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Corvids optimize working memory by categorizing
continuous stimuli
Aylin Apostel 1✉, Matthew Panichello 2, Timothy J. Buschman 3 & Jonas Rose 1✉

Working memory (WM) is a crucial element of the higher cognition of primates and corvid

songbirds. Despite its importance, WM has a severely limited capacity and is vulnerable to

noise. In primates, attractor dynamics mitigate the effect of noise by discretizing continuous

information. Yet, it remains unclear whether similar dynamics are seen in avian brains. Here,

we show jackdaws (Corvus monedula) have similar behavioral biases as humans; memories

are less precise and more biased as memory demands increase. Model-based analysis reveal

discrete attractors are evenly spread across the stimulus space. Altogether, our comparative

approach suggests attractor dynamics in primates and corvids mitigate the effect of noise by

systematically drifting towards specific attractors. By demonstrating this effect in an evolu-

tionary distant species, our results strengthen attractor dynamics as general, adaptive bio-

logical principle to efficiently use WM.
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Imagine you just had your morning coffee in your favorite café.
Upon leaving you ask for your navy-blue umbrella that you
had forgotten the day before. The waiter is proficient in

remembering large orders in his day-to-day life. Yet, after taking
the order from a different customer he brings a lavender blue
umbrella that stood next to yours instead. Information held in
memory tends to deteriorate over time, which results in a loss of
precision and thus potentially explains why the waiter solely
remembered ‘blue’ instead if the exact color shading.

The limitations of working memory (WM), the ability to
maintain and manipulate information no longer present, have been
extensively studied, often in the visual domain (see ref. 1 for a
recent review on WM in primates). Commonly, studies ask ‘how
many items’ subjects remember in order to assess WM capacity2–5,
which has been shown to be strictly limited2,4. One cognitive
strategy to reduce the demands of WM is to organize sensory input
into discrete categories (i.e., remember ‘blue’ instead of royal or
midnight blue). This categorization allows generalization across
various sensory inputs that require the same behavioral response6,7,
which is essential in our detailed and sensory rich environment8,9.
However, grouping of information to reduce WM content also
introduces additional sensory biases and inevitably reduces the
precision of memory representations10,11 (e.g., leading to a con-
fusion of umbrellas differing only in their exact shade of blue).

Over time, items in WM move away from their original state,
becoming less precise the longer information is maintained12–15.
Thus, errors accumulate over a prolonged memory period, which
has been attributed to internal noise (random diffusion12,16–18).
An additional drift of memory representations towards fewer, but
relatively stable and diffusion-resistant states was proposed to
counteract the impact of noise in primates12,19. These attractor
dynamics draw memories towards a limited set of discrete
representations, which mitigates diffusion but, by discretizing
continuous information, also introduces systematic memory
biases. Models that combined diffusion and drift towards
attractors explain human and monkey behavior on a delayed
estimation paradigm with colors12. Response distributions, pre-
cision, and bias indicated discrete attractor colors that were more
precisely represented, less susceptible to noise (almost no drift),
and dependent upon the statistics of the current environment—a
biased target color distribution led to attractor states around more
common colors12. Panichello et al.12 found that both humans and
monkeys selected some hues more frequently than others, which
was evident in the clustering of their response frequency; despite
each color occurring as target equally often. This bias towards
specific colors was also found in undelayed estimation (in
humans), indicating potential origins in perception19 and a more
general categorical representation of color20,21.

Categorical perception in the domain of color vision has been
intensely studied10,22–24. Humans were shown to remember some
colors better than others19 and to form discrete color categories
that align with basic color terms, which are often comparable
across different cultures and languages25–27. Besides color,
representations of location and orientation have also been shown
to present categorical biases28,29. Thus, a categorical representa-
tion of (continuous) sensory input might reflect a general strategy
to cope with limited WM resources rather than a color specific
effect. Therefore, exploring the precision and its interplay with
capacity is an important approach to exploring the constraints of
WM19,30,31. The former has frequently been examined with
delayed estimation paradigms in which subjects must indicate a
previously presented stimulus (color hue) on a circular (color)
continuum12,19,32–37. Response precision and variability can be
determined from the angular deviation between selected and
previously presented stimulus (color hue) and investigated in
conjunction with various modifications of WM demands.

Attractor dynamics in WM have been established for primates,
yet it remains unclear if they constitute a general neurobiological
principle, or if they are exclusive to mammals (or even only
primates). To advance on this question, a distantly related species
is required that is capable of producing comparable feats of WM,
while having a differently organized brain. Previous studies
demonstrated that WM capacity and neuronal computations
were largely similar in primates and crows2,38, despite approxi-
mately 320 million years of separate evolution39. Corvids were
shown to master WM tasks in a similar fashion to
primates2,38,40–42 and can successfully be trained on complex
behavioral tasks43–46. Furthermore, as in primates, visual per-
ception is an important sensory modality in many bird
species47,48. Hence, they represent an opportunity to examine if
attractor dynamics can be generalized to a highly visual non-
mammal with different forebrain architecture. Previous work
demonstrated categorical perception in an avian species23,24, thus,
a categorical bias towards more discrete memory representations
based on attractor dynamics might be shared by diverse verte-
brate groups, from birds to primates.

To investigate the dynamics ofWM representations with distinct
memory demands in birds, we adapted a delayed estimation
paradigm previously used in primates. Overall, WM demand was
manipulated by changes in delay duration and memory load to
study the effect on performance and response accuracy. Our birds
showed a decrease in performance and response accuracy with
increasing WM demands. The responses of birds to specific target
colors revealed discrete attractor dynamics (drift towards stable,
noise resistant representations), which have been demonstrated in
primates. Altogether, our comparative approach supports attractor
dynamics as a general principle to mitigate the effect of noise on
WM representations that are shared between mammals and birds.

