
stimulus encoding, maintenance, and retrieval, which unroll via
information communication and integration. In neurophysiology,
this translates into the temporary synchronization of long-
distance oscillatory neural activities in specific frequencies,
forming network connections5,6.

These large-scale brain networks have first been uncovered by
functional magnetic resonance imaging (fMRI) studies. In parti-
cular, the distinctive fMRI WM networks are the frontoparietal
and the default mode network (DMN)7–9. Despite the great
spatial resolution, fMRI only indirectly captures slow (a few
seconds) fluctuations of neuronal activity. Instead, electro- and
magnetoencephalography (EEG and MEG) directly detect neural
activity with milliseconds (ms) temporal resolution—the time-
scale of cognitive processing steps10.

Traditional electrophysiological studies have first disregarded
the network dimension and investigated the temporal and spec-
tral activation of specific brain regions. Event-related (ER) ana-
lyses of EEG time courses have identified task-locked temporal
events such as the P300 (central-parietal regions), which has been
used as a cognitive marker of WM11–13. Then, time-frequency
analyses explored the spectral content underlying the ER waves,
hence, the brain rhythms involved in WM processing. In parti-
cular, the prefrontal theta (4–8 Hz) was found to direct stimulus
encoding, while the inhibitory occipital alpha (8–10 Hz) gates the
incoming stimuli14–16. Recent M/EEG studies have started
exploring long-distance frequency-specific or cross-frequency
neural synchronizations underpinning WM17. For example,
theta-gamma phase-phase coupling was associated with input-
template matching18,19. On the other hand, frequency-specific
(theta, alpha, etc.) phase-coupling was shown to differentiate
different WM load conditions20.

Aside from the neurophysiological description of WM, neu-
ropsychology has conceptualized WM as a dynamic multi-
component system, in which the communicating compartments
—a central executive (attention control and encoding) and two
slave storage units, the phonological loop and the visuospatial
sketchpad1,4,21—operate the different WM processes1,22. Whereas
neuropsychology provides an integrated picture of WM, neuroi-
maging research has explored the spatial, temporal, and spectral
dimensions in a rather scattered way. Neurophysiological findings
that focus only on one or two of these dimensions offer an
incomplete view of WM and findings of different studies are
difficult to merge.

The time delay embedded-hidden Markov model (TDE-
HMMs) represents a potential alternative to investigate the WM
network dynamics at 360°. This technique describes the experi-
mental data as resulting from the alternating activation of hidden

states23. One can understand the parallelism with neurophysiol-
ogy: the recorded brain activity results from the recurring acti-
vation of brain networks (states) that we cannot directly observe.
This method infers in an unsupervised manner a predefined
number of states that depict power covariations and phase-
coupling across regions throughout the data24–26. Therefore, the
HMM states constitute spectrally defined functional networks
that wax and wane over a timescale dictated by the experimental
data. In fMRI data, the HMM states resembled the canonical
resting-state networks25. In MEG data, although considering the
inherent ambiguity of source-reconstructed data, these states can
track the evolution of cognitive processes with great temporal
resolution26,27.

In our work, we apply the TDE-HMM aiming to fill the gap in
the neuroimaging literature and describe the WM dynamics
overarching the spatial (network), spectral, and temporal
dimensions. We analyzed MEG data acquired during a WM
paradigm, the visual-verbal n-back task. In one epoch of 1.4 s, we
identify data-driven task-relevant states that portray how WM
processes unfold. A theta prefrontal state performs early high-
cognitive processing, an alpha temporal-occipital state rehearses
the memory items, and a broadband frontoparietal state with an
M300 temporal profile leads the manipulation and retrieval
processes. These findings are consistent with the theoretical
accounts of WM, unveiling traits of the WM dynamics, such as
the M300 state. Altogether, our study provides a unified
description of the time, space, and frequency profiles of the fast
transient networks underpinning working memory.

Results
Participants. We included 38 healthy subjects in this study
(Table 1). The male (15 subjects) and female (23 subjects) groups
do not significantly differ in age (one-way ANOVA test, F= 4.3,
p-value= 0.05) or education (one-way ANOVA test, F= 0.05, p-
value= 0.8). We report the mean reaction times (RTs) and the
accuracy of response per paradigm condition in the Supple-
mentary Figs. S1 and S2.

Number of states, model reliability, and replicability. We
identified 6 as the optimal number of states as this setting could
pick up the expected spatio-spectral traits of the WM task and
minimize the redundant information across states28. We report
the results of the 12 states inference in the supplementary
materials section 2 (Fig. S3), to demonstrate the replicability of
the relevant states identified in the 6 states inference, and to show
the issues encountered with an increasing number of states.

To test the model reliability, we visually assessed the results of
4 different inferences (with 6 states), as suggested by ref. 29, and
concluded that the model could consistently infer states with
similar spatio-spectral traits. Additionally, we computed the
temporal characteristics (lifetime, LT, interval time, IT, and
fractional occupancy, FO) of the states over the concatenated data
to verify that these results are consistent with what was previously
reported by different HMM studies. We report this analysis in the
supplementary materials section 3 (Figs. S4 and S5). The states’
average lifetime is 73 ms, the average fractional occupancy is 18%,
and the average interval time is 500 ms. These results are
consistent with the HMM literature on resting-state and task
data26,28,29.

