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Melanopsin-mediated optical entrainment
regulates circadian rhythms in vertebrates
Deng Pan1, Zixu Wang1, Yaoxing Chen1 & Jing Cao 1✉

Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of

circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on

mammals; more evidence is needed from non-mammalian vertebrates to fully assess the

significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation.

There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian

rhythms, which may be due to the differences in the cutting variants, tissue localization, and

photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in

mammals, birds, and teleost fish, and the classical excitation mode for the non-visual pho-

tosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-

expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the

potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expres-

sed in mammalian OPN4-expressing ganglion cells are summarized among them.

In the vertebrate retina, the sensitivity of dim-light vision is supported by rod photoreceptors,
whereas cone photoreceptors mediate color discrimination and high visual acuity at higher
light intensities1,2. Compared with visual forming visual pathways, the regulation of non-

image forming visual pathways is performed by intrinsically photosensitive retinal ganglion cells
(ipRGCs), such as circadian entrainment3, pupillary light reflex4–6, and time-restricted feeding7.
Although ipRGCs are less represented in mammalian retina (mice: ~1–5%, human:
~0.4–1.5%)8–12, melanopsin (OPN4), as an opsin, gives it powerful non-image forming
function13,14.

OPN4 is a G protein-coupled receptor initially identified in the dermal melanocytes of
Xenopus laevis. It includes an extracellular amino-terminal and seven transmembrane domains
with high homology to invertebrate opsins15. The OPN4 gene has been detected in most ver-
tebrates and analyzed in two lineages, xenopus (OPN4x) and mammalian (OPN4m) orthologs16.
It was also found that there are two OPN4m splice variants in mice and humans, the short
(OPN4-S) and long (OPN4-L) isoforms, which differ mainly in the number of phosphorylatable
serines and threonines in the C-terminus, which may lead to differences in the inactivation
dynamics of OPN4 in different species16,17. Regarding photosensitivity, the λmax (peak sensi-
tivity) of OPN4 was 480 nm as measured directly in light response to ipRGCs, confirmed by
mouse models lacking rods and cones13,18,19. Notably, the peak sensitivity of OPN4 shows some
minor differences in many studies depending on differences in the detection methods, tech-
nology, or species20,21.

Here, we collate the distribution of OPN4 in mammals, birds, and teleost fish based on
published evidence. We then highlight the mechanisms by which the non-visual photo-
sensitization of OPN4 mediates in vertebrate circadian rhythm regulation. Taking the photo-
sensitive activation of OPN4 as a starting point, our review focuses on the mechanism of
OPN4-mediated photoentrainment action in circadian rhythm regulation in vertebrates.
Admittedly, the other OPN4 activations of G-protein coexist and have been summarized in
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recent relevant reviews22–24. In this article, the Gq/11 pathway in
the OPN4-mediated phototransduction was mainly described due
to its widespread presence in vertebrate ipRGCs25–28. In addition,
OPN4-mediated light entrainment impacts melatonin secretion
in the vertebrate retina and pineal gland. This leads to more
diverse rhythmic regulatory pathways in non-mammalian verte-
brates than mammals.

Distribution of OPN4 in vertebrates
Mammalian. Mammalian OPN4 is derived from a single OPN4
gene with two splice variants in ipRGCs, which has been localized
and accurately classified by much evidence. OPN4 is also dis-
tributed in mammalian peripheral tissues (Table 1), but its
functions remain to be further investigated. Therefore, OPN4 in
mammalian ipRGCs will be discussed first.

The OPN4-expressing ipRGCs were previously thought to be a
homogeneous cell population with sparsely branched dendritic
trees on the outermost layer of the inner plexiform layer in
mammals8. Subsequently, the expression of OPN4 in M1-M6
ipRGCs in the mouse retina has been identified12,29. This OPN4
in ipRGCs with various morphological and physiological
characteristics can provide complete light-dark discrimination
and partial vision in rodless/coneless (rd/rd cl) mice30,31. Among
these subtypes of ipRGCs, M1 expressed the highest content of
OPN4, and it mainly exerts OPN4-induced
photoentrainment32–34. Correspondingly, the suprachiasmatic
nucleus (SCN) is innervated primarily by M1-subtype ipRGCs
(~80%), and OPN4 in M1-subtype ipRGCs significantly regulates
rhythmic regulation in mammals35,36.