Results
Two jackdaws performed in this experiment, hereinafter referred
to as ‘SPA’ and ‘ABR’. The birds completed a total of 119,790
(SPA) and 76,076 trials (ABR) across 276 and 271 sessions,
respectively. On average, this corresponded to 434 ± 83.1 (SPA)
and 279 ± 56.5 (ABR) completed trials per session (mean ±
standard deviation). Overall, both birds achieved high perfor-
mance across all experimental conditions.

Birds memorized and selected target colors at high
performance levels. Two jackdaws were trained on a delayed
estimation paradigm with 64 distinct sample colors. They
obtained a graded food reward depending on their response
accuracy. Different delay durations and load conditions were
implemented to manipulate WM demands (Fig. 1a–c). Both birds
responded significantly more often to colors within the full
reward range than to colors outside of it (binomial test relative to
chance level at 11% correct, p < 0.0001). Performance to correctly
select a color from the color wheel differed significantly among
the 64 target colors (all trial types pooled, Cochran’s Q test, SPA:
X2 (63)= 7453.8, p < 0.0001, ABR: X2 (63)= 2762.3, p < 0.0001,
Fig. 1d and Fig. S1a for more details). In accordance with the
graded reward delivery, three different response accuracy levels
could be differentiated. Overall, 50.9% (SPA) and 47.3% (ABR) of
all responses lay within a range of seven colors (full reward range,
±3 colors around target color, dotted bars), 24.9% (SPA) and
22.2% (ABR) fell within a smaller range of three colors (inner
reward range, ±1 color around target color, solid bars), and in
8.4% (SPA) and 7.7% (ABR) the birds reported the exact target
color (hatched bars). The overall performance for each accuracy
level is shown separately for each target color in Fig. 1d (polar
plot, Fig. S1a for more detail). Generally, sample color affected the
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performance of both birds, who seemed to remember some colors
better than others.

Increased working memory demands reduced response accu-
racy and precision. Three different load conditions (load 1, load 2
with simultaneous and retro cue) were combined with three dif-
ferent delay durations (‘simultaneous’, SD, and LD) to create nine
distinct trial types (Fig. 1c). Both task parameters, load and delay,
and their interaction significantly affected the performance of both
birds (two-way ANOVA, factors load, delay, and interaction, results
see Table S1). However, the separate effects of both parameters on
performance revealed individual differences, which were also
apparent in the performance calculated per trial type (Fig. 2). SPA’s
performance was mostly affected by delay, followed by load and the
interaction of both factors. For ABR, most variation in performance
could be explained by load. Performance generally decreased with
the overall increase of WM demands in both birds. This increase in
WM demands followed the pattern along the diagonal of the per-
formance matrix: load 1, ‘simultaneous’→ load 2 + sim cue, SD→
load 2 + retro cue, LD (referred to as ‘diagonal’, Fig. 2). Subsequent
analysis focused on these trial types to visualize the effect of
increased WM demands on various behavioral measures.

We analyzed error distributions to investigate the effects of
load and delay on response accuracy. Both birds demonstrated
different response distributions and different proportions of
target, non-target, and random responses depending on the trial
parameters. We modeled the error distributions across the
diagonal using a mixture model that estimates the response as a

mixture of correct responses near the target color, random
(uniform) guesses, and ‘swap errors’ when the animal responds
with the color of the non-target distractor37. We found a decrease
of the concentration parameter κ reflecting an increase in
response variability for increasing memory demands. Further,
both birds showed a decrease of target responses along with an
increase in non-target and uniform responses (Table S3). Overall,
response behavior was affected by task demands (load and delay).
The general impact of increasing WM demands was visible in the
error distributions of both birds along the diagonal (Fig. 3).

We further examined two additional, non-parametric measures
of performance; the angular deviation of responses relative to the
target color (bias, cyan curve Fig. 3) and the trial-to-trial
variability in response error (inverse of the circular standard
deviation, precision, magenta curve Fig. 3)37. Both measures were
calculated individually per target color along the diagonal and
then shown as average across all colors. For an increase of WM
demands, both birds demonstrated a significant increase in mean
absolute bias (i.e., they responded to colors increasingly distant to
the target in either direction, SPA: χ2 ¼ 68:72; p<0:0001; ABR:
χ2 ¼ 32:38; p<0:0001). At the same time, the response
precision of both birds significantly decreased with
increasing WM demands (SPA: χ2 ¼ 128; p<0:0001; ABR:
χ2 ¼ 126:03; p<0:0001).