Temporal dimensions—ER analysis. Figure 1a shows the aver-
age activation across all paradigm conditions of the 6 HMM states
during the n-back task. From this task-evoked activation plot, we
identify the task-relevant states as those that are significantly
activated or deactivated: states 1, 2, 3, and 5 (permutation test

Table 1 Demographics of the dataset.

Number of
Subjects

Age—years
(mean ± std)

Education—years
(mean ± std)

Male 15 49.4 ± 6.9 14.9 ± 3.1
Female 23 42.7 ± 11 14.7 ± 3.3
p-value 0.05 0.8

For each group, the age and education are expressed as mean and standard deviation (std). The
p-values result from a one-way ANOVA test for age and education, considering sex as a
grouping variable, with levels ‘Male’ and ‘Female’.
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with number of permutations= 1000, p < 0.025, multiple com-
parison correction by maximum statistics). The increased or
decreased activity is observed individually for each state, and it
describes the modulation of the statewise occupancy level after
the stimulus onset compared to the baseline level. When the task-
evoked activity of a state with a strong phase-synchrony goes
below baseline, other states (with weaker phase-synchrony in the
same frequency band) are activated more frequently. Therefore,
the average estimated phase-coupling in the determined fre-
quency range at that timepoint is below average and, hence,
suppressed. The full description of all 6 states is reported in the
supplementary materials (Figs. S6–S11); the non-task-relevant
states are associated with resting-state and baseline activity29.
Figures 2 and 3 report the characteristic profiles for the task-
relevant states.

Spectral modes. Figure S12 in the supplementary materials
reports the four spectral modes in which the states’ spectral
content is factorized via non-negative matrix factorization
(NNMF): spectral mode 1 is associated with the activity in the low
frequencies (1–8 Hz), spectral mode 2 with the alpha (8–12 Hz)

band, and spectral mode 3 with the beta (12–25 Hz) band.
Spectral mode 4 includes activity within the low-gamma spec-
trum (25–45 Hz). The model we implemented, the TDE-HMM, is
biased towards low frequencies because of the use of PCA, which
discards higher frequencies23. However, intermediate, non-
discarded frequencies might be overemphasized with respect to
the lowest frequencies32. We decided to disregard this spectral
mode in our interpretation because of this consideration and our
focus on large-scale brain networks. In fact, long-distance syn-
chronizing neuronal activities have been previously associated
with lower rhythms (theta and alpha)6,30.

States description. We present each task-relevant state by means
of (1) its time course of activation (state task-evoked response or
occupancy level) for all the paradigm conditions, (2) the mean z-
score power spectral density (PSD) distribution over the brain,
and (3) the phase-coupling network over the brain.

State 1—The theta prefrontal state. State 1, depicted in Fig. 2
(panels a, b, c, and d), represents an early low-frequency frontal
network. This state is significantly activated between 150 and

Fig. 1 Methodological steps to extract the states’ temporal, spectral, and spatial profiles. a Temporal dimension. Starting from the states’ time courses—
the posterior probabilities—we epoched the time series with respect to the task information (stimulus onset) to define the trials using a [−0.2, 1.2] s
window. We ran the generalized linear model (GLM) to statistically evaluate the increased or decreased modulation of the statewise fractional occupancy
(activation) level compared to the baseline. We report the states’ average response across conditions (provided by the constant regressor). The straight
lines in the plot indicate the time points where the state of the same color is significantly activated or deactivated (permutation test, number of
permutations= 1000, p < 0.025, correction for multiple comparisons via maximum statistics). The significantly modulated task-relevant states are states 1,
2, 3, and 5. b Spectral dimension. We weighted the MEG recordings by the states’ time courses and used a multitaper to compute the spectral density of
the weighted MEG data for each subject and state separately. From this, we extracted the power spectral density (PSD) over the brain, which constitutes
the spatial map of activation of a state, and the coherence across regions which constitutes the phase-coupling network of a state. We reported the plot
of the statewise PSD averaged across regions over the broad frequency spectrum (1–40Hz)—the bold lines display the mean across subjects, and the
lighter area includes the standard deviation across subjects. The same plot is reproduced for the phase-coupling averaged over all the connections in the
broadband spectrum (1–40Hz)—the bold lines show the mean coherence across subjects, and the area represents the standard deviation.
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350 ms (peak at 200 ms) peristimulus time (PST) in all paradigm
conditions, Fig. 2a. It presents a low-frequency peak of both PSD
and coherence (Fig. 1b). The low-frequency peak of mean PSD
appears in the right and left orbitofrontal cortices (OFCs), the
medial prefrontal cortex, the right and left anterior temporal
cortices, and the posterior cingulate cortex (PCC), Fig. 2c. The
connectivity network shows strong phase-synchronization in the
low frequencies between prefrontal and anterior temporal regions
and a connection between the OFC and the PCC, Fig. 2d.

