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Human brain responses are modulated when
exposed to optimized natural images or
synthetically generated images
Zijin Gu 1, Keith Jamison 2, Mert R. Sabuncu1,2 & Amy Kuceyeski 2✉

Understanding how human brains interpret and process information is important. Here, we

investigated the selectivity and inter-individual differences in human brain responses to

images via functional MRI. In our first experiment, we found that images predicted to achieve

maximal activations using a group level encoding model evoke higher responses than images

predicted to achieve average activations, and the activation gain is positively associated with

the encoding model accuracy. Furthermore, anterior temporal lobe face area (aTLfaces) and

fusiform body area 1 had higher activation in response to maximal synthetic images com-

pared to maximal natural images. In our second experiment, we found that synthetic images

derived using a personalized encoding model elicited higher responses compared to synthetic

images from group-level or other subjects’ encoding models. The finding of aTLfaces favoring

synthetic images than natural images was also replicated. Our results indicate the possibility

of using data-driven and generative approaches to modulate macro-scale brain region

responses and probe inter-individual differences in and functional specialization of the human

visual system.
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The brain’s visual system has long been a topic of neu-
roscientific study, with some of the earliest classic psy-
chological models for object recognition being performed

over 100 years ago. The identification of preferences in the
response patterns of single neurons1,2 and macro-scale regions3–5

in the visual cortex has enabled understanding of how brains
process and interpret incoming visual information. Artificial
neural networks (ANNs), especially deep neural networks, with
their architecture motivated by biological neural networks and
their striking performance on image classification and object
recognition tasks, have naturally lead to their use in modeling the
human visual system. Recent work has specifically focused on
comparing ANNs trained to predict brain responses from visual
stimuli, called encoding models, to the brain’s visual system6–11.
For instance, Kubilius et al. developed a shallow, recurrent ANN
representing anatomical brain structures that was shown to
accurately reproduce the flow of activity in the primate ventral
visual stream7. Zhuang et al. found unsupervised ANNs can
produce brain-like representations and can achieve accuracy in
predicting cortical activations that equals or exceeds best super-
vised methods8; similarly, Mehrer et al. showed ANNs trained on
a dataset of brain responses from 1.5 million images across 565
basic categories better predicted representations in higher-level
human visual cortex and perceptual judgments than on typical
image classification dataset, e.g., ImageNet9. While some recent
work has highlighted mismatches between ANNs and biological
neural networks12, ANNs remain among the best models for
representing and probing visual systems.

Due in part to recent artificial intelligence (AI) breakthroughs
in generative models, e.g., generative adversarial networks
(GANs)13, variational autoencoders14 and diffusion models15,
neural decoding and optimal stimulus design have gained
popularity as novel ways to understand and control neural
responses to visual stimuli. Coupling pretrained generators with
linear or ANN-based encoding models has allowed accurate
decoding of viewed images from brain responses that have both
high-level semantic and low-level alignment with ground
truth16,17. ANNs that perform image classification can be coupled
with generative networks to synthesize preferred inputs for arti-
ficial neurons via activation maximization18. Neuroscience
researchers have adopted similar approaches for designing opti-
mal stimuli for maximizing firing rate in single neurons or
populations of neurons in macaque monkeys19,20. Bashivan et al.
showed that the firing rate of V4 neural sites can be controlled by
a deep ANN as a group, and, to some extent, independently19.
Ponce et al. revealed the response properties of visual neurons in
V1 by exploring the vast generative image space20. In terms of
human studies, previous work with GAN-based image synthesis
showed promising results in testing category selectivity of brain
regions and discovering inter- individual and regional
difference21,22. However, to the best of our knowledge, there is no
work thus far that has recorded macro-scale human brain acti-
vation in response to synthetic visual stimuli designed to achieve
specific, targeted brain activation patterns.

In this work, we aim to enrich our understanding of the human
visual system by attempting to modulate activation responses in
specific regions of the human brain using selected natural and
specifically designed synthetic visual stimuli. We used the large-
scale Natural Scences Dataset (NSD)23, consisting of ~30K cou-
pled images and brain responses from each of eight subjects, to
train individual-level ANN-based encoding models with high
accuracy. By feeding the NSD images into these encoding models
and sorting their predicted average activations, we obtained sets
of natural images that were predicted to achieve maximal (or
average) levels of activity for that region across the population of
NSD subjects. In addition, we used the previously developed

NeuroGen framework to design synthetic images predicted to
achieve the same goals22. Once the natural and synthetic image
sets were obtained, we prospectively enrolled six novel individuals
and measured their brain responses to these images via functional
MRI (fMRI). Once we had image-response data from the six
prospectively enrolled subjects, we applied our recently developed
linear ensemble method to create personalized, individual-level
encoding models for each of these new subjects24. With the
subjects’ personalized encoding models, we then obtained sets of
individual-specific natural and synthetic images via the same
image selection/generation procedure described in the first
experiment, and collected their regional responses to these per-
sonalized images during a second fMRI scan. In24, we validated
our approach for building personalized encoding models using
small amounts of data, but did not test our framework for tar-
geted activation of given brain regions in specific individuals,
which is what we present here. Specifically, we demonstrate that
the proposed method can be used to select and generate optimal
visual stimuli designed to modulate macro-scale human brain
activity in a targeted manner, and, further, that this modulation
can be done at the level of a specific individual.

Results
Figure 1 shows our workflow consisting of the natural image
selection and synthetic image generation process for Session 1
and Session 2’s fMRI experiments, where Session 1 is on group
level and Session 2 is on individual level. Three visual regions,
each from a different perception group, i.e., fusiform face area 1
(FFA1), extrastriate body area (EBA) and visual word form area 1
(VWFA1), were identified as primary targets.