Birds. Mammals lost OPN4x during evolution and chromosomal
re-arrangements37,38, which accompanied mammal adaptation to
the nocturnal niche39,40. In a bird’s retina, two lineages for OPN4
are expressed41. OPN4m is stably expressed in the retinal gang-
lion cells (RGCs) during the development of birds, whereas
OPN4x was limited to the forming RGCs at embryonic 8 (E8),
but mainly expressed in PROX1-positive horizontal cells (HCs) at
E1542. These OPN4-expressing horizontal cell precursors con-
tinue to express OPN4x after migrating and developing into
horizontal cells43.

In contrast to mammals, the distribution of OPN4 in birds is
no longer concentrated in the retina (Fig. 1)44. Bird pinealocytes
are directly photosensitive45, and the reconstitution of the
recombinant proteins with 11-cis-retinal demonstrated that it
expresses two lineages of melanopsins46. The transcriptional
levels of OPN4 in the pineal gland showed a more robust diurnal
feature than that in the retina and were significantly increased at
night41. Although avian pinealocytes possess both OPN4m and
OPN4x (also called OPN4-1 and OPN4-2 in chickens), their
distribution is not cell-specific. It may activate different types of G
proteins to perform light-sensing functions47. In addition,
multiple nuclei composing deep brain photoreceptors in birds
also express OPN4 (Fig. 1), including the lateral septal organ,

premammillaris nucleus, paraventricular nucleus (PVN), and
paraventricular organ48. OPN4-positive dopaminergic neurons in
these nuclei can respond to daytime length49.

Reptiles. The studies on OPN4 in reptiles has mainly focused on
lizards, sea snakes, and turtles, but there still needs to be more
evidence to locate the expression sites of OPN4 and its isoforms
accurately. To date, OPN4m was not detected in sea snakes, while
OPN4x was mainly expressed in RGCs and cone cells50. Although
OPN4x-positive staining was also observed in the inner nuclear
layer50, the cell type could not be determined. In freshwater
turtles, OPN4m is highly expressed in the retina, but it is not yet
certain whether OPN4m is localized in RGCs51. In extraretinal
photoreceptors, OPN4x is also expressed in the lateral eye and
brain of ruin lizards but has not been detected in the pineal
gland52.

Amphibians. When it was discovered, melanopsin was found in
the retina, melanophores, and deep brain photoreceptors of
Xenopus laevis15. Both OPN4m and OPN4x have been localized
in RGCs, horizontal cells, and pineal complex53,54. OPN4-
expressing RGCs have been shown to participate in the mela-
nocyte pigmentation process by producing alpha-melanocyte
stimulating hormone in the pituitary gland55. OPN4 in the pineal
complex may participate in the change of skin color through the
neuroendocrine pathway54. These photosensitive neuroendocrine
circuits enable Xenopus to maintain rapid physiological pig-
mentation change.

Teleost fish. Five splice variants were detected in zebrafish
(OPN4.1, OPN4a, OPN4b, OPN4xa, and OPN4xb), which are
derived from two melanopsin lineages (OPN4m and OPN4x) to
confer overall photosensitivity to the teleost retina and to adapt to
the dynamic light environments in the aquatic habitats56. Similar
to birds, both lineages of OPN4 are expressed in RGCs, and
partial OPN4 splice variants are distributed in horizontal
cells57–59, which independently mediates the role of HCs in
photosensitive signaling60. In extraretinal tissue, OPN4m was
detected in the dorsal thalamus, ventral hypothalamus, and
nucleus lateralis tuberis pars lateralis; OPN4x was evident in the
SCN and habenular nucleus59. Evidence for functional parti-
tioning suggests that OPN4m mediates the light-seeking behavior
in larvae distributed in the preoptic area61, whereas OPN4x
regulates circadian rhythms in the SCN62. The zebrafish pineal
gland is a photosensitive structure with various opsins, a sub-
population of pinealocytes capable of sensing shorter wavelength
light, characterized by the expression of OPN4x63. In addition,
two splice variants of OPN4, OPN4.1 and OPN4xb, were detected
in the pineal gland, which is responsible for inhibiting melatonin
synthesis during the day and maintaining voluntary movements
in a state of absolute arousal64.