State 5—The M300 state. State 5, reported in Fig. 3, displays a
broadband and spatially complex network. The task-evoked
response presents a negative peak around 100 ms PST that is
significant only for the 2 back conditions (target and distractor),
Fig. 3a. Afterward, the activation level steadily increases, and the

state is significantly activated between 225 and 500 ms PST. The
state presents high mean phase-coupling around 25 Hz (Fig. 1b)
referred to as spectral mode 3, instead, the mean PSD does not
present any frequency-specific peak (Fig. 1b). Therefore, we refer
to this state as a broadband state. Considering the spectral con-
tent of spectral mode 3 (Fig. 3d), the phase-coupling network
displays connections between the anterior and posterior pre-
cuneus and the PCC, and the right and left OFC with the medial
PFC. In the same spectral mode, the mean PSD covers a wide area
of the frontal cortex, including the inferior and superior dorsal
PFC, the medial PFC, the left and right superior PFC, and the
right and left medial sensorimotor cortex (SMC).

State 2—The occipital state. State 2, displayed in Fig. 2 (panels e, f,
g, and h), represents an occipital alpha network. After a

Fig. 2 Temporal, spectral, and spatial description of the task-relevant states 1, 2, and 3. Panels a (state 1), e (state 2), and i (state 3) report the states’
time course (task-evoked response or occupancy level) resulting from the GLM analysis for the 6 paradigm conditions, separately. In each plot, the flat
lines show the time points in which the statewise occupancy level for the specific task condition (color-coded) is significantly different from the baseline
level (permutation test, number of permutations= 1000, p < 0.025, correction for multiple comparisons via maximum statistics). Panels b, f, and j, present
the spectral mode associated with the states 1, 2, and 3, respectively. Boxes c (state 1), g (state 2), and k (state 3) show the z-score mean power spectral
density (PSD) map, whilst boxes d (state 1), h (state 2), and l (state 3) present the phase-coupling networks (brain glass and circular graph) in which only
the phase-coupling connections surviving thresholding are plotted. Only the phase-coupling connections surviving thresholding are plotted. Figure 5
reports the description of state 3.
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non-significant peak of activation around 100 ms, the state task-
evoked response significantly decreases between 200 and 500 ms
after stimulus onset for all task conditions, Fig. 2e. The activity of
this state arises primarily in spectral mode 2, as it shows a peak of

mean PSD and coherence around 10 Hz (Fig. 1b). The mean PSD
distribution spatially focuses on the occipital lobe, and the left
and right precuneus, Fig. 2g. The phase-coupling network reveals
the synchronization in the alpha band of occipital regions with

Fig. 3 Temporal, spectral, and spatial description of the task-relevant state 5. a The plot shows the task-occupancy level of the state, resulting from the
GLM analysis; we plot all the six paradigm conditions, separately. The flat lines show the time points in which the state occupancy level for the specific task
condition (color-coded) is significantly different from the baseline level (permutation test, number of permutations= 1000, p < 0.025, correction for
multiple comparisons via maximum statistics). Panel b reports the spectral content related to spectral mode 1, panel c reports the spectral content referred
to spectral mode 2, and panel d shows the spectral content for spectral mode 3. Each panel includes the profile of the spectral mode showing which
frequency range is considered, the phase-coupling network (brain glass and circular graph) in which only the phase-coupling connections surviving
thresholding are plotted, and the z-score mean power spectral density (PSD) map. The other states are reported in Fig. 2.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05448-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1079 | https://doi.org/10.1038/s42003-023-05448-z | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


some parietal ones, such as the PCC, the angular gyri, and pos-
terior temporal regions, Fig. 2h.

State 3—The sensorimotor state. State 3, shown in Fig. 2 (panels i,
j, k, l), represents a sensorimotor network. Its spectral content
lays mostly around 25 Hz (Fig. 1b), therefore, in spectral mode 3.
It displays a significant peak of deactivation at 100 ms peristi-
mulus, Fig. 2i. The PSD map reveals high beta activity in the left
and right supramarginal and the left and right sensorimotor
cortices, Fig. 2k. The phase-coupling network shows broad con-
nections that branch further than the regions we identified in the
PSD map. We observe intra- and inter-hemispheric connections
between the left and right posterior temporal regions, the left and
right angular gyri, the left and right supramarginal, and the left
and right sensorimotor cortices, Fig. 2l.

Task-related modulation. Figure 4a shows the difference
between the states’ task-evoked response during target and dis-
tractor trials. State 1, the prefrontal theta state, presents a small
but significantly higher peak of activation at 200 ms in the 0 back
target compared to the 0 back distractor condition. State 3, the
sensorimotor state, shows a significantly decreased task-evoked
response in the target compared to distractor trials around
400 ms in the 0 and 1 back conditions, and between 400 and
700 ms in the 2 back conditions. Last, state 5, the M300 state,
presents a significantly amplified (+20 %) task-evoked response
in target than distractor trials between 300 ms and 700 ms in all
WM load conditions.

Next, we investigated the difference between the states’ task-
evoked response between WM load conditions (1–0, 2–0, and
2–1), Fig. 4b. The analysis incorporated all the target and

distractor trials for each WM load condition. The activation of
state 5 is significantly increased in the 1 back condition compared
to the 0 back condition around 300 ms, and also in the 2 back
condition compared to both 1 and 0 back conditions between 400
and 1000 ms after stimulus onset. Instead, the occupancy level of
state 2 is significantly reduced in the 2 back conditions compared
to 0 and 1 back conditions between 650 ms and 750 ms after
stimulus onset.