Observed and targeted brain activation patterns are well
aligned. Our Session 1 experimental stimuli were selected based
on the group level encoding model trained on NSD as follows.
We created eight individual-level encoding models for the above
three regions using a deepnet feature-weighted receptive field
(deepnet-fwRF) architecture25. The deepnet-fwRF model has an
ImageNet-pretrained AlexNet26 to extract features, a Gaussian
pooling field to reduce the number of the features and a Ridge
regression to map the features to brain regional response, see
details in the Methods section. A simple average of the eight
individual-level encoding models were taken to obtain a “Group”
average encoding model. For natural image selection, the candi-
date natural images set were the 9000 × 8= 72,000 images shown
to any one of the eight NSD subjects while the 1000 images that
were shared across subjects were not included. From this set, we
selected the top 40 natural images ("Nat") that maximized a
region’s predicted activation ("Max") for the “Group” encoding
model (called “GroupMaxNat") and the 40 natural images ("Nat")
that minimized the absolute value of a region’s predicted acti-
vation, i.e., achieved as closely as possible the average activation
response, (called “Avg") for the “Group” encoding model (called
“GroupAvgNat"). For synthetic image generation, we inserted the
“Group” encoding model into a optimal image synthesis frame-
work called NeuroGen22 (see details in the Methods section) and
generated 40 synthetic images ("Syn") that maximized a region’s
predicted activation (called “GroupMaxSyn") and 40 synthetic
images that minimized a region’s absolute predicted activation
(called “GroupAvgSyn"). In total, Session 1’s image data consisted
of 12 stimulus sets (4 sets × 3 regions). And we collected the brain
responses from six novel subjects (called NeuroGen subjects) that
underwent fMRI while viewing these images.

We began by analyzing Session 1 data on a group level. We fit a
linear mixed effects (LME) model with different image conditions
as fixed effect and subjects as random effect, and compared the
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brain activations between image conditions ("GroupMaxNat”,
“GroupAvgNat”, “GroupMaxSyn”, “GroupAvgSyn") for all six
subjects in the three primary target regions, see Fig. 2a. If the
LME coefficient for the condition variable was significant, then
those groups were said to have significantly different response
levels. We found that “Max” images had significantly higher
activity compared to “Avg” images from the same source (natural
or synthetic) and no significant differences were found between
the “GroupMaxSyn” and “GroupMaxNat” activation responses
for FFA1 and EBA, but the natural images have significantly
higher responses in VWFA1.

Though inter-regional differences exist, regions belonging to
the same perception group (see Supplementary Fig. 1 for the
anatomical location of the regions) are usually activated by
similar features. Thus, we analyzed all visual regions in the same
perception category for stimuli designed for the primary target
region from that category. Fig. 2a also shows other face regions’
(OFA, FFA1, FFA2, mTLfaces and aTLfaces) activations in
response to images designed for FFA1, Fig. 2b shows body
regions’ (EBA, FBA1, FBA2 and mTLbodies) activations in
response to images designed for EBA, and Fig. 2c shows word
regions’ (OWFA, VWFA1, VWFA2, mfswords and mTLwords)
activations in response to images designed for VWFA1.
Generally, we observed significantly larger activation in secondary
target regions in response to maximal images compared to
average images, except in aTLfaces and FBA1 for the natural
images and FBA2, mTLbodies, mTLwords for both natural and
synthetic images. Finally, maximal synthetic images achieved

significantly higher activations than maximal natural images in
secondary target regions aTLfaces and FBA1, while maximal
natural images achieved significantly higher activations than
maximal synthetic images in the primary word target region
VWFA1 and secondary target regions mTLfaces and VWFA2. A
detailed version of Fig. 2 showing individual data points is
provided in Supplementary Fig. 2. Regional brain responses for
off-target images, i.e., body and word region responses to face
region-optimized images, are shown in Supplementary Figs. 3–5.

More accurate encoding models result in better alignment of
observed and targeted brain activation patterns. We hypothe-
size that the success of our natural or synthetic “Max” images in
driving brain activity higher than activity in response to natural
or synthetic “Avg” images hinges on the accuracy of the “Group”
encoding model for that subject. First, we found that while the
“Group” encoding model had a trend toward better accuracy for
the natural image responses compared to the synthetic image
responses (t statistic= 1.589, p= 0.114), overall the prediction
accuracies were similar for the two image types (Pearson’s
r= 0.467, p= 1.652e− 5), see Supplementary Fig. 6. To test our
hypothesis about the relationship between accuracy and success
in modulation, we correlated subjects’ encoding model accuracy
value and the Cohen’s d representing activation differences in
brain responses to “Max” and “Avg” conditions for natural and
synthetic images, see Fig. 3a, b, and c for face, body and word
perception groups respectively. Encoding model accuracy was
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Fig. 1 Experimental design workflow. a Session 1: The first experiment involved showing four sets of natural and synthetic images to each of 6 subjects
while they underwent fMRI. These sets of images were selected based on their predicted average activation across the 8 NSD subject-level encoding
models ("Group” model). Candidate natural images were the set of 9000 × 8= 72,000 images shown to any subject in the NSD experiments, excepting
the shared 1000 images ("Nat"). Synthetic images were created using NeuroGen, which uses BigGAN-deep as its generator ("Syn"). The first set of
images, called “GroupMaxNat'', are the natural images with the highest predicted activation in the group NSD encoding model. The second set of images,
called “GroupAvgNat'', are the natural images with predicted activations in the NSD group model that are closest to average. The final two sets of images,
called “GroupMaxSyn” and “GroupAvgSyn'', are synthetic images designed by NeuroGen to achieve maximal and average activation in the group NSD
encoding model, respectively. The regions of interest, or targets, for the session 1 experiments are FFA1, EBA and VWFA1. b Session 2: Session 1 data was
used to create a personalized encoding model for each of the six subjects, and these personalized encoding models ("Self") were used to select natural and
generate synthetic images that were predicted to achieve maximal activation for that person’s FFA1 encoding model, named as “SelfMaxNat” and
“SelfMaxSyn". During Session 2, we also showed each subject Session 1’s group maximal images ("GroupMaxNat” and “GroupMaxSyn") and the other
subjects' personalized images ("OtherMaxNat” and “OtherMaxSyn") for FFA1 to test the specificity of the personalization. FFA fusiform face area, EBA
extrastriate body area, VWFA visual word form area.
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determined using all session 1 images that have at least two fMRI
measured activations, regardless of condition ("Mat” or “Avg"),
source ("Nat” or “Syn") or target region (FFA1, EBA, VWFA1).
We found that these correlations were indeed all generally
moderate to high positive values, with overall p-value < 0.0001 for
synthetic stimuli and approximately 0 for natural stimuli, based
on permutation test.