General response behavior indicated a shift from continuous to
categorical representation of color as memory demand
increased. So far, we have shown color-dependent differences in
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Fig. 1 Delayed estimation paradigm with different delay durations and load conditions to manipulate WM demands revealed color-dependent
performance differences in jackdaws. a Schematic view of the behavioral paradigm. The birds initiated a trial by pecking a white initialization stimulus. A
specific sample color was shown that had to be remembered throughout a variable memory delay and selected from a choice stimulus in the form of a color
wheel. b Full reward range included approximately 40° of the color wheel. The exact color (*corresponds to the largest gray bar) and three adjacent color
patches (±3, clockwise (CW) and counterclockwise, CCW) were differentially rewarded (the more precise the higher the reward amount, level of gray bar
symbolizes reward amount). c Overview of all nine different trial types. Each trial type represented a combination of three different delays (‘simultaneous’,
short, and long delay) with three different load conditions (load 1, load 2 with simultaneous cue, and load 2 with retro cue). d Both birds showed
performance differences depending on the target color. Performance per target color is shown for each accuracy level (target color-coded, accuracy level
indicated by bar design/line style: ±3= dotted; ±1= solid/dashed; exact= hatched/solid). Chance level in the delayed estimation paradigm was at 11%
correct (7 out of 64 colors, full reward range), 5% (3 out of 64 colors, inner reward range), or 1.6% (1 out of 64 colors, exact target color), respectively.
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also found in a non-parametric Friedman test (results see Table S2 and Fig. S2). Nonetheless, both birds showed a performance decrease with generally
increasing memory demands along the diagonal.
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performance and response accuracy. Categorical processing of
color, in general, may also result in clustering of behavioral
responses. To examine this, we calculated the overall response
frequency of each color per target color, normalized by how
frequently they were used as target colors (across all trials,
Fig. 4a). In other words, values > 1 indicate more and values < 1
less responses relative to the actual incidence. Categorical
responding was visible in the normalized peck frequency of both
birds, who reported some colors more often (values > 1, distinct
peaks) and others less often (values < 1, troughs). Figure 4a shows
clustered, significantly non-uniform response distributions for

both birds despite the uniform distribution of target colors
(Hodges-Ajne test for non-uniformity of circular data, p < 0.0001
both birds, all trials pooled). In order to understand the effect of
increased WM demands on the clustering strength, we visualized
the distribution of reported colors as a function of target colors
along the diagonal (as scatterplot following previous studies, e.g.,
refs. 35,49, Fig. 4b). A continuous, uniform distribution of
responses along the color space should result in average responses
near target values and thus be visible as a diagonal line. In con-
trast, more categorical responding would lead to a disrupted
diagonal with staircase-like pattern and emerging clusters. In
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visible in emerging clusters, disrupted diagonal, or horizontal bands representing categorical guessing (SPA). Figure replicates analysis from refs. 35,49.
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undelayed estimation with only one target color (Fig. 4b left),
response distributions display a quite continuous straight line.
Especially response distributions of SPA (top) suggest responses
closely dispersed around each target color. With increasing
memory demands, response distributions became more variable,
showing stronger deviations from the diagonal. Overall, the
proportion of random responses increased, showing responses
more frequently further away from respective target color.
Categorical responding became visible in horizontal bands indi-
cative of categorical guessing, emerging response clusters, and an
increasingly disconnected diagonal line (scatterplots for each
separate combination of load and delay, see Fig. S3).

Response behavior depended on target color. In addition, the
accuracy and precision of responses depended on the target color
(Fig. 1d polar line plot). This color dependency should also be
reflected in the characteristics of response distributions for indi-
vidual target colors with a non-uniform distribution of response
parameters further supporting a categorical representation of
colors. To investigate this, we visualized and modeled the error
distributions separately for each target color (Fig. S4 and
Table S4).

Error distributions reflected the response accuracy, which
showed a dependency on the specific target color. Responses to
some colors were more accurate and precise compared to others.
For example, response frequencies for red/orange target colors
were characterized by a large amplitude (high response frequency
for target color), negligible shift away from the target color (low
bias), low peak width (high precision), and a low uniform
component (e.g., color #7, Fig. 5). In contrast, responses to green
hues generally had a smaller amplitude, larger shift away from the
actual target color (stronger bias), broader peak width (lower
precision), and a higher proportion of random responses (e.g.,
color #17, Fig. 5). We visualized response distributions per target
color (histograms, Fig. S4) and characterized the error distribu-
tions per target color as average percentage of responses to
individual colors by calculating separate model fits (see methods).
To get an overview of the entire color range used, we compared
the model coefficients obtained from each color fit to identify
color-dependent differences in the response behavior (all model
coefficients and adj. R2 per target color see Table S4). Individual
Gaussian model fits of both birds revealed color-dependent
differences in the response frequency (ai), CW and CCW
deviations from the target color (bi), variances in peak widths
(i.e., differences in precision, ci), and differences in the proportion
of random responses (di). Overall, the non-uniform parameter
distributions revealed peaks and troughs that suggested a
categorical representation of colors, consistent with the general
response behavior described above.

Responses were not limited to the target color; they were
influenced by the target color from the previous trial and by the
simultaneously presented non-target color in load 2 trials. We
compared the response bias in each trial with the deviation
between current and previous target color and found that
responses of both birds were attracted to the previous target
color (Fig. S5a). This effect was also dependent on the absolute
difference between both target colors with deviations around 76°
(SPA) and 112° (ABR) causing the strongest serial bias effects
(SPA: ~7.2°; ABR: ~5.8°). Note, that because colors were chosen
randomly, these trial-by-trail biases cannot explain the systematic
biases we observed for certain colors. We further visualized the
general response behavior aligned to both target and nontarget
color (Fig. S5b). A small peak in the response distributions
relative to the nontarget color of both birds demonstrates an
erroneous selection of the nontarget color in a small proportion

of trials (often referred to as ‘swap errors’50). The frequency of
swap errors in load 2 trials was 16.58% (SPA) and 19.31% (ABR).