Discussion
Working memory (WM), a high-order cognitive function, com-
prises different subprocesses (i.e., encoding, maintenance, retrie-
val) that are executed by transiently synchronizing neural
populations, forming dynamic functional networks6,22. This work
investigates magnetoencephalographic (MEG) data acquired
during a visual-verbal n-back task and utilizes the time delay
embedded-hidden Markov model to extract, in a fully data-driven
way, transient and spectrally resolved networks. As a result, we
obtain an integrated description of the temporal, spectral, and
spatial dimensions of the waxing and waning networks under-
pinning WM processing, as summarized in Fig. 5.

The n-back task has repeatedly proved to elicit a robust neural
activity consistent within and between MEG recording
sessions31–33. The task design is such that all the WM processes
unroll in a single time window. Therefore, we cannot univocally
associate one state with a single WM process. However, we
interpret each state starting from its spatio-spectral traits and
their functions in the WM literature.

State 1 depicts the early (ca 180 ms after stimulus onset) rising
of low-frequency activity in the prefrontal, anterior temporal,
and posterior cingulate (PCC) regions. We associate the

Fig. 4 States’ task-evoked activity modulated across paradigm conditions. a Target versus distractors. The graphs report the contrast regressors to
evaluate the state activation difference between target (T) and distractor (D) trials. Each plot considers a single load condition: 0, 1, and 2. b WM load.
Panel b shows the contrast regressors evaluating the difference between all pairs of WM load conditions: 0, 1, and 2. The straight lines in each plot denote
the time points when the state’s contrast regressor (of the same color) is significantly (permutation test, number of permutations= 1000, p < 0.025,
correction for multiple comparisons via maximum statistics) modulated compared to the baseline.
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low-frequency mode with the theta (4–8 Hz) rhythm, consistently
reported in the WM literature34–36. Mainly detected in the pre-
frontal cortex and hippocampus, WM theta activity has been
related to integrating and controlling functions during higher-
order cognitive processing37–39. State 1 exhibits this prefrontal
theta activity, suggesting a role as an early high-order stimulus
processor and encoder.

Interestingly, state 1 displays theta synchronization between
the orbitofrontal cortex, OFC, and PCC. This has previously been
interpreted as a volitional top-down attentional control
mechanism40. This OFC-PCC connection is also detected in the
anterior default mode network (DMN) extracted in resting-state
data25. fMRI WM studies have extensively explored the role of
the DMN in WM, reporting this network as actively engaged
during WM encoding7,8. Furthermore, the OFC is also theta-
coupled with anterior temporal regions, identified as the main-
tenance regions for verbal stimuli41. This coupling could then
embed the attentional control of the OFC onto the temporal
cortex during WM maintenance, as previously reported by ref. 42.

Therefore, we hypothesize that state 1 extracts the mental
representation of the stimulus during encoding and exerts top-
down attentional control onto low-level stimulus processing
(PCC) and maintenance (temporal cortex). In Baddeley’s neu-
ropsychological model, these functions (among others such as
inhibition, manipulation, and shifting) are assigned to the
executive control unit1,22, in which Cowan identifies attention as
the core component3.

We observe that the task-evoked response of state 1 does not
significantly modulate with WM load. Instead, a small modulation

appears in the contrast between target and distractor trials in the 0
back (Fig. 4a). This paradigm condition resembles the oddball task,
designed to investigate attention. We hypothesize that state 1 might
be more driven by attentional requirements, which do not change
significantly between different conditions in the n-back paradigm,
rather than working memory processing demand, that, instead, we
associate with state 5 (as discussed below).

The network configuration reveals connections between
regions with different roles (for example, OFC attention and
anterior temporal maintenance) that could depict the interplay
between different processes. This reflects the overlapping unrol-
ling of WM processes during the n-back task and might represent
the dynamic communication between the executive unit and the
slave components in the neuropsychological model.

State 5 exhibits a broad spectral activity distributed in a
complex network involving frontal, temporal, and parietal
regions. Like state 1, state 5 also recruits frontal regions, in par-
ticular the dorsolateral PFC, with rising theta activity, which are
generally associated with high-order cognitive functions and
largely recruited in WM43. Scharinger et al. suggested that the
n-back task requires high executive processing demand compared
to other WM tasks12, which could explain the sustained recruit-
ment of the prefrontal cortices throughout the epoch in states 1
and 5. However, the functions carried out by the two states differ
depending on the timing of activation, the frequency-specific
connections formed between the prefrontal and other regions,
and the statewise modulation throughout the task.

