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Earlier and more uniform spring green-up linked to
lower insect richness and biomass in temperate
forests
Lars Uphus 1✉, Johannes Uhler2, Cynthia Tobisch3,4, Sandra Rojas-Botero 3, Marvin Lüpke1, Caryl Benjamin1,

Jana Englmeier 2, Ute Fricke 5, Cristina Ganuza5, Maria Haensel 6, Sarah Redlich 5, Jie Zhang 5,

Jörg Müller 2,7,9 & Annette Menzel1,8,9

Urbanization and agricultural intensification are considered the main causes of recent insect

decline in temperate Europe, while direct climate warming effects are still ambiguous.

Nonetheless, higher temperatures advance spring leaf emergence, which in turn may directly

or indirectly affect insects. We therefore investigated how Sentinel-2-derived start of season

(SOS) and its spatial variability (SV-SOS) are affected by spring temperature and whether

these green-up variables can explain insect biomass and richness across a climate and land-

use gradient in southern Germany. We found that the effects of both spring green-up vari-

ables on insect biomass and richness differed between land-use types, but were strongest in

forests. Here, insect richness and biomass were higher with later green-up (SOS) and higher

SV-SOS. In turn, higher spring temperatures advanced SOS, while SV-SOS was lower at

warmer sites. We conclude that with a warming climate, insect biomass and richness in

forests may be affected negatively due to earlier and more uniform green-up. Promising

adaptation strategies should therefore focus on spatial variability in green-up in forests, thus

plant species and structural diversity.
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In just 27 years (1989-2016), a 76% decline in insect biomass
has been recorded in temperate Europe1. As insects fulfil many
key functions (e.g. pollination, pest suppression, food supply

for higher trophic levels) on which entire ecosystems and human
activities are highly dependent2, it is urgent to understand the
reasons for this marked decline. Until recently, urbanization and
agricultural intensification were considered the main drivers3–6.
However, according to Müller et al.7 changes in temperature and
precipitation can also explain the decline, although the exact
mechanisms are complex. During the flight period, temperatures
were found to have neutral to positive effects on insect
biomass3,7,8 and richness3,8, although extreme heat is found to be
negative9,10. Winter temperatures, on the other hand, are found
to negatively affect insect biomass7. One reason for this could be
that, especially in life stages previous to the flight period, climate
may impact insects differently by more indirect pathways11. In
particular, prominent climate change-induced shifts in phenolo-
gical events12,13, such as leaf emergence, flowering or insect egg
hatching, may also affect insect fitness and diversity9.

Phenology is an important trait for many organisms, as the
presence of consumers and their resources must match spatially
and temporally to optimize fitness14–16. Since climate warming-
related shifts differ among trophic levels17–19, trophic mismatches
are expected to occur more frequently15. So far, however, mis-
match effects on insect populations have only been studied for
single species pairs, e.g. between spring ephemeral Corydalis
ambigua and bumble bees, its pollinators20, and between oak and
winter moth21, although this could be one of the main reasons for
their decline9,22. With spring green-up, vegetative and floral
resources become available for primary consumers, but their
optimal quality is important as well23. Therefore, too early or too
late green-up in relation to the presence of consumers can lead to
trophic mismatch24. If, for example, phytophagous insect larvae
hatch before leaf emergence, larvae will starve24. On the other
hand, if the leaves emerge well before the larvae hatch, their food
quality may be less optimal, as the freshly emerged leaves are the
most digestible, richest in protein and, regarding woody species,
contain the fewest protective chemicals23,25. In the widely studied
Operophtera brumata (winter moth), late hatching relative to the
green-up of its host plant affects population fitness more nega-
tively than early hatching relative to green-up26. However, it is
unknown whether this also applies for the total insect commu-
nity, including species with other annual life cycles27 and higher
trophic levels.

For both types of mismatch, the inherent spatial variability of
spring green-up, e.g. by topographical, land-use, structural or
species diversity, in the insect foraging horizon could act as a
buffer by providing timely high-quality forage to primary
consumers28. Although this has been suggested several times in
the literature14,29,30, it has been empirically demonstrated only
for larger herbivores such as caribou31 and red deer32. Surpris-
ingly, there are still no studies directly linking phenological
variability to insect demography (but see the studies of Oliff-Yang
et al.28 and Hindle et al.33 for indirect effects on single species).

Thus, we assume that for the total insect community a higher
spatial variability in green-up is beneficial and that the mean
green-up date is of influence, but the direction of influence unsure
because of two contradicting mechanisms. Furthermore, since
phenological sensitivity generally decreases with increasing tropic
levels17–19, we expect that for insects belonging to functional
groups of higher trophic levels, e.g. predators, these effects are less
pronounced than for insects of lower trophic levels, e.g. phyto-
phagous insects and pollinators. However, for parasitoids,
although also higher trophic levels, we expect pronounced effects
similar to primary consumers, as they are often highly specialized
and use host-plant cues34.