Overall, current evidence has shown that OPN4 is mainly
distributed in the retina of mammals, while it is also widely

Table 1 Photosensitivity of vertebrate OPN4 in peripheral organs.

Taxa Species Location Related effects References

Amphibia Xenopus laevis Melanocyte Skin pigmentation Provencio et al.15

Reptile Hydrophiinae Skin Tail phototaxis Crowe-Riddell et al.27

Mammal Mouse Aortas, pulmonary arteries, airway smooth
muscle

Light-dependent relaxation Sikka et al.172; Barreto et al.173; Yim
et al.174

Mammal Mouse Melanocytes Pigmentation de Assis et al.175

Mammal Human Mesenchymal stem cells Angiogenesis Yang et al.176

Mammal Human Subcutaneous white adipose tissue Lipolysis of lipid droplets Ondrusova et al.177
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expressed in the brains of teleost fish, amphibians, reptiles, and
birds (Fig. 1).

Light activation of OPN4 in the retina
OPN4 is a G protein-coupled receptor with 11-cis retinal as a
covalently bound protonated Schiff base (PSB11)65. Under the
induction of light, the conformation of 11-cis retinal changed
with the transformation of PBS11 to its all-trans isomer, which
changed the state of PSB11 to a 7-cis state66–68. In this series of
changes, the 11-cis and 7-cis retinal indicate OPN4’s silent state,
while the all-trans structure indicates light signaling conversion68.
This tristability confers on OPN4 a sustained response to light
and a broader spectrum of its own69. Following this reaction, the

Gq/11 class of G-proteins will become active and further trigger
the activation of phospholipase C-beta 4 (PLCβ4). This leads to
the hydrolysis of phosphatidylinositol 4,5-bisphosphate to form
inositol triphosphate and diacylglycerol through the transient
receptor potential cation channel subfamily C member 6/7
(TrpC6/7) nonselective cation channels in the cell membrane and
finally increases the intracellular Ca2+ concentration
(Fig. 2)14,21,23. Using calcium ion probes, Sekaran et al. con-
sistently found that OPN4 can specifically respond to a wave-
length of 470 nm with a significant increase in Ca2+

concentration in a mouse model lacking cone and rod
photoreceptors70. In addition, a recent study demonstrated that
internally released Ca2+ marks the opening of the OPN4-

Fig. 1 Distribution of OPN4 in teleost fish, amphibian, reptiles, birds, and mammals on generalized sagittal sections. In teleost fish and birds, two
orthologs of OPN4 are distributed in the retina, brain, and pineal gland44,61,64,166–168. For teleosts, amphibians, and reptiles, splice variants of OPN4 are
classified as OPN4m and OPN4x. In the reptile brain, OPN4x expression has been detected in the telencephalon, mesencephalon, and rhombencephalon,
but the specific nuclei are still unclear. It is important to note that the available evidence does not determine the cell type of OPN4x in the inner nuclear
layer or whether OPN4m is present in RGCs in reptiles. Mammalian OPN4 is mainly expressed in the retina, which integrates more complex photosensitive
functions and widely projects to different brain regions through different subtypes of ipRGCs to regulate various physiological functions14. Brackets indicate
representative species. AC amacrine cell, AVT area ventralis of tsai, BC bipolar cell, Dm the medial zone of the dorsal telencephalic region, DT dorsal
thalamus, HA habenula, HC horizontal cell, ipRGC intrinsically photosensitive retinal ganglion cell, LH lateral hypothalamic nucleus, LSO lateral septal
organ, LVII facial lobe, LX vagal lobe, ME median eminence, MGC Muller glial cell, mPON magnocellular preoptic nucleus, nTS nucleus tractus solitarius,
PG preglomerular area, PH plexus of horsley, PMM nucleus premammillaris, POA preoptic area, POM medial preoptic nucleus, PTN posterior tuberal
nucleus, PVN periventricular nucleus, R raphe nucleus, SCN suprachiasmatic nucleus, SL nucleus septalis lateralis, SP subpallium, VT ventral thalamus,
VTA ventral tegmental area.
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mediated light-sensitive pathway71, which is the opposite of the
hyperpolarization of rods and cones14. In the opsin photo-
sensitive response termination, OPN4 is subject to C-terminal
phosphorylation. Its phosphorylation process preferentially
interacts with G protein-coupled receptor, kinase 2/3 (GRK2/3),
preventing OPN4-expressing ipRGCs from generating sustained
action potentials after light stimulation72–74. Meanwhile, arrestin
is also involved in the inhibition and reactivation of the light
response of OPN4. When the C-terminus of OPN4 is phos-
phorylated, it can bind to arrestin. β-arrestin 2 primarily regulates
the deactivation of OPN4, whereas β-arrestin 1 initiates regen-
eration of OPN475,76. The above responses allow ipRGCs to
sustain responses under prolonged illumination (Fig. 2).