The evoked response of state 5 resembles the P300 wave, a
task-locked temporal event that characterizes the n-back response

Fig. 5 Overview of the main results of this study.We report a schematic representation of the WMmulti-component model as presented by refs. 4,21, and
then we depict how this work decomposes the working memory network dynamics and provides a multidimensional description of WM during an n-back
task. The color of each unit is associated with the color of the state that plays the same role. We do not aim at creating a one-to-one correspondence
between the data-driven results and the neuropsychological model but rather present an integrated understanding of the WM dynamics. The HMM states
provide a spatial, spectral, and temporal representation of WM dynamics, improving the overall description of WM.
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and is detected in central-parietal regions (in EEG data)12,44. This
feature has been consistently associated with the retrieval process,
in which perceptual (recalling, matching, updating) and motor
(response selection) processing are carried out45. While the P300
has been extensively studied in the EEG literature12,46, its mag-
netic counterpart, the M300, has been only recently assessed in
MEG data. Via a single region event-related analysis, Costers et al.
have identified the temporal cortex and the SMC—regions also
recruited in state 5—as the source of the M300 activity47.

The task-locked occupancy level of state 5, the M300, is
modulated by WM load (Fig. 4b). The increasing task difficulty
requires increasing resources in the matching and recalling pro-
cesses that we observe resulting in an increased M300 amplitude.
Jensen et al. have reported an increased theta activity with
increasing WM load during the retention stage35, not in the early
encoding step, supporting the increased M300 amplitude and
justifying the different behavior we observe between states 1 and
5. While the M300 wave shows an increased amplitude, the P300
amplitude decreases with increasing WM load12,44,48, and this
opposite effect might be caused by the physical nature of the
signal, or the different perspective of analysis (source-recon-
structed MEG functional networks versus sensor-level single
region EEG data).

The P300 wave has been associated with a wide broadband
25–40Hz activity11,49, and the same alpha/beta activity rises in state
5, in which a frontal-temporal coupling links the executive regions
(PFC) and memory storage (temporal regions, as discussed in state
2). Quentin et al. suggested that, during WM retrieval, stimulus-
template matching would be carried out by executive prefrontal
regions rather than the maintaining temporal regions, to preserve the
memory content50–53. The same connection might also be involved
in updating the memory template. The activation of state 5 is sig-
nificantly amplified and prolonged in the target as compared to
distractor trials (Fig. 4a), and this difference might reflect the passage
from perceptual to motor processing after target recognition. In fact,
we observe that parietal regions (such as the medial SMC and the
supramarginal regions) displaying beta activity are also recruited in
state 5, and they have previously been detected in response selection
and motor planning54.

In conclusion, we theorize that the executive unit of WM could
be depicted by two states: state 1 for early stimulus encoding and
attentional control, and state 5 for manipulation and response
processes.

State 2 is characterized by an alpha-dominant occipitoparietal
network with phase synchronization between the posterior and
superior temporal and occipital regions. The state’s evoked-
response is significantly decreased between 200 and 500 ms PST
(Fig. 2e), resembling the event-related desynchronisation (ERD)
of the occipital alpha activity that several WM neuroimaging
studies detected during and following the early stimulus encoding
phase12,15,20,55. The alpha activity in the temporal and occipital
fusiform regions was observed to decrease with increasing local
letter processing and word awareness47,56. The same regions were
also reported to conduct letter processing and maintenance,
specifically in the n-back task with visual-verbal stimuli57, and
Lochy et al. observed the left ventral occipital-temporal cortex
involved in letter representations58. Therefore, the suppressed
alpha in state 2 could reflect local independent letter processing,
as traditionally reported in the WM literature. The evoked-
response of state 2 is modulated by WM load, and with increasing
WM load—increasing processing demand—state 2 is suppressed
for a longer time. The same effect is consistently observed for the
alpha occipital ERD wave, and this observation corroborates the
interpretations of state 2 as local letter processing.

In the visual-verbal n-back task, the verbal nature of the sti-
mulus (the letters) determines how the information is stored and

maintained1,59,60. As suggested in Baddeley’s neuropsychological
model, the visually acquired letter is translated into its phono-
logical representation and is stored as such in the phonological
loop1. This compartment has been linked to language processing
areas (e.g., Broca’s area and temporal cortex), which are recruited
in state 24. Therefore, in state 2, the alpha phase-coupling
between occipital and temporal regions could represent the first
visual (occipital) processing being translated in—and then stored
as—the correspondent phonological representation (temporal).

With all the attentional resources allocated to encode the stimulus,
other activities should be suppressed12. In this regard, we observe
that the fractional occupancy level of the beta sensorimotor state,
state 3, is significantly suppressed (around 100ms post-stimulus
presentation) compared to the pre-stimulus baseline. The model
inferred the sensorimotor state consistently with previous TDE-
HMM analyses24,29. The spectral profile arising in the beta band is
interpreted as the rhythms generated in the SMC61. The suppressed
beta activity in state 3 prevents the ongoing encoding of WM
representation from disruption54,62. The prolonged suppression of
this beta rhythm in target than distractor trials (see Fig. 4a) could
reflect the increased attentional and processing demand leading to
the motor response in target trials63.

This work presents a few limitations that call for improvement in
future works. The TDE-HMM assumes that all the inferred states
are activated in a mutually exclusive fashion. However, the brain
likely recruits different brain networks simultaneously. More recent
analysis designs, like DYNEMO64, could overcome this limitation.
Regarding the spectral dimension, we address two aspects. First,
gamma band has been consistently reported to play an important
role in WM maintenance. Because of methodological limitations,
we discarded this frequency range. However, future work may
investigate the occurrence and role of gamma in the WM network
dynamics. Secondly, in the introduction, we mentioned the late
developing research line on cross-frequency coupling. Future stu-
dies should investigate the cross-frequency coupling within each
state, in particular, for state 5, in which the broadband activity
might hide cross-frequency coupling. In addition to the n-back, the
WM literature presents other paradigms to address working
memory. Each task could yield slightly different dynamics, as they
recruit WM subprocesses differently38,62. To validate this experi-
mental design, future works should apply the same methodology to
investigate other working memory tasks (the Sternberg task or the
symbol-to-digit modality test); this could help identify the task-
specific from the general WM processes.