By using a space-for-time approach across ~180 sites in
southern Germany22,35 and high-resolution remote sensing36, we
were able to circumvent the previously limiting logistical and
temporal constraints linked to insect sampling and phenological
observations. The mean start of the season (mean SOS) and
spatial variability of SOS (SV-SOS) during 2017-2019 were
derived from 10m Sentinel-2 pixels37 for 100 m radii around our
study plots in Bavaria. These 179 plots were stratified over a mean
annual temperature gradient from 5.0 to 10.3 °C and included
different local land-use types (forests – meadows – arable fields –
settlements) embedded within three regional land-use types
(seminatural – agricultural – urban landscapes)3,38. In spring/
summer 2019, 1293 bi-weekly samples of insect BIN richness
(further ‘insect richness’ as a proxy for species richness), and
biomass were retrieved from 179 malaise traps3. We added the
green-up variables (mean SOS and SV-SOS), as well as plant
species richness, to the generalized additive models from Uhler
et al.3, in which the insect richness and biomass data were
explained by land use and climate only, and further explored
green-up effects between land-use classes and functional and
taxonomic insect groups.

Results
In 2017-2019, the mean SOS date (DOY) was 109.5 in forested
areas (sd 14.7 d), 104.2 in cropland (sd 28.6 d), 96.0 (sd 18.7 d) in
grassland, 101.7 (sd 20.2 d) in urban areas, i.e. with considerable
differences between these land-use classes. Moreover, mean SOS
dates also varied between years: mean DOY 107.8 (sd 24.0 days)
in 2017, mean DOY 101.6 (sd 18.6 d) in 2018 and mean DOY
102.8 (sd 20.7 d) in 2019 (Fig. 1). How SOS differed among those
land-use classes again also depended on the year and their March
and April temperatures. For example, the mean air temperature
on the plots in March 2017 (6.8 °C) was 2.7 °C warmer than in
the other 2 years followed by an April (7.2 °C), which was 3.9 °C
cooler, resulting in a rather high SOS difference between forest
(later) and the other land-use classes (earlier). On the other hand,
in 2018, with a relatively cold March (2.3 °C, ˗4.2 °C compared to
other two years) and a warm April (12.6 °C, +4.3 °C compared to
other two years), the SOS differences between land-use classes
were relatively small (Fig. 1). In general, forest plots had the
lowest SV-SOS (mean 9.7 d, range 2.4 to 20.4 d), indicating lower
spatial variation in SOS dates. In contrast, arable field plots had
the highest SV-SOS (mean 19.4 d, range 7.7 to 34.5 d).

In our generalized additive models (gams) to explain insect
BIN richness and biomass by regional land use and interactions
between local land use and green-up variables, climate variables,
and plant species richness as fixed linear effects, we found strong
distinctions between the forest plots and the other local land-use
types. For forest plots, partial effects of both green-up variables
were significant, where insect biomass and richness were
increased with later mean SOS and higher SV-SOS (Table 1;
Fig. 2). For arable field and meadow plots, insect richness was
increased with later mean SOS as well. In contrast, biomass in
meadow plots was decreased with later mean SOS. Biomass in
arable field and settlement plots, as well as richness in settlement
plots did not respond to mean SOS. For meadow, arable field and
settlement plots, both richness and biomass were decreased with
higher SV-SOS (Table 1; Fig. 2). Insect richness and biomass were
both increased with higher local temperatures in all local land-use
types, whereas with local humidity, richness was increased in
arable field plots and decreased in settlement plots. With mean
annual temperature (MAT), richness was increased in forest
plots, and biomass was decreased in meadow plots; for mean
annual precipitation (MAP) no effects were found. With higher
plant species richness, insect biomass significantly decreased in
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forest and settlement plots and insect richness increased the latter
one (Table 1). SV-SOS in forest plots did not mainly reflect plant
species richness, since SV-SOS at the radius of 200 m was neither
correlated to species richness of all vascular plants (Pearson
correlation coefficient 0.01, p= 0.95) nor to richness of woody
species only (Pearson correlation coefficient 0.17, p= 0.21).

Generally, the partial effects of both green-up variables on BIN
richness were quite similar among the different functional groups:
phytophagous insects, pollinators, predators, parasites, para-
sitoids, and detritivores (Figs. 3, 4). In forests, the richness of
almost all groups was significantly higher with a later mean SOS
and a higher SV-SOS (p < 0.05), only for predators, the response
to SV-SOS was not significant (p= 0.11). In arable fields, the
richness significantly increased with mean SOS for phytophagous
insects, pollinators, predators and parasitoids (p < 0.05). The
increase was not significant for parasitoids and detritivores. In
meadows, the richness increased significantly only for phyto-
phagous insects and predators (p < 0.05), but insignificantly for
pollinators, parasites, parasitoids and detritivores. In settlement
sites, richness decreased with mean SOS, but only significantly for
parasites (p < 0.05, Fig. 3). In contrast to forest plots, richness
decreased with SV-SOS in meadows, arable field and settlement
plots (Fig. 4). However, in meadows, this decrease was not sig-
nificant for pollinators and parasites. In arable fields, this decrease
was not significant for predators. In settlements, this decrease was
not significant for phytophagous insects, predators and
detritivores.