Due to the complexity of the G protein family and the variation
of OPN4 subtypes in different species, the optical signal trans-
duction of the OPN4 pathway is mainly dependent on Gq/11 in
M1-subtype ipRGCs in mammalian and partial OPN4-expressing
cells in non-mammalian vertebrates25,28,47,77,78. Recent studies
have shown that adenylyl cyclase 2 and cAMP mediate the
phototransduction of OPN4 in M4-subtype ipRGCs24. Con-
sidering the ability of retinal adenosine to influence photo-
sensitive electrophysiological activity in the retina79, the effect of
cAMP on OPN4 phototransduction cannot be ignored. Admit-
tedly, OPN4-mediated phototransduction mechanisms have also
been implicated in species that involve Gi/o (human, mouse, and
amphioxus), Gs (chicken), or Gt (chicken) activity26,47,80.

Photosensitive regulation of circadian rhythms by OPN4
OPN4-induced non-visual photosensitive signals can target
numerous nuclei, including the SCN, intergeniculate leaflet,
ventral lateral geniculate nucleus, and olivary pretectal nucleus
(OPN)81. The SCN is the center for orchestrating mammalian
circadian rhythms, while the OPN is essential for regulating the
pupillary light reflex82,83. The synaptic structures at the ends of
these tracts specialize in different nucleus regions, leading to
differences in threshold sensitivity, speed, and accuracy of visual
responses in these nuclei84. As we mentioned above, M1-subtype
ipRGCs form the core of non-visual photosensitivity. According
to the molecularly defined Brn3b transcription factor expression,

the M1 subtype consists of two distinct subpopulations. The
majority of projections from M1 ipRGCs to the thalamus and
midbrain are Brn3b-positive M1-subtype ipRGCs85, which reg-
ulate OPN4-dependent pupillary light reflexes and light-induced
acute body temperature changes83,86,87. The SCN is innervated by
Brn3b-negative M1-type ipRGCs83, and it is here that the SCN
orchestrates multiple oscillators with a duration of almost
24 h88,89. Therefore, the non-visual function of OPN4 contributes
to controlling central rhythms in mammals via Brn3b-negative
M1-subtype ipRGCs projections in the SCN region.

Unlike mammals, chick retinal ganglion cells were classified
into six subgroups according to their somal and dendritic char-
acteristics (subgroups Ic, Is, IIc, IIs, IIIs, and IVc)90,91. The
subgroups IIs and IIIs had a more significant proportion of
thalamic projection92. Identifying the function of RGCs from
chickens is still challenging, despite similarities in RGC projection
pathways to the brain between birds and mammals. Brn3b
molecular markers commonly used in mammals may not be
suitable for birds. All types of Brn3 factors (Brn3a, Brn3b, and
Brn3c) can promote the differentiation of chick RGCs and are not
mainly regulated by Brn3b as in mammals77. Furthermore, spe-
cies differences make it challenging to directly administer current
antibodies and viral vectors to birds’ retinas or central nervous
systems. Nevertheless, studying retinal ganglion cell subtypes in
chicks may be more effectively accomplished using in vivo
transfection or electroporation transfection93–95. For non-
mammalian vertebrates, the pineal gland of birds and teleost
fish has rhythmic pacing functions and is involved in constituting
the multi-oscillatory circadian timing system96,97. The photo-
sensitization of photoreceptors in the retina by OPN4 may have
limited effects on circadian rhythms in these species. Therefore,
when discussing OPN4-mediated non-visual photosensitive
functions, the pineal gland of non-mammalian vertebrates will
also be emphasized.