To conclude, our work explored the n-back WM dynamic in
MEG data utilizing the TDE-HMM technique to extract data-
driven dynamic functional networks29. The model inferred four
task-relevant states with unique temporal, spatial, and spectral
profiles that provide a unified and integrated description of the
multidimensional nature of the WM network dynamics. We are
able to interpret the HMM states within Baddeley’s multi-
component model of WM1. This unique exploration of WM
reveals traits such as the M300 state that represents a potential
magnetic counterpart of the cognitive EEG P300 feature and
could lead to a more in-depth understanding of cognitive pro-
cesses in MEG data.

Methods
Participants. The dataset includes 38 healthy subjects with nor-
mal to corrected vision. All participants signed an informed
consent, and the study was approved by the ethics committees of
the National MS Center—Melsbroek and the University Hospital
Brussels (Commissie Medische Ethiek UZ Brussel, B.U.N.
143201423263, 2015/11). All ethical regulations relevant to
human research participants were followed.
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The demographics of the population are reported in Table 1.
The statistical analysis of the demographics (age and education)
was conducted via a one-way ANOVA test, considering sex as the
grouping variable.

Data acquisition
Magnetoencephalographic (MEG) data. Every subject underwent
an MEG and MRI acquisition. The MEG data were acquired at
the CUB Hôpital Erasme (Brussels, Belgium) with two scanners:
the Neuromag VectorViewTM system (13 subjects), and then the
updated NeuromagTM TRIUX system (MEGIN Oy, Croton
Healthcare, Helsinki, Finland) (25 subjects). Both MEG set-ups
consist of 102 triplets of sensors, each including 2 planar-
gradiometers and 1 magnetometer. The device lays in a light-
weight magnetically shielded room (MSR, MaxshieldTM, MEGIN
Oy, Croton Healthcare, Helsinki, Finland). Prior to the MEG
recording, the shape of the subject’s scalp was recorded using an
electromagnetic tracker (Fastrak, Polhemus, Colchester, Ver-
mont): several points were traced over the whole scalp, nose, and
face, in addition to the 3 fiducial points (nasion, left and right
preauricular). During the MEG acquisition, participants sat in the
MEG scan with 3 coils on the mastoid, left, and right forehead to
track the head’s movements; additional sensors recorded the
electrocardiogram (ECG) and electrooculogram (EOG). The
MEG signal was acquired with a sampling frequency of 1000 Hz,
and a [0.1 330] Hz band-pass filter.

Magnetic resonance imaging (MRI) data. The MRI data were
collected at the Universitair Ziekenhuis Brussel (Jette, Belgium),
using a 3 T Achieva scanner (Philips, Best, Netherlands). The 3D
MR images were T1-weighted (longitudinal MRI with the subject
in Head First-Supine, HFS, position). The scan used an echo
pulse sequence gradient with Echo sequence TE 2.3 s, the
recording parameters were TR (repetition time)= 4.939 ms,
flipping angle 8, 230 × 230 mm2 field of view, 310 sagittal slices,
resulting in a 0.53 by 0.53 by 0.5 mm3 resolution. This image was
affinely coregistered to the MNI152 atlas. The structural and
functional acquisitions were collected with 5 days (median value)
in between (IQR 2–10 days). In this work, the MRI data were only
used to perform an accurate source-reconstruction of the MEG
data by co-registering the MEG data to the subject-specific MRI.

Task design. All participants performed a visual-verbal n-back
task during the MEG recording. This paradigm consists of
showing a sequence of letters, and the subject is instructed to
respond to a target letter by pressing a button with the right hand.

In the 0-back condition, the letter X is the target; during the 1 and
2-back conditions, the target is any letter that coincides with the
nth (n= 1,2) preceding one. The rest of the shown letters are
considered distractors. Figure 6 visually explains the task.

The experimental arrangement consisted of a screen 72 cm
from the MEG helmet. Letters projected on the screen fit within a
6 × 6.5 cm2 area. A photodiode detected the stimulus onset. The
reaction time was then computed as the time between the
stimulus onset detected by the photodiode and when the subject
pressed the button.

Participants did a training session before the recording to
verify whether they understood the task. Twelve blocks of 20
letters (stimuli) each were presented pseudo-randomly, four for
each paradigm condition. The total number of target trials is 25,
23, and 28, for the 0, 1, and 2-back conditions, respectively.