In Fig. 4a, we display each of the six subject’s 5 most activating
natural and synthetic images for FFA1, EBA and VWFA1, sorted
in descending order by their measured Session 1 fMRI responses.
We observed that while a few of the same top images appear
across different subjects, most are not shared across individuals.
In Fig. 4b, we performed a pair-wise correlation of each subjects’
brain activity responses to quantify inter-subject similarity and
found that subjects’ responses to the same image vary quite
widely, with across-subject correlations ranging from 0 to 0.35.
To compare against the noise ceiling, we also include in the
diagonal of Fig. 4b the test-retest within-subject reliability in
responses to the same image. We see that, in most cases, the
diagonal value is larger than the off-diagonal entries.

Personalized synthetic images allow probing individual dif-
ferences in brain responses. We have shown that selecting and

generating images using a group-level encoding model allows
targeted modulation of regional brain activity in prospective,
novel individuals. Given that there are individual differences in
brain responses to images, we hypothesized that selecting and
generating personalized natural and synthetic images using an
individual-level encoding model might allow more enhanced
modulation of regional brain responses. To test this hypothesis,
we conducted our second MRI experiment, where we refer to
Session 2 data and experimental design workflow is shown in 1b.

Session 2’s image set generation followed a similar procedure
to Session 1, with the main differences being that the “Group”
encoding model was replaced with individual-level, personalized
encoding models (called “Self"). We focused only on FFA1, as the
face perception regions showed consistent and promising results
in group level analysis, see Fig. 2a. The personalized encoding
models were constructed via the linear ensemble approach, where
the predicted regional activation for the targeted subject is the
weighted sum of the predictions from eight NSD FFA1 models
plus a bias term24. The linear weights and bias were fit using each
subject’s image-response paired data from Session 1. For each of
the six NeuroGen subjects, we created six sets of images and
showed them to the subjects. “SelfMaxNat” or “SelfMaxSyn” are
sets of natural or synthetic images that maximized FFA1’s

a

c

b

Fig. 2 Comparisons of brain activations between image conditions in different regions. Brain responses of the “Max” condition images are significantly
higher than the responses of the “Avg” condition images for their targeted region (and for almost all regions in the same response category), for both
natural ("Nat") and synthetic ("Syn") image sets. Violinplots show the distribution of the normalized fMRI activity in response to the different image
conditions (z-scored over all image responses) in (a) face regions, (b) body regions and (c) word regions. Inside each violin, median is shown by the small
white dot in the middle of the boxplot, first quartile and third quartile are indicated by the upper and lower boundary of the black box, and the vertical line
shows minimum and maximum. The following group comparisons were performed via fitting linear mixed effects (LME) models: “GroupMaxNat” vs
“GroupAvgNat'', “GroupMaxSyn” vs “GroupAvgSyn'', “GroupMaxSyn” vs “GroupMaxNat” and “GroupAvgSyn” vs “GroupAvgNat". Significant differences
based on permutation testing (FDR corrected p < 0.05) are marked with a starred horizontal line. Face regions: OFA occipital face area, mTLfaces medial
temporal lobe face area, aTLfaces anterior temporal lobe face area. Body regions: FBA fusiform body area, mTLbodies medial temporal lobe body area.
Word regions: OWFA occipital word form area, mfswords mid-fusiform sulcus word area, mTLwords medial temporal lobe word area.
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predicted activation for that subject. Besides “Self” condition
images, we also showed subjects the personalized FFA1 images of
other subjects (called “OtherMaxNat” and “OtherMaxSyn") and
the “Max” group level FFA1 images from Session 1 ("Group-
MaxNat” and “GroupMaxSyn"). Session 2’s fMRI experiments
consisted of recording brain responses to 128 images from a total
of 6 conditions (32 “SelfMaxSyn”, 32 “SelfMaxNat”, 20
“OtherMaxSyn”, 20 “OtherMaxNat”, 12 “GroupMaxSyn” and
12 “GroupMaxNat").

Figure 5b shows, for each of the six subjects, the ten natural
and ten synthetic images that had the highest observed responses
in FFA1 in descending order. We observed that the top images for
different subjects were largely different. Fig. 5a shows the
anatomical locations of the five face perception regions of interest
where we performed the below comparisons for them to test the
effect of the personalization. To test if there was a boost in
activation responses from the personalization compared to the
group-level images, we compared “GroupMaxSyn” vs “Self-
MaxSyn” and “GroupMaxNat” vs “SelfMaxNat". To test the inter-
individual specificity of the personalization, we compared
“OtherMaxSyn” vs “SelfMaxSyn” and “OtherMaxNat” vs “Self-
MaxNat”, where “Other” indicates those images are a random
subset of the other subjects’ personalized image sets. Finally, we
tested if the personalized synthetic images had response
activations that were higher than the personalized natural images
by comparing “SelfMaxNat” vs “SelfMaxSyn". See Supplementary
Fig. 7 for the different comparisons between normalized brain
activations from different image types.

The comparisons were performed via fitting LME models with
different image conditions as fixed effect and subjects as random
effect. The results are shown in Table 1 via β coefficients from the
LME model, where positive means the observed responses to
images in the second condition were higher than the observed
responses to images in the first condition (and for negative β, vice
versa). Overall, the personalization seemed to work better for the
synthetic images compared to the natural images and for the
hierarchically later face regions compared to the earlier ones.
Specifically, there were higher (though not significant) FFA1
response to the personalized synthetic images compared to the
other subjects’ personalized synthetic images and higher FFA2
response to the personalized synthetic images compared to the
group synthetic images. All three of the later face regions (FFA2,
mTLfaces and aTLfaces) had significantly higher (permutation-
based corrected p < 0.05) activation in response to the persona-
lized synthetic images compared to the other subjects’ persona-
lized images, while mTLfaces and aTLfaces also had significantly
higher responses to the personalized synthetic images compared
to the group synthetic images. The personalization largely had no
effect in the natural image responses, with the only significant
difference being that the group-level images actually had higher
responses than the personalized images for mTLfaces. Finally,
while most face regions’ responses are not different between the
personalized natural and synthetic image sets, similar to what was
was found using “Group” images, we observe significantly larger
responses to synthetic images compared to natural images in the
highest-order face region, aTLfaces, and significantly higher