For most taxonomic groups, richness in forests was also sig-
nificantly higher with a later mean SOS and with a higher SV-SOS
(p < 0.05), but for groups with low amount of species this
response was weak and insignificant (Orthoptera (p= 0.32), Rest
(p= 0.06) and Red-Listed (p= 0.91) for mean SOS and
Orthoptera (p= 0.08), Rest (p= 0.07) and Hemiptera (p= 0.67)
for SV-SOS; Supplementary Figures 2, 3). In meadows, the only
significant responses were higher richness with later mean SOS
for Hemiptera, Rest and Red-Listed and lower richness with
higher SV-SOS for Diptera and Red-Listed species (p < 0.05). In
arable fields, richness was significantly higher with increased
mean SOS with Coleoptera, Diptera, Hymenoptera, Lepidoptera,
Rest and Red-Listed species and richness was decreased with
increased SV-SOS for Diptera, Hymenoptera, Lepidoptera and
Red-Listed species. In settlements, the response of richness to
mean SOS was mostly insignificant, except for an increased
richness with later mean SOS for Orthoptera. Richness decreased
with SV-SOS for Hemiptera, Hymenoptera, Lepidoptera and Red-
Listed species in settlements (Supplementary Figure 2).

To understand the diverging effects of temperature, directly
versus indirectly via the green-up variables, we finally performed
confirmatory path analyses (CPA, Fig. 5). With a separate model
for each local land-use type, we tested the direct effects of spring
temperature on the green-up variables in combination with the
effects of the green-up variables to explain insect richness and
biomass, together with climate variables, regional land use and
plant species richness (see Methods). In forest plots, mean SOS
was earlier with higher spring temperatures, and earlier mean
SOS was associated with reduced insect richness and biomass.
Our path model revealed a tendency (however p= 0.14) for a
negative effect of higher spring temperatures on SV-SOS. Addi-
tional linear models which we ran for all forested areas within the
100 m radii and also for 1000 m radii around the 179 Malaise
traps, confirmed this finding, as SV-SOS tended to decrease with
higher spring temperatures for the 100 m radii (estimate ˗0.90,
p= 0.06, adj. R2= 0.02), and more strongly and significantly for
the 1000m radii (estimate ˗2.01, p < 0.001, adj. R2= 0.22; Sup-
plementary Figure 4). In turn, lower SV-SOS was associated with
reduced insect richness and biomass. Thus, in forests, for both
pathways of mean SOS and SV-SOS, spring temperature (indir-
ectly) had a net negative effect on insect richness and biomass.
This result markedly opposes the direct strong positive effects of
local temperature as well as the insignificant effects of MAT
(Fig. 5a). As in the original model, plant species richness had no
significant effect on insect richness, but was associated with
reduced biomass. For the other three local land-use types (mea-
dow, arable field, settlement, Fig. 5 b-d), we neither found any
significant path from spring temperature via green-up to insects,
nor of plant species richness.

Discussion
The most important and innovative finding in our study on insect
richness and biomass in a temperate region is that higher air
temperatures may have indirect negative effects on insects via the
spring green-up pathway. Interestingly, these effects were most
pronounced in forest plots, which have comparatively less
intensive land use and should therefore be less affected by land-
use-driven insect declines3,6.

In forest plots, later spring green-up (mean SOS) was asso-
ciated with both higher insect richness and biomass (Table 1,
Fig. 2), suggesting that – in line with our hypotheses – early leaf
unfolding and flowering, which also occur under climate warming
conditions, are unbeneficial. This could be explained either by the
declining food quality over time and/or by phenology-related

2017 2018 2019

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

forest

grassland

cropland

urban

SOS (DOY)

Fig. 1 SOS distribution per year and land use type. Annual density ridges of SOS (DOY) in 2017-2019 for the four most dominant land use types (covering
99.99% of nonwater surface) in 100m radii around the 179 study plots with Malaise traps on a climate and land-use gradient in Bavaria. “Semi-natural
areas” (covering 0.01% of non-water surface) are not shown.
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micrometeorological changes across the vertical habitat structure
due to earlier canopy closure.