It should be noted that cones and rods can affect not just the
local biological clock of the retina98,99, but also the master clock
of the SCN100. During development, ipRGCs form functional
connections with the cone/rod system in the inner reticular layer,
allowing them to serve as relays to transmit collected rod and
cone information to the brain while retaining their intrinsic

Fig. 2 Activation and termination of OPN4 in M1-subtype ipRGCs of mammals. The OPN4-mediated light-sensitive pathways are predominantly
triggered by the downstream Gq/11, PLCβ4, and TRPC6/7 cation channels in mammals. Retinaldehyde is covalently bonded to the transmembrane structure
in OPN4, and light (especially near 480 nm) can change its conformation from an 11-cis to an all-trans state to a 7-cis state (silent state). It will trigger
downstream Gq/11 coupling, causing PLCβ4 to break down PIP2 into DAG and IP3, where DAG activates the opening of the TRPC6/7 cation channels. The
activated C-terminus of OPN4 is phosphorylated in response to GRK2/3, resulting in inactivation. This process may also involve β-Arrestin 2. In addition,
β-Arrestin 1 leads to the isomer regeneration of OPN4, which serves subsequent light activation. DAG diacylglycerol, Gq/11 G protein subunit alpha q/11,
GRK2/3 G protein-coupled receptor kinase 2/3, PLCβ4 phospholipase C-beta 4, PIP2 phosphatidylinositol bisphosphate, IP3 inositol triphosphate, TRPC6/
7 transient receptor potential cation channel subfamily C member 6/7.
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photosensitivity30,101. Photoentrainment induced by rods can
influence the master clock via cone circuits, which may comple-
ment the function of photoentrainment in ipRGCs in dim
light102. Accordingly, the light power required to activate OPN4
(>1 μW) under in vitro conditions is higher than conventional
retinoids (~0.2 μW)103. At the same time, ultraviolet (λmax

365 nm) and green (λmax 505 nm) sensitive cone cells are also able
to indirectly influence the electrophysiological activity of the
neurons in the SCN via ipRGCs, contributing to
photoentrainment100,104. Additionally, harmonizing the photo-
sensitive signals from the cones, rods, and ipRGCs also plays a
crucial role in ensuring the pupillary light reflex functions
properly105. Thus, the influence of cones and rods on circadian
rhythm regulation should not be undervalued.

Contribution of OPN4 to mammalian circadian rhythms.
Exposure to monochromatic blue light (460 nm) can suppress
human melatonin levels and interfere with resetting circadian
rhythm106,107. As part of this regulation, the photosensitive signal
of OPN4 is first transmitted to the SCN through the retino-
hypothalamic tract (RHT), followed by the paraventricular
nucleus and the intermediolateral nucleus via the polysynaptic
circuit distributed in the SCN region, and finally to the release of
melatonin innervated by the sympathetic nerve in the superior
cervical ganglion (SCG)108,109. In addition to this approach,
OPN4-positive ipRGCs can rely on self-synthesized neuro-
transmitters and neuropeptides to more directly and rapidly affect
the SCN master clock.

Retinal glutamatergic signals are responsible for transmitting
external light information to the SCN, and binocular enucleation
induced a significant decrease in vesicular glutamate transporter 2
(Vglut2) immunoreactivity in the ventrolateral part of the
SCN110. The experiments in OPN4Cre/+::Vglut2flox/flox transgenic
mice proved that the glutamate transmission from ipRGCs is
necessary for light to entrain circadian rhythms in dim light111.
Regarding synaptic connections, glutamatergic ipRGCs have
neural projections with many photosensitive neurons in the
SCN. Many Vglut2-immunoreactive axons were observed to be in
synaptic contact with vasoactive intestinal peptide (VIP)- and
gamma-aminobutyric acid (GABA)-positive neurons112. ipRGCs
have direct synaptic connections with arginine vasopressin (AVP)
neurons in the dorsal SCN113. Glutamatergic signaling primarily
controls the expression of clock genes concerning the regulation
of the SCN master clock. The glutamatergic activation of the N-
methyl-D-aspartic acid (NMDA) receptor leads to an influx of
extracellular Ca2+, followed by Ca2+/calmodulin-dependent
kinase II and nitric oxide synthase activation114,115. Then, the
increased nitric oxide levels activate ryanodine receptors (RyRs)
in the intracellular endoplasmic reticulum116. Finally, intracel-
lular Ca2+ is released by activated RyR, leads to phosphorylation
of cAMP response element-binding (CREB) protein, and
regulates transcription of period and cryptochrome by CLOCK
and BMAL117. During the maintenance of the circadian rhythm,
the transcription factor CREB can integrate photosensitive
information and mediate the reset of the circadian rhythm118.
It is undeniable that the strength of this OPN4-mediated
glutamatergic signaling is different in species with diurnal activity
patterns, which is also reflected in their nonidentical phase-
response curves (PRC). The projection of ipRGCs-SCN in the
Nile rat (Arvicanthis niloticus) is comparable to that of the Syrian
hamsters119. However, there are differences in sensitivity to phase
movement between the two species on the NMDA-induced
PRC120,121, which is also reflected in the strong resistance of
Arvicanthis niloticus to NMDA122.