NeuroGen Subject

SyntheticNatural

b

c

1        2        3         4          5        6

a

Fig. 3 Positive correlations between “Max” vs “Avg” activation differences and encoding model accuracy. The “Max” vs “Avg” activation differences are
captured via Cohen’s d between activations from “Max” images and “Avg” images. The regional encoding model accuracy is determined using all session 1
images that have at least two fMRI measured activations, regardless of condition ("Mat” or “Avg"), source ("Nat” or “Syn") or target region (FFA1, EBA,
VWFA1). The positive associations are observed across the six NeuroGen subjects for all brain regions, where each subject is the same color across all
scatter plots. Squares indicate the “Nat” image results where the line of best fit is drawn with a solid line and circles indicate the “Syn” image results where
the line of best fit is drawn with a dashed line. Note: some regions were not identifiable in some subjects using the localizer scans. Scatter plots (a, b) and
(c) show the relationship between encoding model accuracy (x-axis) and the Cohen’s d calculated by contrasting “GroupMaxNat” vs “GroupAvgNat” or
“GroupMaxSyn” vs “GroupAvgSyn” for face, body and word perception regions respectively.
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responses to natural images compared to synthetic images in the
mid-level FFA2 region.

Discussion
Inspired by previous work in macaques where neuronal firing
rates could be driven by optimally designing synthetic
images19,20, here we carried out a set of experiments to show that
human brain responses can be modulated in a controlled, per-
sonalized way by both selecting optimal natural stimuli and
generating optimal synthetic stimuli. All sets of natural or syn-
thetic images designed to maximize activity in targeted brain
regions ("Max” conditions) were able to elicit significantly higher
observed activity compared to images designed to achieve average
activity ("Avg” conditions). Two visual regions, FBA1 and aTL-
faces, had significantly higher activation in response to the
maximal synthetic images compared to the activation in response
to the maximal natural images, while a face area mTLfaces and
two word regions VWFA1 and VWFA2 had higher activity in
response to natural compared to synthetic images. We also found

that the modulation ability, quantified by Cohen’s d between
maximal and average brain responses, was associated with the
accuracy of the encoding models. That is, more accurate encoding
models led to more precise control over brain activity. In addi-
tion, inter-individual variability of responses in face regions was
considered when creating/selecting the optimal images using an
encoding model approach we developed and validated
previously24. We showed that personalization did indeed drive
responses for specific individuals above and beyond the responses
to images designed using a group-level encoding model or other
individuals’ encoding models, but only for synthetic images and
only in face regions that were higher in the processing hierarchy.
Finally, we observed that, as in Session 1’s results, optimal per-
sonalized synthetic images had larger responses in the highest-
level face processing region aTLfaces, compared to that regions’
responses to optimal natural images.

Classically, identifying functional specialization in the brain
requires a subject to view a set of images selected by the experi-
menter based on a priori information or a specific hypothesis of

a
FFA1 EBA VWFA1

b
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Fig. 4 Individual differences in brain responses to images. a For each of the six NeuroGen subjects, the 5 synthetic and 5 natural images that had the
highest observed activation in FFA1, EBA and VWFA1. b Off-diagonal elements quantify individual differences via across-subject correlation of FFA1, EBA
and VWFA1 responses to all images that have two measurements in session 1, while the diagonal elements show within-subject reliability calculated by
correlating the two measurements of FFA1, EBA and VWFA1 responses to those images.
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the region of interest’s preferred image characteristics27,28. This
type of approach has resulted in identification of various spe-
cialized regions in the visual system, including regions that pre-
ferentially activate in response to faces3, bodies5, places4, objects29

and words30. However, there are clear limitations to this type of
approach in that the content and characteristics of the images are
selected by an experimenter with narrow focus, a highly cir-
cumscribed hypothesis and limited resources for experimenta-
tion. With the monumental progress in generative AI, the
publication of large data sets containing image-response infor-
mation, and improvements in encoding model accuracy using
deep learning, the field can and should shift toward using a data-
driven approach to selecting and designing optimal stimuli for
discovery of functional specialization in the human visual system.
This work takes a first step in that direction by robustly

demonstrating the ability to drive responses in various human
brain regions using “optimal” selected natural and synthetically
generated images, and takes a second step in that direction by
showing that personalization of image-response encoding models
can allow generation of individual-specific “optimal” images (but
perhaps only from synthetic sources).

While ANN-based encoding models may be improved by
making them more brain-like7, the quality and size of the avail-
able individual training data is also central to encoding model
accuracy. Typically, encoding models require tens of thousands of
image-response pairs to obtain good alignment between predic-
tions and observations, such as our NSD-based models that use
over 20,000 training samples per subject. Following our recent
work24, here we constructed personalized encoding models using
training data that was only ~2% of the NSD data sample size and

a
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Syn

Nat

Nat

Nat
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Top 10 SelfMaxSyn and SelfMaxNat images for FFA1

Fig. 5 The effect of personalization in achieving targeted brain activation patterns in face perception areas. a The anatomical location of the five face
regions in the visual cortex. b For each of the six subjects, the ten synthetic and ten natural personalized images that elicited the highest observed FFA1
responses according to the fMRI measurements, in descending order.
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obtained relatively good accuracy. However it is likely that more
training data for a given subject (particularly synthetic image-
response pairs) would increase encoding model accuracy and/or
result in models that better reflect inter-individual differences.
Furthermore, the performance of the encoding model is also
influenced by the images it is built on. In our work, the perso-
nalized encoding models were trained and tested on the group
level “Max” and “Avg” images for three specific regions. Though
we have found no significant difference between the accuracy on
natural and synthetic images, there is still bias introduced from
the features of the “Max” images, i.e., the encoding model might
have better predictions for face, body and text images comparing
with images with other features. Since we found that the success
of the “optimal” images in hitting their target responses was
closely related to encoding model accuracy, we conjecture that
increasing the sample size (and more repeats per image to
increase SNR) and the diversity of the individual image-response
pair training set may lead to better encoding model performance
and more precise control over elicited brain responses.