Regarding the first explanatory pathway, our results suggest that
insect populations are less affected by a lack of forage before the
SOS than by deterioration in its nutritional quality after SOS.
Spring 2019 was relatively warm (+ 3.0 °C compared to 1961–1990
in March and +2.4 °C in April for Bavaria)39. If insect phenology
responded more slowly to this warm spell than plant phenology,
which is generally expected17,40, a mismatch in forage availability
would be less likely than a quality impairment of the available food.
Consequently, in opposite direction, the later the green-up takes
place, the better it should be for most (herbivory) insects, as
nutritional quality decreases over time23. Nevertheless, there are
also examples for trophic interactions where the relevant phenol-
ogy of primary consumers (e.g. egg hatching of winter moth21)
shifts more than their resources (e.g. leaf emergence)41, but this
trophic mismatch varies from year to year21,42. However, even in
this example, the net population fitness was higher when green-up

occurred later than egg hatching (although this led to larval star-
vation), while green-up before egg hatching had more detrimental
effects due to lower fecundity and pupal weight26. In this respect,
those results differ from our linear effect of mean SOS on the whole
insect community, but O. brumata has a rather specific life cycle in
which the larval stage coincides with budburst and leaf elongation.
In contrast, we took representative snapshots of local flying insect
communities in a ~90.000 km² region throughout the spring/
summer season. This means that we also included phytophagous
insects that have their larval stage later in the year (like in the study
of Pöyry et al.43) and multivoltine species with at least one larval
stage later in the year. We assume that for those species, nutrient
quality is a more crucial factor than forage availability. Further-
more, our data contained species groups such as micro-Lepidoptera
whose life history is unknown in detail27, and secondary consumers
that are less dependent on vegetation17,40.

Secondly, a later onset of green-up in forests could influence
insect richness and biomass through microclimatic conditions in

Table 1 Effects of green-up variables, climate, land use, and plant species richness on insect BIN richness and Biomass.

BIN richness Biomass

gam: Negative Binomial, link = log gam: gaussian, link = log

Estimate (Log-mean) * 103 (St. error) Estimate * 103 (St. error)

Constant 73.00 (636.50) −2433.1* (1128.2)
Local land use (reference = Forest)
Meadow 1477.0* (598.2) 4815.4*** (935.8)
Arable field 988.7 (579.3) 3379.6*** (916.6)
Settlement 3323.4*** (730.8) 1483.0 (1384.4)
Regional land use (reference = Semi-natural)
Agricultural 22.58 (28.25) 187.4*** (43.397)
Urban 23.01 (28.34) −49.32 (46.646)
Mean SOS: Forest 10.01*** (2.672) 9.085* (3.900)
Mean SOS: Meadow 4.739* (2.327) −8.314* (3.638)
Mean SOS: Arable field 5.261** (1.712) −0.876 (2.447)
Mean SOS: Settlement −2.691 (3.293) −0.673 (6.724)
Spatial variability SOS: Forest 16.58*** (4.803) 37.66*** (7.118)
Spatial variability SOS: Meadow −8.007* (3.130) −19.11*** (5.016)
Spatial variability SOS: Arable field −13.65*** (3.277) −15.20** (5.068)
Spatial variability SOS: Settlement −8.416** (3.233) −13.86* (6.073)
Plant species richness: Forest 0.899 (0.737) −3.887*** (1.003)
Plant species richness: Meadow 0.732 (0.810) −2.449 (1.271)
Plant species richness: Arable field 1.279 (0.951) 0.808 (1.451)
Plant species richness: Settlement 2.811*** (0.720) −2.755* (1.192)
MAP: Forest 0.157 (0.185) 0.174 (0.355)
MAP: Meadow −0.053 (0.191) 0.052 (0.372)
MAP: Arable field 0.204 (0.252) −0.007 (0.467)
MAP: Settlement −0.026 (0.202) 0.635 (0.382)
MAT: Forest 150.4*** (42.759) 124.40 (77.553)
MAT: Meadow 30.63 (48.040) −218.9** (80.832)
MAT: Arable field 50.90 (49.736) −152.5 (85.402)
MAT: Settlement 9.169 (51.736) 68.19 (94.818)
Local temperature: Forest 37.77*** (11.153) 91.11*** (16.075)
Local temperature: Meadow 44.67*** (10.874) 88.52*** (15.839)
Local temperature: Arable field 36.10** (10.979) 92.21*** (16.430)
Local temperature: Settlement 28.40* (11.09) 72.71*** (18.078)
Local humidity: Forest −1.123 (2.534) −3.950 (4.039)
Local humidity: Meadow 4.000 (3.000) 5.237 (4.819)
Local humidity: Arable field 5.915* (2.834) −0.011 (4.636)
Local humidity: Settlement −8.553** (3.306) 0.912 (5.752)
Observations 1214 1293
Adjusted R2 0.381 0.581
Note: Bold is significant: *p < 0.05; **p < 0.01; ***p < 0.001

Estimates of the predictors of the generalized additive models to explain insect BIN Richness and Biomass over a whole season (8 samplings at 179 traps) in which regional land use and the interactions
between local land use and MAP (long-term mean annual precipitation), MAT (long term mean annual temperature), local temperature, local humidity, mean SOS, spatial variability in SOS and plant
species richness, were used as fixed linear effects, day as smoothed effect and space as random effect. Estimates for the variables in interaction with local land-use type represent the partial effects for
the respective local land-use type, so they are independent of a reference. An offset of log(sampling days) was used to control for sampling period differences. For biomass, family =
gaussian(link= “log”) and for richness, family = negative binomial was used. Standard errors (*10³) are indicated in between parentheses.
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the stands: When the tree canopy closes in spring after leaf
unfolding and thus provides more shade to the stand interior,
daytime temperatures in the understory are significantly lower
than above the canopy or in open areas44. Consequently, from an
insect’s perspective of which many do not rely on canopy
greenness itself, but on geophytes and other understory vegeta-
tion, later canopy green-up, which allows longer warmer max-
imum temperatures inside deciduous stands and longer flowering
of geophytes on the forest floor45 before green-up, should be
beneficial for ectothermic and thermophilic insects3,8, as well as
pollinators.