ipRGCs also express a peptide neurotransmitter called pituitary
adenylate cyclase-activating peptide (PACAP) and colocalize with
glutamate at the terminals of RHT in the SCN123,124. Previous
studies have shown that adding PACAP to SCN slices in wild
mice at circadian time (CT) 6 can advance the peak of the SCN
activity rhythm in this and subsequent circadian rhythms125.
However, the phase and amplitude of the neuronal firing rhythm
do not change in Adcyap1 (adenylate cyclase activating polypep-
tide 1, encoding PACAP) knockout mice at CT6 and CT7 in the
SCN126. In addition, light stimulation in the early night (CT15)
delayed the phase, while light stimulation in the late night (CT21)
advanced the phase127. Consistently, the influence of PACAP on
the circadian rhythm depends on glutamate in the late night
(phase advance), and the independent regulation of circadian
rhythms by glutamate occurs in the early night (phase
delay)126,128,129. The time-dependence phase shift at night may
be due to PACAP and glutamate acting on different SCN
neuronal subpopulations. Compared to glutamate, the positive
signals for PACAP were mainly distributed in the dorsomedial
SCN and a small amount in the central/ventral SCN126,130. Using
c-Fos to mark neuronal activity, neurons with significant light
responses during the subjective daytime were distributed in the
dorsal SCN, and light did not affect the rhythm phase of mice131.
This phenomenon is consistent with the evidence that circadian
rhythms are not altered in Adcyap1 knockout mice. Regarding
regulatory mechanisms, PACAP has a regulatory effect on
glutamatergic calcium signaling and has a different time window
from glutamate in regulating CREB phosphorylation132,133.
PACAP can regulate circadian rhythm by differentially regulating
mitogen- and stress-activated protein kinase 1 phosphorylation
downstream of p42/44 mitogen-activated protein kinase between
day and night134. Therefore, in terms of the autonomous rhythm
of SCN neurons, PACAP may be a supplementary factor to
OPN4-mediated SCN mastering circadian clock rhythms in
response to the risk of potential circadian imbalance underlying
Vglut2 deficiency when glutamate stimulation alone is
insufficient.

Most OPN4-containing cells also expressed vasopressin (VP),
which has glutamatergic nerve fibers projecting to the non-visual
nuclei of the brain, and the application of VP receptor antagonist
decreases the response of SCN neurons to photic entrainment of
the RHT135. Additionally, vasopressinergic axons can affect the
activity of ventral SCN cells in a VP-dependent manner136.
Applying the antagonists of vasopressin V1a and V1b receptors to
the SCN can promote (near instantaneous) re-entrainment to the
new light/dark cycle137. Current evidence suggests that VP+

ipRGCs have synaptic co-localization with gastrin releasing
peptide (GRP)- and VIP-positive neurons, but VP+ ipRGCs are
not directly connected in AVP neurons135. According to single-
nucleus RNA sequencing assays, all AVP clusters expressed
glutamate receptor subunits with minimal expression of GABA
receptors. However, some of their AVP nonlight-responsive
clusters could express VIP receptor type 2138. Therefore, we
speculate that photosensitive AVP, GRP, and VIP neurons may
be downstream neurons of ipRGCs when OPN4-expressing
ipRGCs secrete both glutamate and VP.