Previous work has mapped the face processing stream in visual
cortex, namely with activity flowing from OFA to FFA (some-
times split into FFA1 and FFA2) to medial temporal and then
anterior temporal lobe31. We observed increasing “success” of the
personalized synthetic images when arranging the results from
low to high-order (OFA, FFA1, FFA2, mTLfaces to atLfaces),
though the targeted region is only FFA1. To formally test this
observation, we performed a post-hoc LME analysis with the
t statistic between “Self” and “Group"/"Other” as the dependent
variable, hierarchical level of region (OFA= 1, FFA1= 2,
FFA2= 3, mTLfaces= 4, aTLfaces= 5) and the contrast type
("Self” vs “Group”, “Self” vs “Other") as fixed effects, and subjects
as random effect. We found a positive but not significant coef-
ficient for region hierarchy level (p-value ~ 0.10). It is not sur-
prising that face images designed to activate FFA1 can also
activate other face regions, and we did not attempt to design
images that also suppressed activation in any of the other off-
target regions within the same category (which could be done to
increase specificity in the activation responses). The stronger
personalization effect in higher order regions could perhaps be
explained by more homogeneity in brain responses across the
population to low-level characteristics, like facial topology32, but
less homogeneity in brain responses to higher-order character-
istics, like facial recognition33,34. Furthermore, we observed that
the effect of personalization in the natural image responses is
much weaker comparing with the effect in the synthetic image
responses, which might be due to (1) less inter-subject homo-
geneity in higher-order face regions’ responses to the synthetic
images (compared to the natural ones), as they are more novel
(and perhaps demand more attention) for higher-order tasks like
facial recognition; and the iterative nature of the synthetic image
generation that could result in more power to optimize image
features that favor the specific subjects than selection from a set of
predetermined, fixed natural images.Interestingly, aTLfaces, as
the highest order face perception region in our analysis, is the
only one that showed consistently significantly higher responses
for the synthetic images compared to the natural ones in both
group level and individual level experiments, which might be
reflecting this phenomena.

Unlike experiments in macaque monkeys where microelec-
trode arrays can be invasively implanted directly on the brain to
record neuronal responses19,20, human experiments mostly rely
on non-invasive recording techniques, with the exception of
electrocorticography which is only used in small cohorts of
neurological patients35.While fMRI is one of the best non-
invasive methods with which to measure human brain responses
as this modality has high spatial resolution (compared to EEG,T

ab
le

1
T
he

re
su
lt
s
of

fi
t
lin

ea
r
m
ix
ed

ef
fe
ct
s
(L
M
E)

m
od

el
s
fo
r
as
se
ss
in
g
pe

rs
on

al
iz
at
io
n
ef
fe
ct
s
in

fa
ce

pe
rc
ep

ti
on

re
gi
on

s.

co
nt
ra
st

O
FA

FF
A
1

FF
A
2

m
T
Lf
ac
es

aT
Lf
ac
es

β
p-
va

lu
e

β
p-
va

lu
e

β
p-
va

lu
e

β
p-
va

lu
e

β
p-
va

lu
e

G
ro
up

M
ax
Sy
n
vs

Se
lfM

ax
Sy
n

−
0
.0
16

0
.8
9
8

−
0
.0
0
2

0
.9
8
4

0
.0
76

0
.0
9
5

0
.2
14

0
.0
25

b
0
.1
22

0
.0
58

a

O
th
er
M
ax
Sy
n
vs

Se
lfM

ax
Sy
n

0
.0
19

0
.8
9
8

0
.0
74

0
.4
37

0
.1
12

0
.0
0
5b

0
.1
79

0
.0
2b

0
.1
34

0
.0
25

b

G
ro
up

M
ax
N
at

vs
Se
lfM

ax
N
at

−
0
.0
34

0
.8
9
8

0
.0
39

0
.5
6
1

0
.0
0
8

0
.8
36

0
.0
4
2

0
.5
36

−
0
.1
36

0
.0
25

b

O
th
er
M
ax
N
at

vs
Se
lfM

ax
N
at

−
0
.0
0
2

0
.9
74

0
.0
4
8

0
.4
37

0
.0
54

0
.1
8
0

0
.0
76

0
.2
0
3

−
0
.0
6

0
.1
9
5

Se
lfM

ax
N
at

vs
Se
lfM

ax
Sy
n

−
0
.0
2

0
.8
9
8

−
0
.0
4
5

0
.4
37

−
0
.0
77

0
.0
32

b
−
0
.0
0
5

0
.9
0
9

0
.1
0
3

0
.0
25

b

FF
A
1
is
th
e
pr
im

ar
y
ta
rg
et
ed

re
gi
on

w
hi
ch

is
hi
gh

lig
ht
ed

w
ith

bo
ld
.C

om
pa
ri
so
ns

in
cl
ud

e
“G

ro
up

M
ax
Sy
n”

vs
“S
el
fM

ax
Sy
n”
,“
O
th
er
M
ax
Sy
n”

vs
“S
el
fM

ax
Sy
n”
,“
G
ro
up

M
ax
N
at
”
vs

“S
el
fM

ax
N
at
”,
“O

th
er
M
ax
N
at
”
vs

“S
el
fM

ax
N
at
”,
an
d
“S
el
fM

ax
N
at
”
vs

“S
el
fM

ax
Sy
n"
.C

ol
um

ns
re
pr
es
en

tin
g
di
ff
er
en

t
re
gi
on

s
ar
e
ar
ra
ng

ed
fr
om

po
st
er
io
r
(l
ow

er
-o
rd
er
)
to

an
te
ri
or

(h
ig
he

r-
or
de

r)
.
T
he

β
va
lu
es

ar
e
th
e
m
od

el
co
ef
fi
ci
en

ts
,w

he
re

po
si
tiv

e
va
lu
es

m
ea
n
th
e
fM

R
I
ac
tiv

at
io
n
fr
om

th
e
se
co
nd

co
nd

iti
on

is
hi
gh

er
th
an

ac
tiv

at
io
n
fr
om

th
e
fi
rs
t
co
nd

iti
on

;
co
rr
es
po

nd
in
g
tw

o-
ta
ile
d
p-
va
lu
es

w
er
e
ca
lc
ul
at
ed

ba
se
d
on

pe
rm

ut
at
io
n
te
st
in
g
w
ith

FD
R
co
rr
ec
te
d
pe

r
re
gi
on

(p
<
0
.0
5)
.