Birds categorized colors based on discrete attractors. The
general response distribution and the normalized peck frequency
illustrated categorical responding for both birds. In particular, an
increase in clustering appeared in trials with increased memory
demands (Fig. 4b). This categorical representation was further
supported by color-dependent differences in response behavior
for specific target colors (Fig. 5). To investigate the underlying
memory dynamics of color representation, also in comparison to
primates, we applied the drift-diffusion model of memory
dynamics from Panichello et al.12 on the behavioral data of our
birds. It describes how memories change over time based on two
influences: color WM representations drift towards stable
‘attractor states’, which introduce biases into memory but are less
sensitive to perturbation by random diffusion (Fig. 6a). The
model assumes that both forces are present during both encoding
and memory and their magnitude is fit independently for each
load condition (see methods). Fitting this, and competing models,
to our data allowed us to formally assess which classes of
dynamics best explained behavior and illuminated the neural
architectures that may underpin these dynamics51,52. Model
comparisons indicated that the full drift-diffusion model pro-
vided a better account of the behavior of SPA than models in
which drift does not act on memories during encoding or during
the delays (Fig. 6b). In other words, for SPA, both the encoding
and delay periods were best characterized by drift of memories
towards discrete attractor states. These results are inconsistent
with purely diffusive models of memory dynamics. For ABR,
encoding drift was critical for explaining response behavior while
including memory drift did not substantially influence model
performance, as indicated by the small difference (0.27) in like-
lihood between the full and ‘no memory drift’ model (slightly
favoring the latter). Inter-subject variability in cognitive models is
common in human studies with large N and can be addressed via
population summary statistics or hierarchical modeling53, and
future work should take such an approach with a larger cohort of
corvids to fully describe the distribution of dynamical schemes
across the population. Nevertheless, these results provide evi-
dence for discrete attractor dynamics during encoding and
memory in corvids. Figure 6c illustrates the drift curves obtained
for both birds. Discrete attractors are characterized by converging
drift and are thus represented at negative slope zero-crossings (for
example, attractor position indicated by the orange circle).
Attractor colors were identified based on the respective drift
functions and visualized within the color wheel (Fig. 6d and
Fig. S6). Attractor colors were quite consistent between birds and
evenly spaced along the color wheel. In comparison to primates,
both birds had a higher number of discrete attractors (SPA: 6,
ABR: 7, humans: 4, monkeys: 1 or 312).

Discussion
We trained two jackdaws on a delayed estimation paradigm with
colors. Both birds showed accurate responding and high perfor-
mance levels for all 64 target colors. An increase in WM demands
(i.e., longer delay or higher memory load) resulted in a decrease
of performance and response precision. The birds demonstrated
individual differences in their response behavior, being more
impaired by memory delay (SPA) or an increase in item load
(ABR). Distinct clusters in the overall response distribution
indicated a categorical representation of the color continuum.
Some colors were reported with higher and others with lower
frequency compared to their actual incidence as target color.
Subsequent modeling of behavioral data confirmed specific colors
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as stable, noise resistant representations that were evenly spread
along the color continuum and similar between birds.

We found color-dependent differences in performance already
existed during perception, consistent with previous reports in
human subjects19,32. Perceptual categorization was shown to
occur spontaneously even in the absence of specific
training7,23,24,54 and to emerge in various visual domains (color;
refs. 19,20,35,55 location, orientation56–60). However, a general
categorical perception of color is not easily distinguished from,
for instance, the color rendering characteristics of the specific
experimental setup. Birds are visual animals with accurate color
vision. The avian visual system comprises four distinct single
cone receptor types, some associated with colored oil droplets
that further shape receptor peak sensitivities47,61,62. To our
knowledge, spectral sensitivities of photoreceptors in jackdaws are
still unknown, yet a tetrachromacy was demonstrated for most
terrestrial birds63. Thus, the visible spectrum of birds stretches
into the ultraviolet range containing wavelengths starting at
300 nm, ranging up to 700 nm48,64. Calibrating an experimental
setup for avian (color) vision is technically challenging and would
require both, bird adapted hardware and additional research to
measure receptor pigments. However, to our knowledge, color
vision details in corvids are still mostly lacking. Post-hoc mea-
surements of dominant wavelengths of all rendered target colors

used in our study revealed a non-linear relationship within our
color range, although all 64 colors were equidistant in hue
(Fig. S7a and Table S5). Therefore, based on the monitor display,
some color hues could have been easier to discriminate than
others, which presents a potential systematic confound in our
study. Furthermore, despite being created with identical lumi-
nance, rendered colors also demonstrated unequal luminance
values, which might have influenced the position of attractor
colors. Yet, while some attractor colors seem to align with
brighter or darker colors, luminance differences alone cannot
explain all identified attractor colors nor minor differences
between the two birds (Fig. S6). In general, physical stimulus
features such as dominant wavelength or luminance cannot
readily be used to make claims on actual perception65,66, which
depends on the visual system (e.g., peak sensitivities of cone
photoreceptors or their distribution). Thus, a perceptual (instead
of a physical) reference metric would be necessary to evaluate
jackdaw color vision. We cannot exclude that luminance besides
color hue affected the attractor positions within the color wheel,
which might also explain why we find relatively similar attractors
in both birds. However, the memory related dynamics that were
the central interest of this study cannot be explained by lumi-
nance differences alone (i.e., increase of response bias). Thus, the
fact that we found changes in the color representation from

# 7 # 17
response 
distributions

ABRSPA
# 7

# 17

model coefficients

di interceptai amplitude bi shift ci peak width

2normalized luminance [cd/m ]

Fig. 5 Response accuracy was color-dependent for both birds. Model coefficients visualize differences in the error distributions for specific target colors.
Peak amplitude (ai), shift on the x-axis (bi), peak width (ci), and intercept (shift along y-axis, di) varied with target color in the response behavior of both
birds. Peaks in amplitude largely correspond to troughs in peak width as predicted by the attractor model. Gray boxes mark model coefficients of two
exemplary response distributions of SPA (colors #7 and #17), shown below. Responses to the orange target color #7 reveal precise, accurate responding
with minor bias and guessing. In contrast, responses to green color #17 were imprecise, more biased, and contained a pronounced uniform component.
Normalized luminance values are shown in the same sequence per rendered target color. Although created to be iso-luminant, our rendered stimuli
deviated from a consistent luminance value. Yet, differences in luminance between rendered stimuli did not match well with observed attractor colors.
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encoding to memory suggests that our findings cannot be simply
due to setup calibration and color rendering.