MEG data preprocessing
Data preprocessing. The entire analysis was developed in
MATLAB 2020b, and the data preprocessing was carried out
following the MEG analysis pipeline proposed in ref. 29. The
pipeline uses Oxford’s Software Library and builds upon SPM12
(Welcome Trust Center for Neuroimaging, University College
London) and Fieldtrip65. First, we coregistered the MEG data to
the T1 MR image of the same subject, applying the RHINO
algorithm. Here, we used the subject-specific fiducial points
acquired with the Polhemus tracker, to minimize the coregistra-
tion error. Next, we downsampled the MEG data to 250 Hz and
applied a band-pass filter [1, 45] Hz—Butterworth IIR filter of
order 5 with zero-phase forward and reverse filter, the instability
is solved by reducing the order of the filter—to discard the high
and low-frequency noise. We also included a notch filter at 50 Hz
to remove the remaining power line effect, which could represent
a source of noise for the HMM inference. We then performed
artefact rejections. First, data segments of one second with an
outlier standard deviation were discarded. Next, we applied the
AFRICA algorithm that decomposes the data into 62 independent
components (ICA) and removes those that correlate with ECG
and/or EOG (r > 0.5). In the last step, we again visually examined
the data to verify that all major artefacts were removed.

The MEG sensor data were normalized across sensor types
(magnetometers and gradiometers) via eigenvalues
decomposition66. Afterward, we applied the linearly constrained
minimum variance (LCMV) beamforming algorithm to project
the sensor data onto the source space66; the source reconstruction
was based on a single-shell forward model in MNI space with a
projection on a 5 mm dipole grid.

Parcellation. To parcel the source-reconstructed data, we used a
42 cortical regions atlas used before in refs. 67,68. The time course
for each region of interest (ROI) was extracted as the first prin-
cipal component across the voxels’ time series. As beamforming
may lead to signal leakage between regions, we orthogonalized the
parcels’ time series by multivariate symmetric leakage
correction69. This conservative approach discards zero-lag com-
ponents between neighboring regions, assuring that the following
connectivity analysis is not affected by volume conduction.

Sign-flipping. After beamforming, the sign of the dipoles is arbi-
trarily assigned, and this hinders the analysis across subjects and
across brain regions70. Therefore, we applied the sign-flipping
algorithm presented by Vidaurre et al.68.

Time delay embedded-hidden Markov model (TDE-HMM). In
this section, we explain the different aspects of the TDE-HMM
model. For the mathematical formalism and a detailed

Fig. 6 Graphic representation of the visual-verbal n-back task. Every
letter is displayed for 1 s, and the inter-trial period is 1.8 s. Every green letter
represents the template (target) to which every stimulus is matched, and
the target letters—for which subjects must press a button—are in the
green rectangle. The white letters are, instead, considered distractors.
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explanation of the different algorithms, we refer to refs. 23–25. The
application of this model follows the guideline paper29.

Hidden Markov model. The hidden Markov models (HMMs)
assume that the observed data result from the alternating activa-
tion of a discrete number of hidden states, which in this appli-
cation represent large-scale brain functional networks. The
Markovian constraint stipulates that the state activated at time t
depends only on the observed data at time t and the hidden state
at time t-1. The relationship between the hidden state and the
observed data is ciphered in the observation model, a multivariate
autoregressive (MAR), or a Gaussian distribution (such as in this
application) of the observed data. Each state is defined by a spe-
cific set of distribution coefficients (mean activation and covar-
iance matrix), computed via Bayesian inference24,28. Vidaurre
et al. have implemented a stochastic algorithm that iteratively
computes the states’ parameters over a subset of subjects68. This
approach compromises between an optimal inference and reduced
computational time and load. The states’ inference is run on a
matrix in which the MEG preprocessed recordings of all the
subjects are concatenated. Therefore, the states are inferred at the
group level, enabling a direct comparison across subjects.

The model requires to set apriori the number of states to infer.
As mentioned in Fig. 7c, we ran multiple inferences with 4, 6, 8,
and 12 states to assess the model’s behavior and the replicability
of the results.

Time delay embedded—HMM. If we considered an observation
MAR model with an autoregressive order r > 0, we would rea-
listically capture the historical temporal interactions between time
series of different brain regions. The latter is not instantaneous
but delayed because of the finite conduction speed in the com-
munication between neural populations. However, the huge
number of parameters to compute (r*ROIs*ROIs) is computa-
tionally expensive and could lead to overfitting25. Vidaurre pro-
posed to embed the conduction delay in the input matrix and
consider as an observation model a Gaussian distribution.

Figure 7b shows how the embedded matrix is built starting
from the concatenated original matrix. Similarly to ref. 25, we
considered 15 lagged versions of the original data matrix with
[−7:+ 7] lagged points, corresponding to a time window of
60 ms. These matrices are piled onto the original concatenated
matrix, assembling an embedded matrix that is then reduced by
applying principal component analysis (PCA) and extracting the
84 (2*ROIs) principal components. This reduced matrix is
computationally lighter and includes, indirectly, information on
the historical interactions between brain regions. The number of
lags and principal components is determined to make the model

more sensitive to lower frequencies (theta and alpha, 8–16 Hz)25,
which are the core rhythms of WM.

Posterior probabilities—states time courses. Once the states are
uncovered (via stochastic Bayesian inference), the following step
consists of extracting the statewise posterior probabilities—the
timepoint by timepoint probability that a certain state is activated
given the related observed data. These constitute the states’ time
courses and are computed through the forward and backward
algorithm23.