a i
nd

ic
at
es

si
gn

ifi
ca
nt

be
fo
re

co
rr
ec
tio

n.
b i
nd

ic
at
es

si
gn

ifi
ca
nt

be
fo
re

an
d
af
te
r
co
rr
ec
tio

n.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05440-7

8 COMMUNICATIONS BIOLOGY |          (2023) 6:1076 | https://doi.org/10.1038/s42003-023-05440-7 | www.nature.com/commsbio

www.nature.com/commsbio


not microelectrode arrays) and whole-brain coverage, its main
limitations are that it measures non-neuronal BOLD signals, has
relatively low temporal resolution and can be subject to imaging
artifacts related to acquisition and subject motion. Microelectrode
arrays also have the advantage in that they allow recording of
neuronal responses in real time so that their firing rates can be
monitored in a closed-loop fashion during synthetic image
optimization20. Real-time fMRI monitoring of brain responses to
on-the-fly generated or selected images in an iterative, online
optimization would be difficult. With our current configuration,
we can only employ post hoc synthesis and offline optimization,
which may partly explain the relatively weaker modulation ability
in our human study compared with single-cell neuronal mod-
ulation studies in animals.

BigGAN-deep, state-of-the art at the time of the experimental
design, is an image generator that allows a user-defined balance
between fidelity and variety of the synthetic images. Here, we
chose more emphasis on fidelity in return for lower variety since
we wanted to begin our experiments with images as close as we
could to the distribution of natural images used to train the
encoding model. Even still, some of the generated images do not
look entirely natural. The fact that synthetic maximal image
responses in word areas were significantly lower than the
responses to the maximal natural images could be attributed to
the fact that BigGAN-deep was not trained to produce images
with only text13. Most of the VWFA1 synthetic images are of
items that normally contain text (speedometer, bottles, watches,
etc) but the actual text is not readable; the natural images on the
other hand contain items with obvious, readable text, e.g., road
signs. While the generated faces and bodies are also not com-
pletely life-like they are still recognizable as human faces or
bodies. Future work, particularly including generative networks
that create more accurate rendering of human faces and limbs,
e.g., MidJourney v536, could further improve the performance of
the synthetic images in achieving targeted brain activity. Finally,
since we were interested in the effect of the image condition (and
not the individual images themselves), we did not include image
as a random effect; this could mean that the results may not
generalize to out-of-sample images.

The current focus of NeuroGen, as the first step validating its
use in human brain modulation, is to target at specific regions
which are well-studied and known to be specialized in their
response to certain commonly occuring objects in nature, features
like face, body and text. It thus stands to reason that natural
images would be appropriate for achieving maximal activation in
those regions. A perfect implementation of NeuroGen would have
a voxel-wise encoding model that could provide accurate pre-
diction of any user-defined pattern of brain responses to images
of anything, coupled with a powerful generative model to explore
the pixel space and return images with high fidelity and diversity.
One can imagine a scenario that involves using this kind of
NeuroGen to identify images that maximally activate an arbitrary
set of voxels that may not necessarily be activated by the content
that is generally contained in natural images. For example, most
image sets do not contain obscure or imaginary content, i.e., a
zebra riding a bicycle, which could potentially be what maximally
activates a certain set of voxels—this kind of content could be
created easily using existing generative AI frameworks. In such
case, NeuroGen would likely be much more efficient and effective
compared to optimal image search over a set of fixed natural
images of commonly occurring, realistic content. The general
framework used here could also be extended beyond visual cortex
to the auditory cortex with audio stimuli, or even the combina-
tion of both. Boosting the activation of one region while sup-
pressing the other region is also possible with NeuroGen, which
has been proved successful with the artificial brain22. Moreover,

comparing with current invasive neuromodulatory techniques,
e.g., deep brain stimulation, and non-invasive techniques, e.g.,
transcranial magnetic, which have limited specificity, NeuroGen
may also have broader implications for developing a non-invasive
and personalized neuromodualtory method that can be used to
functionally target and manipulate brain networks to achieve
therapeutic goals.

Taken together, we demonstrate here the possibility of mod-
ulating regional human brain responses in a controlled way using
group- and individual-level encoding models coupled with either
large databases of natural images or generative models that create
synthetic images. It appears that achieving targeted control of
human brain responses to visual stimuli hinge on three main
issues: the accuracy and personalization of encoding models, the
content/range of candidate natural image sets and the quality of
the image generators. Future directions will focus on improve-
ments in all of these domains, including incorporating semantic
content or neuroscientific knowledge into encoding models and
using more realistic generators, i.e., stable diffusion15. In sum-
mary, this approach provides a data-driven method to investigate
functional specialization of and possibly a way to modulate
regional brain activity in specific humans’ brains by either
selecting natural or designing synthetic optimal stimuli. We
believe this work demonstrates the promise of generating optimal
synthetic images, perhaps in the future using better generators,
that may succeed in targeted, controlled modulation of brain
activations and, in so doing, result in a better understanding of
functional specialization within the human visual system.

Methods
Data description
Natural scenes dataset. The individual encoding models were
trained and tested on data from the NSD23, which contains
densely-sampled fMRI data from eight participants (6 female, age
19–32 years). Each subject viewed 9000–10,000 distinct color
natural scenes with 2–3 repeats per scene over the course of
30–40 7T MRI sessions (whole-brain gradient-echo EPI, 1.8-mm
iso-voxel and 1.6s TR). The images that subjects viewed (3s on
and 1s off) were from the Microsoft Common Objects in Context
database37 with a square crop resized to 8.4° × 8.4°. Among all
images, a set of 1000 were shared across all subjects while the
remaining images for each individual were mutually exclusive
across subjects. Subjects were asked to fixate centrally and per-
form a long-term continuous image recognition task (inf-back) to
encourage maintenance of attention.