In forest plots, spatial variability in green-up (SV-SOS) was
associated with higher insect biomass and richness (Table 1,
Fig. 2), probably because higher variability provides high-quality
vegetative resources over a longer period of time14,29,30. This
spatial variability in green-up may result from species diversity in
(woody) plants46, diversity of stand structure including shrubs

and gaps47, and topographic heterogeneity, which has been
shown to extend the flowering period of pollinator resources28,
reducing temporal mismatch33 and improving pollinator
diversity28,48. Since we included plant species richness itself in the
models, which was positively but not significantly related to insect
richness and negatively related to insect biomass in forest plots
(Table 1), we were able to disentangle the species diversity effect
from the spring green-up variability as such. To the best of our
knowledge, this is the first time that this positive effect of green-
up variability has been demonstrated for insects, which was
previously only known for some large herbivores such as
caribou31 and red deer32.

Considering the different functional groups, higher-order
consumers are phenologically less sensitive than primary con-
sumers (phytophagous insects and pollinators)17–19. Further-
more, a recent study showed that plant species richness has
stronger effects on herbivorous than on predatory insects49. Our
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Fig. 2 Partial effects of the green-up variables on insect BIN richness and Biomass. Effects were derived from generalized additive models (gams) on BIN
richness (a, b) and on Biomass (c, d), in which we included regional land use and interactions of local land use with all green-up variables, with all climate
variables and with species richness as fixed linear effects (see Table 1). ‘Day’ was used as smoothed effect and space as random effect. An offset of
log(sampling days) was used to control for sampling period differences. For biomass, family = gaussian(link= “log”) and for richness, family = negative
binomial were used. Insect data were recorded over a whole season (8 samplings) at 179 traps, resulting in 1214 observations for BIN Richness and 1293
observations for Biomass. a, c, partial effects of mean SOS. b, d, partial effects of SV-SOS.
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results in forest plots confirm this phenological response variation
with functional groups: ‘Predators’ was the only functional group
whose richness showed an insignificant response to SV-SOS in
contrast to the significantly positive response of primary con-
sumers (phytophagous insects and pollinators) to SV-SOS
(Fig. 4). However, we found that the richness of detritivores,
parasites and parasitoids, also higher trophic level groups,
responded significantly positive to SV-SOS, similarly to the pri-
mary consumers (Fig. 4). One explanation for this could be that
predators are usually generalists, while parasitoids, for example,
are more often dependent on very specific hosts and therefore
show similar responses to pollinators and phytophagous insects34.
Regarding the effects of mean SOS on richness, however, we did
not find differences among functional groups in forests. The fact
that the richness of some taxonomic groups was not significantly
responding to mean SOS and SV-SOS in forests can be attributed
to the low species numbers in those groups (Supplementary
Figures 2, 3).

In arable field, meadow and settlement plots, the effects of the
green-up variables SOS and SV-SOS in a 100-m radius on insect
richness and biomass were either less strong but in line with our
hypotheses, insignificant, or even opposite to our hypotheses.

There are many, albeit vague, suggestions to explain this (see
Supplementary Discussion, Supplementary Figure 5).

Since we only used the spatial variation in temperature (and
related variation in the SOS variables) across Bavaria in a space-
for-time approach instead of a time series, our results are only to
a limited extent transferable to climate change effects. However,
they still suggest that climate change may further negatively
impact (flying) insects via different pathways related to green-up.
Mean SOS was earlier and SV-SOS was lower in forest plots with
higher spring temperature (Fig. 5, Supplementary Figure 4),
which is consistent with previous studies reporting that spring
green-up is advancing with warming12,13 and that spatial varia-
bility in green-up decreases with warming at scales relevant to
forage horizons of higher trophic levels31,50–52. Therefore, for
both green-up pathways (mean SOS and SV-SOS), we expect that
further climate change may have an indirect negative impact on
insects, although the direct temperature influence would suggest a
beneficial effect (Fig. 5).