Instead of detailed color discrimination performance our focus
was to examine WM dynamics in delayed estimation of birds.
WM with color stimuli is often naively expected to be color inde-
pendent and studies on WM capacity rarely consider differences in
the memorability of certain color hues33. In contrast, and con-
forming with previous studies in primates, we found color-
dependent differences in memories. Just as in humans, the birds’
responses to some colors were more dispersed and less precise
compared to others19. The absence of response bias, narrow
response distributions, and low guessing components characterized
some colors as easier to remember than others. Clear peaks in the
overall response frequency for specific target colors showed that
both birds were biased in reporting certain colors more often than
they were actually presented as target (Fig. 4a). This clustered, non-
uniform distribution of responses mirrored previous findings in
monkeys12 and human subjects12,19 and aligned with the specific
attractor colors identified by the model. Although we cannot
assess the precise position of identified attractors and determine
whether they are perceptually salient due to specific color hue or
physical luminance differences, we do show that there is an
increased dependency on attractor states when WM demands are
increased.

Consistent with findings in previous studies19,55, the delayed
estimation performance of our birds decreased with increasing
demands on WM – due to longer delays and higher memory load.
We found that the decrease in performance of both birds was
mostly explained by either delay duration (SPA) or memory load
(ABR), suggesting slightly different individual strategies. For bird
ABR, performance was markedly impaired in trials with multiple
sample colors (even if the target color was presented again within
the color wheel, i.e., trial types 2 and 3, Fig. 1c). Interference
processes, like the concurrent presentation of multiple sample
colors32, or the simultaneous presentation of the target color
embedded within the cue or color wheel19, affected estimation
performance in this animal. Besides color-dependent attractor
dynamics, we found two additional interesting factors affecting
the performance of our birds: the target color of a directly pre-
ceding trial, and a given trial’s non-target color. In our study, the
responses of both birds were slightly shifted in the direction of the
previous trial’s target color (Fig. S5a). Thus, sensory information
from one trial influenced the behavioral performance on the next
trial. The confounding effect of a stimulus presented in the pre-
ceding trial has been described, for instance, in the context of
orientation56,67,68, and recently also in the color domain69,70—
denoted as serial dependency (perception) or proactive inter-
ference (memory)69,71,72. Further, in some cases, the birds
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Fig. 6 Drift-diffusion model of memory dynamics revealed discrete attractor colors that appeared similar in both birds. a Schematic of effect of drift and
diffusion on memory. Local minima in a fit energy landscape across colors (i.e., attractors - dashed line) cause memories to drift over time (black arrow),
introducing bias into reports. Noise causes memories to randomly diffuse (gray arrows). We assumed the strength of drift and diffusion differed between
perception and memory delay. Fig. slightly adapted from ref. 12, published in Nature Communications under a Creative Commons license (http://
creativecommons.org/licenses/by/4.0/). b Relative cross-validated negative log-likelihood of each model. Lower values indicate higher model likelihood.
Gray traces: performance on each test fold. Black traces: average across folds. c Drift curves of SPA (orange) and ABR (blue). Orange circle shows an
exemplary attractor of SPA identified as negative-slope zero-crossing (converging direction of drift). d Attractor colors were quite consistent between birds
and evenly spread along the color wheel. In comparison to primates, birds had a higher number of attractor states (SPA: 6, ABR: 7, in comparison to
monkeys (1 or 3), and humans (4)12).
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erroneously reported the non-target color instead, which has been
characterized as a ‘swap’ or misbinding error that is often ascri-
bed to noisy (memory) representations of the cued spatial loca-
tion (small, but visible peak in the response distribution aligned
on non-target color, Fig. S5b37,50,73,). Since non-targets are ran-
domly distributed, such incorrect responses were intermixed with
random guessing behavior (yet, a differentiation of specific error
types was beyond the scope of our study). Both effects described
above are likely confounded with attractor dynamics. However,
these additional biases neither affect nor explain the main effects
we found.