NSD data processing has been previously described23. Briefly,
the fMRI data were pre-processed to correct for slice time
differences and head motion using temporal interpolation and
spatial interpolation. Then the single-trial beta weights represent-
ing the voxel-wise response to the image presented was estimated
using a general linear model (GLM). There are three steps for the
GLM: the first is to estimate the voxel-specific hemodynamic
response functions; the second is to apply the GLMdenoise
technique38,39 to the single-trial GLM framework40; and the third
is to use an efficient ridge regression41 to regularize and improve
the accuracy of the beta weights, which represent activation in
response to the image. FreeSurfer was used to reconstruct the
cortical surface, and both volume- and surface-based versions of
the voxel-wise response maps were created. Data from the
functional category localizer experiment (fLoc)42 was used to
create contrast maps (voxel-wise t-statistics) of responses to
specific object categories, and region boundaries were then
manually drawn on inflated surface maps by identifying
contiguous regions of high contrast in the expected cortical
location, and thresholding to include all vertices with contrast > 0
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within that boundary. Early visual ROIs were defined manually
using retinotopic mapping data on the cortical surface. Surface-
defined ROIs were projected back to fill in voxels within the gray
matter ribbon. Region-wise image responses were then calculated
by averaging the voxel-wise beta response maps over all voxels
within a given region.

The informed consent for all subjects was obtained by NSD.
Our data usage was approved by NSD, and complies with all
relevant ethical regulations for work with human participants.

NeuroGen dataset. We collected prospective data from six indi-
viduals (5 female, age 19–25) over two scans on a 3T GE-MR750
scanner43, see Fig. 1. The study protocol is approved by an ethical
standards committee on human experimentation and written
informed consent was obtained from all participants. The first
MRI scan included an anatomical T1 (0.9 mm iso-voxel), a
functional category localizer (floc) to identify higher-order visual
region boundaries (as in the NSD experiments), and, finally, a
task fMRI where subjects viewed a fixed set of 480 images. Sup-
plementary Fig. 8 shows the experimental design of the task
fMRI. Stimuli were presented for 2 s on and 1 s off, and were
organized into blocks for each condition. 8 unique stimuli were
presented per block, with one image repeated in each block for
use as a one-back behavioral task. To encourage consistent
attention, subjects were instructed to maintain fixation on a
central dot, and press a button when they observed the repeated
stimulus. A single 350-s scan consisted of ten 27-s stimulus blocks
with 6 s of rest between blocks. Each session consisted of 7–10
task scans. Stimulus images were square cropped and resized to
8.4° × 8.4° and presented using a Nordic Neuro Lab 32” LCD
monitor positioned at the head of the scanner bed. FMRI data
consisted of posterior oblique-axial slices oriented to capture early
visual areas and the ventral visual stream (gradient-echo EPI,
2.25 × 2.25 × 3.00 mm, 27 interleaved slices, TR= 1.45 s, TE=
32 ms, phase-encoding in the A≫ P direction). EPI susceptibility
distortion was estimated using pairs of spin-echo scans with
reversed phase-encoding directions44. Preprocessing included
slice-timing correction with upsampling to 1 s TR, followed by a
single-step spatial interpolation combining motion, distortion,
and resampling to 2 mm isotropic voxels.

The stimuli used in the task fMRI were 240 natural images
selected from the union of all individual-specific images shown to
the NSD subjects (9000 × 8= 72,000) and 240 synthetic images
created by NeuroGen22, a generative framework that can create
synthetic images within a given image category. For the first
scan’s task fMRI, there were total four image conditions for each
primary target region (FFA1, EBA, and VWFA1), namely
“GroupMaxSyn”, “GroupMaxNat”, “GroupAvgSyn” and “Group-
AvgNat”, each containing 40 images (3 regions × 4 conditions
x 40 images= 480 images total). The “GroupMaxNat” or
“GroupAvgNat” are the natural images that achieve maximal or
average predicted activations from the NSD group level encoding
model for the region in question, while the “GroupMaxSyn” or
“GroupAvgSyn” images are synthetic images optimized using
NeuroGen to achieve maximal or average predicted activations
from the NSD group level encoding model for the region in
question.

During the second MRI scan, the six individuals were shown a
set of 128 images (half natural and half synthetic) over six
conditions designed for FFA1 (32 “SelfMaxSyn”, 32 “Self-
MaxNat”, 20 “OtherMaxSyn”, 20 “OtherMaxNat”, 12 “Group-
MaxSyn” and 12 “GroupMaxNat"). “GroupMaxSyn” and
“GroupMaxNat” images are the same as the images in Session
1 for FFA1. “SelfMaxSyn” and “SelfMaxNat” were images from
the “Self” personalized linear ensemble encoding model created
for that individual (see details in Method Personalized encoding

model construction section) while “OtherMaxSyn” and “Other-
MaxNat” were images from other individuals’ “SelfMaxNat” and
“SelfMaxSyn” image sets. The fMRI experimental setup and
image preprocessing were identical to Session 1.

Deepnet feature weighted receptive field encoding model. The
encoding model used in this work follows the architecture of the
deepnet feature weighted receptive field (deepnet-fwRF) described
previously25. The deepnet-fwRF model uses AlexNet26 as a
backbone to extract salient features from images. The maximum
number of feature maps in each AlexNet layer is set to 512. For
layers that have more than 512 feature maps, we calculated the
variance of each feature maps for all images in NSD and then
selected the top 512 maps that had the highest average variance
across the images. Then feature maps that have the same spatial
resolution were concatenated, which resulted in three con-
catenated feature maps with size (256,27,27), (896,13,13) and
(1536,1,1). A Gaussian pooling field was applied to the feature
maps to further reduce the number of features before the final
ridge regression which mapped the features to brain regions’
responses, which is the average of the voxel-wise activation maps
over that region (a scalar). The hyperparameters, namely the
center and radius of the Gaussian pooling field, and the reg-
ularization parameter of the Ridge regression, were determined by
choosing the combination that gave the best performance on a
held-out validation set of 3000 image-response pairs using grid
search. Specifically, the candidate feature pooling field centers
were spaced 1.4° apart, the candidate radius included 8 log-spaced
receptive field sizes between 0.04 and 0.4, and the candidate
regularization parameters were 9 log-spaced values between
103–107.

We trained this model for each region and subject in the NSD
dataset. The group level model for each region is constructed by
averaging the predictions from the eight NSD subjects’ regional
encoding models. As our personalized encoding model (see
below) is constructed via a linear ensemble approach, where the
predicted response for a new subject is the weighted sum of the
eight NSD models’ predictions, we believe that using a standard
average of the 8 subjects’ encoding models as the group model
provides the most apples-to-apples comparison across the
sessions.