The effect of GABA on the master clock can be excitatory or
inhibitory in different contexts, but there is no doubt about its
importance139,140. The light information transmitted by ipRGCs
can induce oscillations in the GABAergic system in the SCN. This
may be because GABAB receptors are highly localized ventral to
the SCN and are closely related to the signal afferents and the
terminal synaptic remodeling of RGCs141. Studies in hamsters
have shown that the antagonism of either GABAA (ionotropic) or
GABAB receptors (metabotropic) in the SCN significantly
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increases the phase-shifting effects of light induction before a
light pulse is provided in the early night rather than in the late
night, suggesting that the inhibition of phase shift by extracellular
GABA occurs mainly in the early night142,143. These data proved
that changes in GABA in the SCN region are synchronized with
non-visual light signals in the RGCs. Through GABAergic
signaling, OPN4-expressing ipRGCs can also preserve circadian
stability. Some ipRGCs co-expressing Gad2 and OPN4 can
transmit GABAergic signals to the SCN to inhibit excessive light
entrainment, and neurons receiving these GABAergic signals
contain some VIP neuronal subsets144. Correspondingly, VIP
neurons maintain the regular operation of the circadian rhythm,
and inhibiting VIP neurons leads to increased phase shift145.

Therefore, the optical signal mediated by OPN4 in ipRGCs is
transmitted to the SCN via RHT. Light entrainment is mainly
determined by glutamatergic transmitters and supplemented by
multiple neuropeptides in the SCN to adjust the phase shift and
intensity (Fig. 3). Simultaneously, GABAergic neurotransmitters
may act as inhibitors in this terminal region. These inputs may
prevent unnecessary adjustments of the master circadian clock in
the SCN by external environmental light. Notably, the expression
time of neuropeptides does not match the timing of the phase
shift caused by it (such as PACAP)126. Considering that
neuropeptides need to undergo an extended length of RHT

(mice: ~10 mm; rat: >20 mm) after they are synthesized from the
cell body to the SCN region, they are transported only about
~140 mm per day along axons84,146. Therefore, when researching
circadian rhythms, it would be interesting to look into the rate of
transmission in the RHT and the rhythm of these neuropeptides’
expression in the retina.

Contribution of OPN4 to circadian rhythms in birds. The
central biological clock system of the bird is formed by the
hypothalamus, retina, and pineal gland147. The non-visual pho-
tosensitization in GUCY1* chickens, a null mutation chicken
model that causes blindness at hatching, is more complex than
that in rd/rd cl mice. When blocking the input of light signals
from the head, blocking the perception of light by opsins in the
SCN and pineal gland directly reduces the effect of light drive on
circadian rhythms6,148. On this basis, GUCY1* chickens showed
a feeding rhythm disruption after enucleation6. This finding
implies that the retina plays an essential role in maintaining the
circadian rhythm in chickens. Additionally, when only hypotha-
lamic photoreceptors were retained, GUCY1* chickens were still
able to maintain a brief circadian phase shift to adapt to the next
light-dark cycle, indicating that photoreceptors from the hypo-
thalamus may play a role in light regulation of circadian feeding

Fig. 3 The light entrainment of OPN4 on circadian rhythms may involve multiple neural projection pathways, including neurotransmitters or
neuropeptides. ipRGCs are a class of retinal ganglion cells that express OPN4 (red) and can transmit OPN4-mediated photosensitive signals to the SCN
via RHT projections. a Vglut2, but not Vglut1, packages glutamate (solid blue circles) into synaptic vesicles in these axons. These ipRGCs axons mainly
make synaptic contacts with VIP neurons (green), AVP (pink), and other light-responsive neurons (gray) in the SCN169,170. The VIP neurons form part of
the SCN core region and may communicate with AVP neurons via VIP receptor type 2. b Some ipRGC axons can also release PACAP (solid brown circles)
to regulate VIP neurons via VPAC2 and PAC1 receptors171. In addition, some OPN4-expressing ipRGCs also expressed VP (solid pink circles). c The axons
of these ipRGCs are glutamatergic and VP-positive, and light stimulation can affect their secretion of VP. VP+ ipRGCs showed synaptic co-localization with
GRP (yellow) and VIP neurons, but VP+ ipRGCs were not directly connected to AVP neurons135. d Some ipRGCs expressed GAD2 and could transmit
GABA (solid purple circles) to the SCN regions. These GABAergic signals can excite or inhibit some SCN neurons, including VIP neurons, and maintain the
homeostasis of the central rhythms144. AVP arginine vasopressin, GAD2 glutamic acid decarboxylase 2, GABA γ-aminobutyric acid, GRP gastrin releasing
peptide, ipRGC intrinsically photosensitive retinal ganglion cell, RHT retinal hypothalamic tract, SCN supra-chiasmatic nucleus, VIP vasoactive intestinal
peptide, VP vasopressin, PACAP pituitary adenylate cyclase-activating peptide.
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behavior148. Although the evidence presented above does not
exclude the possibility that other opsins have non-visual effects,
the unique modulation of eating rhythm in GUCY1* chicken is
particular to the light with wavelengths near the maximum
absorption peak of OPN4. Another noteworthy example under
light stimulation is that the pupillary light responses of chickens
follow a circadian rhythm comparable to that of mammals149. It
has been observed that GUCY1* chickens can maintain the cir-
cadian rhythm of pupillary light responses and reach maximum
sensitivity at 480 nm150. Considering the light-absorbing prop-
erties of OPN4 and the distinct nonvisual photosensitivity func-
tion, the above findings strongly indicate that chicken retinal
OPN4 regulates circadian rhythm. Notably, the photosensitivity
function of OPN4 in the chicken retina may be more complex
than is currently known. Chicken horizontal cells express OPN4x,
which controls the release of GABA and regulates the membrane
potential of photoreceptors following photosensitive activation43.
Although this function is oriented more towards vision mod-
ulation, it cannot be excluded that OPN4x-expressing HCs may
also affect the non-visual photosensitivity of OPN4-expressing
retinal ganglion cells (RGCs) through signaling crosstalk.