Generally, the observed decrease in delayed estimation per-
formance reflected a random diffusion of WM representations
due to increased memory demands and an increasing systematic
drift of color memory (see model comparisons, Fig. 6b). This was
reflected in the increase of the response bias for both birds
(Fig. 3). The full drift-diffusion model provided the best account
of the behavior observed in SPA, for which we found color
representations to drift towards stable ‘attractor states’ during
both the encoding and maintenance of color, which corresponds
to our findings of categorical color representations on a percep-
tual and mnemonic level (Fig. S8a). For ABR, model results
showed a strong influence of drift during encoding but no clear
dependency on mnemonic drift. Yet, model-free analysis revealed
an increase in response bias consistent with a stronger influence
of attractor states for higher memory demands in this bird as well.
Generally, the drift or bias towards attractor colors increased with
memory demands (Fig. 3 and Fig. S8b), which is consistent with
previous work in humans55 and an increase in random diffusion
due to a prolonged retention period (i.e., longer memory delay) or
competing signals of multiple memory items (i.e., higher memory
load)12,74 as found in human subjects. An increase in noise or
interference processes potentially increases uncertainty, which
favors a categorical representation of color information to
counteract or mitigate the effects of noise and to stabilize WM
content74,75. Overall, we have found similarities in delayed esti-
mation behavior between mammals (i.e., primates and humans)
and birds (i.e., jackdaws). Based on the model drift functions we
could identify six to seven discrete, evenly spaced attractor colors
for both birds (SPA: 6, ABR: 7, Fig. 6d), which were consistent
with peaks we found in the normalized response frequency per
target color (Fig. 4a). The number of attractor-states we found in
birds exceeded the numbers reported in monkeys (1 or 3) and
humans (4) in a comparable study12, most likely due to differ-
ences in the experimental design. Attractor dynamics have been
described as adaptive for the respective context and thus our
narrower defined reward range (1/3, i.e., 40° instead of 120° as
used in ref. 12) might have provoked a more thorough coverage of
the full color range. However, it is important to keep in mind that
a direct comparison of the number and location of attractor
colors in humans, nonhuman primates, and birds remains chal-
lenging due to methodological differences (i.e., psychophysical
stimulus properties). Generally, attractor states are not fixed to
specific colors. Rather, they flexibly adapt to the stimulus set
statistics. For example, if we would have selected our target colors
from a more restricted color range, say only within the blue-green
range, we would expect to find attractor colors adapted to this
new circumstance (with sufficient experience). This would be in
line with previous findings in humans12 and the view of attractor
dynamics as general principle to reduce demands on WM irre-
spective of the particular memory content. Additionally, another
interesting line of future research would be to analyze attractor
dynamics using different sensory modalities, for example, audi-
tory stimuli. Besides their excellent color vision, birds present a
valuable comparative animal model for neuroscience in general.
Investigating complex cognitive skills comparatively in avian

species allows us to evaluate if behavioral traits and proposed
models are truly dependent on specific neural architectures, such
as the mammalian six-layered cortex, or if they constitute
valid general principles of cognition76. Complex cognitive abilities
on par with primates have been reported especially for members
of the corvid songbird family. Corvids were shown to master
complex cognitive skills such as tool use77, abstract
categorization45,78, and working memory2,42. Several studies
focusing on WM found no major differences between birds and
mammals despite their long parallel evolution42,79,80. For
instance, WM capacity and underlying neuronal computations
were strikingly similar between crows and primates2,38,40. Due to
their remarkable cognitive abilities and comparable WM
dynamics, corvids are especially well suited as comparative ani-
mal model to probe recent models based on primate data. Fol-
lowing this, we found another striking similarity between corvids
and primates in the general principles that support precise
memory representations despite increased WM demands.
Applying the model of ref. 12 to our data revealed comparable
attractor dynamics in a non-mammalian species, suggesting
comparable neuronal computations. Counteracting an increase of
random noise with a tendency to categorically represent visual
information appears to be an adaptive strategy for highly cogni-
tive animal species that emerged from similar selection pressures.

Despite vastly different visual systems and brain organizations,
corvids and primates show similar attractor dynamics, which can
mitigate noise in visual working memory representations. Dis-
crete attractors seem to be evolutionary conserved, not only
across monkeys and humans, but also in corvids12. A categorical
representation of color information in general with attractor
colors as most representative examples seems to be an adaptive
behavioral strategy to balance WM precision and limited capacity.

Methods
Subjects. Two hand-raised, experimentally naïve jackdaws (Cor-
vus monedula) of undetermined sex (4 years of age) performed in
this experiment (identified as ‘SPA’ and ‘ABR’). Both were ran-
domly assigned from the colony kept in the lab (housing condi-
tions were previously described in81). They were housed in a large
indoor aviary at 20 to 22 °C room temperature in a social group
under artificial daylight conditions (including 30-minute twilight
phases, UV light, full color spectra, and high frequent illumina-
tion (5 kHz), ME International, Gallux). During the experimental
procedures, the animals were held on a controlled food protocol
with ad libitum access to water and grit (free feeding weight of
both birds was 250 and 190 g, respectively). Special bird food
pellets were used as reward during training (NutriBird F16,
Versele Laga) and a mix of seeds, dried/fresh fruits, dried insects,
mealworm larvae, and two bird foods (Beo-Weichfutter, Trocken-
Weichfutter III Braun, Claus) supplemented with Korvimin
(vitamin product, ZVT+ Reptil) was given on days without
training. We have complied with all relevant ethical regulations
for animal testing. All experimental conduct was in agreement
with the European Communities Council Directive for the care
and use of animals for experimental purposes and approved by
the local authorities (LANUV NRW).

Experimental setup. All training and testing were conducted in a
darkened operant conditioning chamber (80 × 54 × 56 cm;
height × width × depth) equipped with an acoustic pulse
touchscreen (22”, ELO 2200 L APR, Elo Touch Solutions Inc.,
CA) and an automated pellet feeder (https://www.ngl.psy.ruhr-
uni-bochum.de/ngl/shareware/pellet-feeder.html.en). The cham-
ber was insulated with acoustic foam to reduce background noise,
which was additionally masked by a ventilation fan. The birds
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were seated on a wooden perch, approximately 10.5 cm from the
screen. All experimental procedures were controlled from a
computer running custom MATLAB code using the
Psychophysics82 and Biopsychology toolboxes83.