According to our model results (Table 1, Fig. 2), insect declines
could theoretically be alleviated by forests, which are greening-up
later and whose green-up is more spatially diverse. Although later
green-up could be achieved by increasing the proportion of
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Fig. 3 Partial effect plots of mean SOS in interaction with local land use on BIN richness per functional group. Effects were derived from generalized
additive models (gam) in which we included regional land use and interactions of local land use with all green-up variables, with all-climate variables and
with species richness as fixed linear effects. As in the initial model (Fig. 2, Table 1) ‘Day’ was used as smoothed effect and space as random effect. An offset
of log(sampling days) was used to control for sampling period differences. Family = negative binomial was used. Insect data were recorded over a whole
season (8 samplings at 179 traps), resulting in 1214 observations per model. a, phytophagous insects. b, pollinators. c, predators. d, parasites. e, parasitoids.
f, detritivores.
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woody species with lower temperature sensitivities46,53, this
might probably alter insect community composition as such,
particularly as herbivores are often specialized within plant orders
or families. Higher spatial variability in spring green-up could be
achieved by greater woody species diversity, the presence of
shrubs or by more greater structural diversity with embedded
openings, thus more diverse microclimates, as those may also be
more diverse in insect resources33,48. This latter aspect could
successfully contribute to a climate change adaptation strategy for
insects in forests. One could assume that the modelled effects on
insects as well as the adaptation strategies mentioned above are an
indirect effect of (woody) plant species diversity rather than a
direct effect of green-up variability. However, we can exclude this
potential effect, since the green-up variables for forest plots were
still significant even when plant species richness was included in
the models. Moreover, neither plant species richness nor woody
species richness was correlated with mean SOS and SV-SOS in
200-m radii (separate Pearson correlation tests).

So far, most studies which found trophic mismatch have
focused on single species pairs, e.g. oak – winter moth21 and
Corydalis ambigua – bumble bees20, even though the insect
community as a whole has declined dramatically1. Furthermore,

meta-analyses have examined phenological sensitivities across
multiple species17–19, but not their ecological outcomes such as
species richness and biomass. This is the first study to link
vegetation phenology to overall richness and biomass of insects
across an entire region, thereby filling an important research gap.
Until recently, the field of observational ecology was relatively
disconnected from the field of remote sensing, despite its enor-
mous potential due to its ability to cover large areas and its low
labor intensity36 (but see the study of Pöyry et al.43). Especially
the freely available Sentinel-2 data with its fine spatial and tem-
poral resolution has the potential to change this. However, up to
now, there has only been one study54 that used Sentinel-2-derived
phenology parameters, including SOS to explain variability in
insect populations. However, the study did not aim to link
vegetation phenology per se to insects, but used phenology
parameters as proxies for land-use intensity.

Our study has shown that spring green-up and its inherent
spatial variability influence the insect community in temperate
Europe, and that climate warming is likely to contribute to part of
today’s dramatic insect decline through this pathway, especially in
forests, the least intensive land-use type in our study. There,
climate warming may contribute to a decline in insect richness
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Fig. 4 Partial effect plots of SV-SOS in interaction with local land use on BIN richness per functional group. Effects were derived from generalized
additive models (gam) in which we included regional land use and interactions of local land use with all green-up variables, with all-climate variables and
with species richness as fixed linear effects. As in the initial model (Fig. 2, Table 1), ‘Day’ was used as smoothed effect and space as random effect. An
offset of log(sampling days) was used to control for sampling period differences. Family = negative binomial was used. Insect data were recorded over a
whole season (8 samplings at 179 traps), resulting in 1214 observations per model. a, phytophagous insects. b, pollinators. c, predators. d, parasites.
e, parasitoids. f, detritivores.
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and biomass through an earlier start and reduced spatial varia-
bility of spring green-up.

Methods
Study design. For our study, we used the study design developed
by Redlich et al.38., which was also used by Uhler et al.3 to study
land use and climate affects in a space-for-time approach. The
179 study plots were stratified across a climate and land-use

gradient in Bavaria, southern Germany. Mean annual temperatures
(MAT) at these sites ranged from 5.0 to 10.3 °C and mean annual
precipitation (MAP) from 550 to 1961 mm (1991 – 2020). 60
quadrants of ~6×6 km, in which the plots were later established,
had been selected according to a nested land-use intensity gradient:
regarding regional land-use, 20 were in semi-natural landscapes
(dominated by forest), 20 in agricultural landscapes (dominated by
arable fields and grasslands) and 20 in urban landscapes (domi-
nated by settlement area), based on CORINE land use (2018) from
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Fig. 5 Confirmatory path models for each local land-use type. a, forest. b, meadow. c, arable field. d, settlement. Each confirmatory path model contains
two components: one part using linear models to explain green-up variables by mean spring temperature. In forests, n= 55 per model, in meadows, n= 45
per model, in arable fields, n= 44 per model, in settlements, n= 35 per model; the other part using generalized additive models to explain BIN richness and
biomass by the green-up variables, climate variables, regional land use and plant species richness as fixed linear effects. As in the initial model (Fig. 2,
Table 1), ‘Day’ was used as smoothed effect and space as random effect. Instead of offsets of log(sampling duration), log(richness)/log(sampling duration)
and log(biomass)/log(sampling duration) were used to control for sampling period differences. For biomass, family = gaussian(link= “log”) and for
richness, family = negative binomial was used. In forest plots, n= 376 for richness and n= 395 for biomass, in meadows, n= 310 for richness and n= 333
for biomass, in arable fields, n= 298 for richness and n= 313 for biomass. In settlement plots, n= 230 for richness and n= 252 for biomass. Numbers
indicate standardized partial effects. Dark grey thick arrows indicate significant paths (p < 0.05), light grey insignificant paths. Pictures show Malaise trap
plots in each of the local land-use types.
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the Copernicus Land Monitoring Service. In each quadrant, three
(in one quadrant only two because of permission constraints) plots
were established in the three most dominant local land-use types.
This resulted in 55 plots dominated by forest (forest plots), 45 plots
dominated by grassland (meadow plots), 44 plots dominated by
cropland (arable field plots) and 35 plots dominated by urbanized
areas (settlement plots). For a spatial visualization of the study
design, see Supplementary Figure 6. For a more detailed descrip-
tion, see Redlich et al.38.