Reproducibility. To test the reproducibility of the results and the
reliability of the results (HMM states), we ran the model 4 times
(always with 6 states), as suggested by ref. 29. Additionally, we ran
the model with different numbers of states (4, 6, 8, 12). In either
case, we visually inspected the states to confirm that the states
presented the same spatio-spectral features across runs. We also
computed the temporal characteristics of the states over the
concatenated recordings, and we compared our results with the
TDE-HMM MEG literature.

Temporal dimension—statistics. The temporal behavior of the
states can be described by computing their temporal properties
(lifetime, fractional occupancy, and interval time) or via event-
related analysis of the states time course, which provides infor-
mation about the timing of the bursts and their task-related
modulations26,29. Considering task data, the information on the
sequencing of events is crucial to describe the bursts of activity
and link them to different cognitive stages unfolding throughout
the task. This last aspect represents also one of the main goals of
our study. Therefore, we include in the main manuscript only the
event-related analysis, and the temporal properties are reported in
the supplementary materials section 3, (Figs. S4 and S5).

Figure 1a reports the event-related field analysis29. The time
course of each state is epoched with respect to the stimulus onset,
taking an epoch of 1400 ms long, [−200 1200] ms. Each trial was
baseline corrected considering the pre-stimulus window [−200
−30] ms. Afterward, we ran a two-level generalized linear model
(GLM) to investigate the task-dependent changes in the statewise
activation pattern. The GLM design matrix consisted of 7
regressors: the constant regressors (average activity overall task
conditions), 0 back target, 1 back target, 2 back target, 0 back
distractor, 1 back distractor, 2 back distractor—the 6 paradigm
conditions. Additional contrast regressors evaluate the effect of
response (target vs distractor) and working memory load (0, 1,
and 2 back). The GLM first computed the contrast of parameter
estimates (COPEs) for each subject (first level), and afterward, the

Fig. 7 Methodological steps of the preprocessing pipeline and the TDE-HMM inference. In box a we list the preprocessing steps followed to prepare the
MEG data and prior to the model inference. Box b reports the main steps of the time delay embedding analysis to build the embedded matrix used as input
to the HMM model. Box c presents the main aspects of the HMM inference and the results: the statewise posterior probabilities or state time course.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05448-z

10 COMMUNICATIONS BIOLOGY |          (2023) 6:1079 | https://doi.org/10.1038/s42003-023-05448-z | www.nature.com/commsbio

www.nature.com/commsbio


mean COPEs per subject were fitted across subjects (second
level). At the group level, we tested whether the mean COPE at
each timepoint significantly differed from zero with a non-
parametric permutation test (1e3 permutations). The significance
threshold was set to 97.5% of the null distribution, and the
multiple comparison correction was carried out via maximum
statistics across time and states. For additional details on this
methodology, we refer to ref. 29.

Spectral dimension
Power spectral density and Coherence. As described in Fig. 1b, the
concatenated original matrix is weighted by the statewise time
course—the posterior probabilities. In this way, we obtain a version
of theMEG data that describes the activation of each state. Next, we
apply a non-parametric multitaper estimation of spectral density,
for each state and subject individually, in the broad frequency band
1–40 Hz24,25. We obtained the PSD, power distribution over the
brain, from which we compute the coherence, resulting in the
statewise connectivity matrix. For visualization, the PSD maps are
normalized (z-score); instead, the coherence matrix is thresholded
applying a Gaussian mixture model (GMM) to identify, across
subjects, the strongest connections characterizing the statewise
phase-coupling network25,29.

Spectral decomposition—frequency modes. This work aims to
explore the brain dynamics of working memory in a fully data-
driven way, and this also holds when inspecting the states’ spectral
content. Instead of the conventionally defined frequency rhythms
(theta, alpha, beta, etc.), we factorized the spectral content in 4
data-driven frequency modes via NNMF, following29. The fac-
torization is run across all subjects, states, nodes (42 parcels), and
connections (number of connections= 42 x (42 – 1)/2). By mul-
tiplying the PSD and coherence with each frequency mode, we
obtain the spectral quantities for each subject and state. The group
PSD and coherence are extracted by averaging across subjects.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The MEG and MRI data for this study are not publicly available due to privacy
restrictions. Researchers interested in collaborating on these data are welcome to contact
the senior authors (Prof. Jeroen Van Schependom and Prof. Guy Nagels). The source
data to reproduce the figures in this paper are included in the Supplementary Data 1–4.

Code availability
The analyses were conducted in MATLAB, utilizing the freely accessible HMM-MAR
package which can be found here: https://github.com/OHBA-analysis/HMM-MAR. This
package belongs to the OSL (OHBA Software Library) toolbox that can be consulted
here: https://ohba-analysis.github.io/osl-docs/. In particular, the analysis we implemented
was based on the work presented by Quinn et al.29. The scripts containing the full
pipeline (MEG preprocessing, HMM inference, and data analysis with GLM and spectral
decomposition), and that can be used to reproduce the analysis conducted in this work,
can be found here: https://github.com/OHBA-analysis/Quinn2018_TaskHMM. For more
details on the analysis scripts, contact the corresponding author (Chiara Rossi).
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