Behavioral task. Two jackdaws were trained on a delayed esti-
mation paradigm adjusted for birds based on the paradigm of
ref. 12 (Fig. 1a). The birds had to select a previously presented
sample color from a continuous choice stimulus (‘color wheel’,
8.5 cm in diameter, consisting of 64 uniformly distributed colors,
Fig. 1b). Colors were specified in the HSV color space with
equidistant values for hue and consistent, maximum values for
saturation and value, i.e., brightness. Sample colors were ran-
domly drawn from the 64 colors and presented at two possible
spatial locations (horizontally adjacent, Fig. 1c). Sample colors
were presented as colored dots, 2.5 cm in diameter. A spectro-
radiometer (Konica Minolta Chroma Meter CS-150) was used to
measure the rendered dominant wavelength and luminance of
each sample color (Table S5).

Trial structure. The birds had to initiate each trial by pecking a
white initialization stimulus. After a short 500 ms delay, one or
two sample colors were presented for 800 ms (target and non-
target color). Following a variable delay period, the color wheel
choice stimulus was presented randomly rotated to prevent spa-
tial biases (Fig. 1a). The birds had to selectively peck the pre-
viously presented target color to obtain a food reward (target
color in load 2 trials was indicated by a gray circle). The reward
amount was dependent on the deviation between target and
reported color. A peck to the exact target color produced the full
reward amount (3 pellets), which was gradually reduced for a
response within the inner (±1 color, 2 pellets) and outer (±3
colors, 1 pellet) reward range. The full reward range contained ~
40° or seven distinct colors of the color wheel, including the three
adjacent colors both clockwise (CW) and counterclockwise
(CCW) from the target color (Fig. 1b). Incorrect or imprecise
responses deviating by more than three colors from the target
color led to a short screen flash (error signal) followed by a 10 s
time-out. A 10 s inter-trial interval was used.

Trial types. Both memory load and delay duration were
manipulated. The full paradigm consisted of nine different trial
types (Fig. 1c), representing unique combinations of three dif-
ferent load conditions and three different delay durations. Trials
with one or two sample colors were used. In load 1 trials, only one
sample color was presented as target color. In load 2 trials, a gray
circle served as cue to indicate which sample color had to be
reported. It was present for 0.2 s, either as simultaneous cue
together with both sample colors or at the end of the delay period
as retro cue. The three different delay durations used were 0.45 s
(‘simultaneous’), 1.2 s (SD), or 3.2 s (LD), kept constant for all
load conditions (i.e., whether a retro cue was presented in a given
trial or not). In trials with the shortest delay, the target color was
shown again centered inside the color wheel stimulus during the
choice period, denoted as ‘simultaneous’ delay (representing an
approximation of undelayed estimation, Fig. 1a). The order of
trial types and target positions (‘left’ vs. ’right’) were pseudor-
andomized. Both sample colors per trial (target and non-target in
load 2 trials) were completely randomly selected from the 64
distinct colors used in this study.

Data collection and analysis. Data analysis was performed using
MATLAB (MathWorks, R2020b). For each peck response, the
respective color identity was calculated instantaneously based on
the peck coordinates received from the touchscreen, the structure,

and rotation of the color wheel stimulus. The deviation between
this ‘reported color’ and the actual ‘target color’ determined the
reward amount that was given per trial. The exact peck coordi-
nates within the color wheel choice stimulus were later used to
calculate the angular deviation relative to one set reference color
(see Fig. S7b for an exemplary distribution of pecks during one
session). All completed trials, in which the birds made a response
to the color wheel (either rewarded or too imprecise and thus
punished) were used for data analysis. Behavioral performance,
response accuracy and error distributions per target color were
calculated using the ‘reported color’ ID (colors labeled with 1 to
64). The behavioral performance quantifies the ratio of correct
responses calculated as the number of correct trials divided by the
total number of trials. To distinguish different levels of response
accuracy, three different reward ranges were used (i.e., response to
the exact target color, inner, and full reward range). Analysis of
response distributions, peck frequency, response precision, bias,
and modeling (mixture model, drift-diffusion model) were based
on the angular deviation of peck response or sample colors relative
to the reference color (values in radian, in the range of -π to π).
Figures were generated with MATLAB and CorelDRAW 2018.

Statistics and reproducibility. Statistical tests were calculated in
MATLAB. In addition, the CircStat Toolbox (Hodges-Ajne
test)84, and Cochran’s Q Test85 were used for data analysis and
code from Ikuma86 was used for visualization (hatched bars,
Fig. 1d). Response bias (circular mean error) and precision
(inverse of circular standard deviation, corrected for chance) were
calculated separately for each target color using code by ref. 37

(http://bayslab.com). We calculated a binomial test to analyze if
the performance was significantly higher than chance level at 11%
correct (7 out of 64 colors, full reward range, see results). We
based this analysis on a theoretical value combining the lowest
performance and lowest trial number to utilize the most con-
servative data-driven approach. We further analyzed if the per-
formance differed significantly between target colors performing
a Cochran’s Q test85 (see results), which uses binary input data
(i.e., 0 or 1, specifying performance per trial) to calculate if dif-
ferent data groups have the same number of successes and fail-
ures. To analyze the separate effects of load and delay we used a
two-way ANOVA with factors ‘load’, ‘delay’, and their interaction
(see Table S1). We used partial ω2 as effect size measure, inter-
preted as percentage of explained variance (PEV, see Fig. 2). We
have performed additional non-parametric Friedman tests and
calculated Kendall’s W as effect size estimate for each factor (see
Supplementary Table S2 and Fig. S2). Differences in the average
absolute bias and response precision were analyzed with a
Friedman’s test (see results) and a Hodges-Ajne test84 was used to
test for non-uniformity of multimodal distributions of peck fre-
quencies (see results). The error distributions as a function of
overall memory demands were modeled using the mixture model
of ref. 37 (see Fig. 3 and Table S3). The proportion of trials in
which the nontarget color was reported instead of the actual
target color (‘swap error’) was calculated using code from ref. 50

(see results). Responses to individual target colors were char-
acterized with a Gaussian fit as close approximation (see Fig. S4
and Table S4) and the drift-diffusion model by ref. 12 was used to
investigate the dynamics of color representations in working
memory (see results, Fig. 6). We have used an alpha of 0.05 when
making any statement on significance. Statistical details are
reported within the results section or additional tables within the
supplementary material as indicated above.