Insect data. An extended version of the insect dataset55 from Uhler
et al.3 was used, which was obtained as follows. In each plot a black
Townes-style Malaise trap (height front: 0.90m; height rear:
0.60m; length: 1.60m)56 was placed to catch flying insects (in fact
“arthropods”, since some minor species groups such as spiders
were caught as well and were not excluded from the analysis). The
sampling vessels were exchanged every two weeks between mid-
April and mid-August 2019, resulting in eight catches per plot and
a total of 1293 samples. Insect biomass was measured per catch and
- as a proxy for species richness - BIN richness was determined by
DNA barcoding, according to Uhler et al.3 and Hausmann et al.57.
Since BIN clusters match taxonomic species well (90-99%)3,57,
taxonomic and functional groups were easily defined based on BIN
richness data. We distinguished the six largest taxonomic orders,
specifically Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepi-
doptera and Orthoptera, and six functional groups, namely phy-
tophagous insects, pollinators, predators, parasites, parasitoids and
detritivores. Species, which are phytophagous as larvae but polli-
nator as adults (Lepidoptera) were assigned to both groups. Fur-
thermore, we separated Red-Listed species, based on Red Lists for
the federal state of Bavaria and Germany. For a more detailed
description of the plot establishment, field and lab work, see Uhler
et al. (2021)3.

Spring green-up data. As a measure of spring green-up, we used
start-of-season (SOS) data from the High-Resolution Vegetation
Phenology and Productivity (HRVPP) product offered by the
Copernicus Land Monitoring Service37 which is based on remo-
tely sensed data from Sentinel-2 with a 10 m spatial resolution
and a 3 to 5-day temporal resolution. For further details, see
Zhanzhang et al.37. On Plant Phenology Index (PPI) time series
(see also Jin & Eklundh58), a winter gap-filling algorithm and a
double-logistic curve-fitting is applied. Based on the resulting
curves, regular 10-day seasonal trajectories are derived. Then a
‘season identification’ identifies per pixel if either one or two
seasonal curves are represented. Accordingly, SOS is defined as
the Day of the Year (DOY) at which the curve exceeds 25% of the
amplitude of the first season59.

We initially derived SOS data (2017–2019) for 100, 200, 500,
1000, 2000 and 3000 m around the 179 plots, using the raster
package60 and the sp package61 in R version 4.1.262, but we only
kept the smallest radius of 100 m in the analysis which had
throughout the strongest effects in the models. After filtering out
the pixels, which were overlapping with water, we derived two
different green-up metrics per plot: the mean SOS of all pixels
(2017–2019) and the spatial variability of SOS as the standard
deviation of SOS for all pixels per year, averaged over 2017–2019
(SV-SOS). For a better understanding, Supplementary Figure 1
demonstrates selected examples of SOS distributions over space
and a single year (2019) for two different forest and arable field
plots. The reason why we used not only 2019 but also the two
preceding years is that the insect population at a given location
and year is never just a consequence of circumstances (in this case
the phenology) at that time, but is rather affected by the long-
term habitat conditions (including the phenology of other years).

Climate data. To explain green-up data by spring temperatures,
we calculated the mean temperature of March and April during
2017-2019 from gridded monthly averaged mean daily air
temperature (°C) on a spatial resolution of 1 km from the
German Meteorological Service (Deutscher Wetterdienst,
DWD)63 and assigned each plot to the nearest 1 km x 1 km grid
cell. Furthermore, long-term MAT and MAP, which were
directly derived from an already published dataset64, were cal-
culated in the same way38. Hourly measurements of local air
temperature and local air humidity in 2019 were derived using
ibutton thermologgers (type DS1923) at the plot, mounted at
1.10 m height, facing north, under a roof panel to avoid direct
sun exposure. As Uhler et al.3 did, these four climate variables
were used for modelling insect biomass and richness (see sta-
tistical analysis). For modelling, hourly measurements were
averaged per sampling period in 2019.