Personalized encoding model construction. We followed our
previously developed approach that allows creating personalized
linear ensemble models for novel, prospective individuals using
small data24. This approach was shown to have a good balance
between prediction accuracy and its ability to preserve inter-
individual differences in responses. The linear ensemble model
linearly combines predictions from a set of base encoding models,
which are trained on large data. Here, as in our previous pub-
lication, the base models are the deepnet-fwRF25 encoding
models trained on each NSD subjects’ data. To fit the linear
ensemble model to predict brain responses in the prospective
NeuroGen subjects, we trained on a subset of the Session 1 data
consisting of 32 randomly chosen image-response pairs from
each image condition and each region (total 32 × 4 conditions × 3
regions= 384 images), with the remaining image-response pairs
being used to test the personalized encoding model accuracy.

NeuroGen for optimal image synthesis. We use here our pre-
viously developed NeuroGen framework22, illustrated in Sup-
plementary Fig. 9, which generates images designed to achieve a
user-defined brain activation pattern. Essentially, NeuroGen
concatenates an image generator (ImageNet pretrained BigGAN-
deep13) with an encoding model of human vision. The BigGAN-
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deep generator takes as input a one-hot encoded class vector and
a noise vector, where the class vector indicates the ImageNet 1000
class and the noise vector is initialized with random values and
gets updated during optimization. The output of the generator,
which is a image, is used as input to the encoding model which
then provides the predicted brain responses to that image. By
defining the loss function to capture the match between this
predicted brain response and the desired brain response, we can
obtain optimized images via two steps: (1) identify the most
optimal classes and (2) iteratively optimize the noise vector to
produce the image that minimizes the loss. To obtain the optimal
classes, we generated 100 images (using 100 different random
noise vectors) from each of the 1000 classes in ImageNet. We
then feed these 1000 × 100 images into the encoding model and
compute the average of the predicted regional activation for each
of the 1000 image classes (over the 100 images from that class).
The optimal classes are those that minimize the loss function. For
the “Max” conditions, the loss function was the negative of the
predicted activation plus a regularization term on the noise vec-
tor; and for the “Avg” conditions, the loss function was the
absolute value of the predicted activation plus a regularization
term. The “Group” encoding model (the average of the 8 NSD
subjects’ deepnet-fwRF encoding models) was used to generate
Session 1’s images while the personalized encoding models
(individual-level linear ensembles) were used to generate Session
2’s images.

Linear mixed effects modeling to test for response differences.
We used a LME model to test for statistical differences in the
magnitude of the brain responses to different image conditions.
Session 1 comparisons were made for contrasts (1) “Group-
AvgSyn” vs “GroupMaxSyn”, (2) “GroupAvgNat” vs “Group-
MaxNat”, (3) “GroupMaxNat” vs “GroupMaxSyn” and (4)
“GroupAvgNat” vs “GroupAvgSyn". Session 2 comparisons were
made for contrasts (1) “OtherMaxSyn” vs “SelfMaxSyn”, (2)
“GroupMaxSyn” vs “SelfMaxSyn”, (3) “OtherMaxNat” vs “Self-
MaxNat”, (4) “GroupMaxNat” vs “SelfMaxNat”, and (5) “Self-
MaxNat” vs “SelfMaxSyn". We assume that there is a population
effect of a contrast (across all subjects), but each subject is allowed
to have its own random deviation. The LME model is defined as

y ¼ Xβþ Zαþ ϵ ð1Þ
where y is the 6n × 1 response vector for the observed fMRI
responses to the n images (across both conditions) for all 6 sub-
jects, X is the binary 6n × 1 fixed effects vector containing the
image condition information for n images across all 6 subjects,
β is the fixed-effect coefficient, Z is the binary 6n × 6 random
effects matrix containing subject information, α is the 6 × 1
random-effect coefficient vector, and ϵ is the error in observa-
tions. The p-values of the model coefficients were calculated using
permutation testing, where we randomly permuted the responses
from the two image conditions 1000 times and fit the LME model
to get β̂. The p-value for the original β is the percent of times
the random β̂ is larger in magnitude than the original β (two-
sided test).

Statistics and reproducibility. In Fig. 2 and Table 1, LME model
was used to compare brain regional responses from the generated
synthetic and selected natural images, where different image
conditions were used as fixed effect and 6 subjects were used as
random effects. Significance was determined using permutation
testing with FDR method of Benjamini and Hochberg to correct
for multiple comparisons. In Fig. 3, the discrepancy in brain
responses from different image conditions ("Max” vs “Avg") was
measured using Cohen’s d, and encoding model accuracy was

calculated as the Pearson correlation coefficient between pre-
dicted brain responses and measured brain responses from ima-
ges that were seen at least twice by subject. When comparing the
accuracies between natural and synthetic images, t test and
Pearson’s r was used to determine whether there was a significant
difference or significant similarity, respectively. The significance
of the relationship between model accuracy and Cohen’s d was
determined by permutation test where the data from all ROIs
were gathered.

Citation gender diversity statement. Recent work in several
fields of science has identified a bias in citation practices such that
papers from women and other minorities are under-cited relative
to the number of such papers in the field45. Here we sought to
proactively consider choosing references that reflect the diversity
of the field in thought, form of contribution, gender, and other
factors. We obtained predicted gender of the first and last author
of each reference by using databases that store the probability of a
name being carried by a woman45. By this measure (and
excluding self-citations to the first and last authors of our current
paper), our references contain 8.61% woman(first)/woman(last),
18.71% man/woman, 7.89% woman/man, and 64.79% man/man.
This method is limited in that (a) names, pronouns, and social
media profiles used to construct the databases may not, in every
case, be indicative of gender identity and (b) it cannot account for
intersex, non-binary, or transgender people. We look forward to
future work that could help us to better understand how to
support equitable practices in science.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The Natural Scene Dataset is publicly available at http://naturalscenesdataset.org. The
NeuroGen Dataset is available at https://figshare.com/articles/dataset/NeuroGen_
Dataset/23582403. The source data behind Figures 2 and 3 can be found in
Supplementary Data 1 and 2.

Code availability
NeuroGen code is available at https://github.com/zijin-gu/NeuroGen46. Supplementary
code is available at https://github.com/zijin-gu/neural-modulation47.
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