Modeling of error distributions. Error distributions as a func-
tion of distinct memory demands were analyzed using the
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mixture model of ref. 37 (www.paulbays.com). For this, we used
the angular deviations of peck responses and sample colors
focusing on distinct trial types (values in radian, within the range
-π ≤ x < π). This probabilistic mixture model estimates the pro-
portion of three different components that are contained in the
overall response distribution: target responses (correct report of
cued target), non-target responses (erroneous report of un-cued
non-target), and uniform responses (random, unrelated to target
or non-target). It is based on an EM (expectation–maximization)
algorithm and returns log likelihood of the fitted model (LL) and
four output values describing the maximum likelihood estimates
of model parameters (B= [κ, pT, pN, pU], with κ representing
the concentration parameter of the von Mises distribution, and
[pT, pN, pU] indicating the estimated probability of target, non-
target, and uniform responses).

Error distributions per target color were modeled using a
Gaussian approximation to the mixture model. This approach
was pursued to obtain a detailed characterization of the response
behavior per color. For each target color and all completed trials,
the percentage of responses to each of the 64 colors within the
color wheel was calculated and averaged across sessions (using
the reported color ID). In order to visualize the response
distributions relative to the centered target color, the data was
shifted accordingly (which resulted in all target colors being
present at position 33). We then fitted a Gaussian distribution to
each data set using the following equation (nonlinear least
squares as fitting method, Eq. 1):

y ¼ ∑
n

i¼1
aie �ðx � biÞ

ci

� �2

þ di ð1Þ

The four model coefficients amplitude (ai), shift from the target
color (bi), peak width (ci), and shift along the y-axis (intercept as
measure of random responses, di) were used to characterize the
response behavior per target color. As initial values for
coefficients we used ai= 1, bi= 33 (position of shifted target
color as expected peak position), ci= 1, and di= average number
of responses to the farthermost 30 colors (colors 1–15 and
50–64). The adjusted R² served as measure of the goodness-of-fit.
This was done for each target color separately (i.e., from i= 1 to
n= 64).

Drift-diffusion model. To investigate the dynamics of color
representations in working memory, we modeled the evolution of
memories over time as a drift-diffusion process12 (https://github.
com/buschman-lab/WorkingMemoryDynamics). In brief, this
model describes how memories change over time based on two
influences. First, systematic biases may cause memories to drift
towards stable attractor states over time. Second, memories may
be perturbed by random noise. The model assumes that these
forces may act instantaneously during encoding or accumulate
over time in memory. Drift and diffusion represent an influence
on memory representations during encoding and memory delay,
and these values are fit independently for each load condition.
Fitting this and competing models to our data allows us to for-
mally assess which class of dynamics best explains behavior and
illuminates the neural architectures that may underpin these
dynamics51,52.

More specifically, we assume that memories evolve according to a
stochastic ordinary differential equation that captures the influence
of both systematic drift and random noise (diffusion, Eq. 2):

dθ ¼ βLG θð Þdt þ σLdW ð2Þ
This equation describes the time evolution of a color memory θ

(a circular variable corresponding to an angle in the circular color
space) under the influence of some deterministic dynamics

defined by G (the drift) as well as an additive white noise process
W with variance σ2. βL sets the gain of the drift. To account for
the fact that memory load may influence these dynamics, we fit a
separate β and σ for each load condition. We excluded
simultaneous cue trials from this analysis because the load on
these trials was ambiguous. G θð Þ was a nonlinear function fit to
each bird during model estimation using a linear combination of
von mises derivatives separated by 1 standard deviation (fixed to
2π=12) on the interval ð0; 2πÞ.

To fit this model to our behavioral data, we needed to describe
the time evolution of θ probabilistically. So, we rewrote Eq. 2 as a
Fokker-Planck equation, a partial differential equation that tracks
the probability density function of θ over time: pðθ; tÞ (see ref. 12
for full details). To dissociate load-driven changes in the
dynamics of memory and encoding, we allowed the state of the
memory to vary at the start of the delay. Specifically, when
modeling each trial, we allowed Eq. 2 to evolve for a 1-second
encoding period with an encoding and load-specific β and σ.
Dynamics were then dictated by Eq. 2 according to a delay- and
load-specific β and σ for the duration of the memory delay. To
account for so-called swap errors and guessing, the final response
distribution was computed as a mixture of the target memory
distribution, the non-target memory distribution, and a uniform
component12.

We identified the maximum likelihood estimate (joint like-
lihood across trials) of the model parameters using gradient
descent. For computational tractability, a random subsample of
3000 trials from each load-delay condition was used for fitting. To
determine if drift during encoding and/or the memory delay were
necessary to explain behavior, we also computed the log-
likelihood of the best-fitting models when β was set to zero
during encoding (no encoding drift) and during the delay (no
memory drift). To perform model comparison, we randomly
partitioned each animal’s data into 4 folds, training each model
on 3 folds and computing the negative log-likelihood of the
model on the held-out fold. The differences in negative log
likelihood (and the average across folds) are displayed in Fig. 6b.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data that support the findings of this study are available from the corresponding
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