Land use around the plots. In order to come to our study
design38, to get a better understanding of SOS distributions
among land-use classes (Fig. 1), and to test more in depth climate
effects on green-up variables for forested area in all 179 plots
(Supplementary Figure 4), a corresponding shapefile of land use
was created64. The shapefile combines ATKIS data (2019) from
the Landesamt für Digitalisierung, Breitband und Vermessung
and CORINE (2018) from the Copernicus Land Monitoring
Service. 99.9% of all studied non-water pixels in 100-m radii
around the plots were covered by four main land-use classes.
More specifically, 35.3% were covered by forests, 21.0% by
grassland, 25.6% by cropland, and 17.0% by urbanized areas.
Besides, we used InVeKoS data from the Bayerische Landesanstalt
für Landwirtschaft (LfL) to investigate the SOS distribution of
maize specifically.

Plant richness data. We assumed plant species richness to cor-
relate with spatial variability in SOS, and therefore we wanted to
distinguish the species richness effect from the spring green-up
effect per se in our models. To do so, we made use of the vascular
plant species richness dataset65 from Tobisch et al.66, which was
obtained by vegetation surveys in a 200-m radius around the
Malaise trap plots. Between mid-May and the end of July 2019,
vegetation was sampled in seven 10 m² subplots directly sur-
rounding the Malaise traps. Additionally, species pools within a
200-m radius were assessed between mid-May and early August
2020 using standardized transect walks in which walking time
was proportional to the area percentages of dominant habitat
types within the 200-m radius, and walking time was 60 minutes
for each plot. Total plant species richness was obtained from all
unique species encountered in at least one of the two sampling
rounds66. This variable was additionally used as predictor in our
insect models.

Statistics and reproducibility. To test the partial effects of mean
SOS an SV-SOS (2017-2019, see spring green-up data) at the plots
in explaining insect biomass and richness, we took the same
generalized additive models used by Uhler et al.3 with regional
land use, local land use, MAT, MAP, local temperature and local
humidity as predictors using the mgcv package67 in R version
4.1.262. Then, we added mean SOS and SV-SOS, their interaction
with local land use (i.e. forest, arable field, meadow, and settle-
ment) because we expected differences among them, as well as
plant species richness. Furthermore, we expected that other (cli-
matic) variables could indirectly interact with green-up to explain
insect richness and biomass (e.g. higher temperatures lead to
earlier green-up). Therefore, we included also for MAT, MAP,
local temperature, local humidity and plant richness, their
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interaction with local land-use type. As Uhler et al.3 did, we
added the mean day of a sampling period as a smooth non-linear
predictor to account for seasonality, an offset of sampling dura-
tion to control for variation among sampling periods, and a
smooth plot-specific intercept based on its location, to correct for
(non-linear) spatial correlation.

To test whether or not SV-SOS was actually representing
(woody) plant species richness, which was only recorded at 200-
m radii, we also did a Pearson correlation test between SV-SOS at
the 200-m radius and plant species richness per land-use type.
Additionally, we did the same test with species richness of only
the woody species, as these are expected to be captured mostly by
Sentinel-2. Subsequently, we ran this model type for each single
functional and taxonomic group individually, to explore if green-
up effects on insect richness differed among them.

To show how indirect temperature effects by the green-up
pathway differed from their direct effects on insect richness and
biomass, we used confirmatory path models (CPM), i.e. structural
equation models (SEM)68. For this analysis, we did not apply
interactions with local land-use type, but instead we ran separate
models for each local land-use type. To explain mean SOS and SV-
SOS, we used spring temperature in linear models. To explain insect
biomass and richness subsequently, we used mean SOS and SV-SOS,
MAT,MAP, local temperature, local humidity, plant species richness
and regional land-use type in generalized additive models.

However, as it is not possible to directly combine generalized
additive models and linear models in one CPM, we standardized
estimates of these individual models by centering them to their
mean and scaling them to their standard deviation using the
function standardize_parameters within the parameters
package69 in R62. We visually connected the different estimates
afterwards. For the generalized additive model for biomass,
biomass was replaced by log(Biomass)/log(sampling duration)
and in the insect BIN richness model, BIN richness was replaced
by log(BIN richness)/log(sampling duration), because the usage
of the offset(duration) was not allowed.

Although we only presented the path model results for the 100-
m radii, because the green-up variables explained insect
variability best at this scale, we modeled green-up variables by
spring temperature per local land-use type, using simple linear
models, also for higher radii, and presented the output for 1000-
m radii (Supplementary Figure 4). Additionally, because in all
insect models green-up effects on insects were strongest in forest
plots, and we aimed at the full understanding of processes
occurring in forests, we ran simple linear models to explain the
two green-up variables in all forested areas (see ‘Land use around
the plots’) by spring temperature.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All raw data for the analyses of this study are publicly available on figshare under https://
doi.org/10.6084/m9.figshare.24228892.

Code availability
Annotated R code to reproduce the statistical analyses and figures of this study are
publicly available on figshare under https://doi.org/10.6084/m9.figshare.24228892.
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