The pineal gland of birds shows a robust melatonin secretion
rhythm in vivo and in vitro. Monochromatic blue light (480 nm)
can advance the phase of the rhythm-negative regulatory genes
and inhibit the mRNA levels of Cry1 and Aanat (a key enzyme in
melatonin synthesis) in the pineal gland, both in vivo and
in vitro151,152. Since the specific membrane receptors for
melatonin are distributed in the SCN region, melatonin can act
directly on the SCN in an endocrine form to regulate the clock
rhythms in the SCN153. Compared with the pineal gland, the
chicken retina is a relatively independent organ in the circadian
rhythm, and pinealectomy does not alter the circadian oscillations
in the retina154. The main effect of monochromatic blue light on
the retinal circadian clock is to delay the phase of OPN4 rather
than the phase shifts of clock genes or the mRNA levels of
Aanat147. The SCN is the primary retinorecipient hypothalamic
structure in birds155. When OPN4 in the chicken retina is excited
by light, its non-visual light signals are mainly transmitted to the
SCN. Then, the axons emitted from the SCN regulate down-
stream nuclei, such as the PVN and the infundibular nucleus
(similar to the mammalian arcuate nucleus)156. It has been
demonstrated that the hypothalamic appetite-related genes show
a circadian rhythm157. Is it possible that ipRGCs expressing
OPN4 might indirectly regulate the appetite of broilers through
their neural projections to the SCN? Further investigation of the
relationship between the non-visual photosensitive function of
OPN4 and the feeding rhythm will help answer this question.

Contribution of OPN4 to circadian rhythms in teleost fish.
Although the light-sensing mechanism of an extraretinal photo-
receptor is unclear, it may represent the most basic approach to
light-sensing44,158. The eye and pineal gland are the main central
clock structures for zebrafish, which conduct autonomous oscil-
lations, photoreception, and melatonin production159. The
eomesa-expressing RGCs and pineal gland in zebrafish both
express Opn4.1 and Opn4xb160,161. When knocked out the
Opn4.1 and Opn4xb in the zebrafish, genes involved in photo-
transduction and tryptophan metabolism were significantly
altered, resulting in increasing melatonin synthesis64. Meanwhile,
by affecting the synaptic plasticity in hypothalamic neurons or
directly acting on melatonin receptors distributed in the hypo-
thalamic SCN, the light signals can control the circadian rhythms
through OPN4 in zebrafish162–165. Therefore, OPN4 expressed in
the retina and central nervous system constructs photosensitive

sensing in zebrafish and regulates circadian rhythms through
melatonin.

Conclusions
OPN4 is a member of the G protein-coupled receptor family.
Mammalian OPN4-expressing ipRGCs also express a variety of
neurotransmitters and neuropeptides, which together with OPN4
regulate circadian rhythms. In contrast to mammals, teleost fish
and birds have a more complicated system for controlling their
circadian rhythms, and OPN4, which is expressed in the retina,
brain, and pineal gland, is crucial for photosensitivity.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.
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