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Evaluating 17 methods incorporating biological
function with GWAS summary statistics to
accelerate discovery demonstrates a tradeoff
between high sensitivity and high positive
predictive value
Amy Moore 1✉, Jesse A. Marks 1, Bryan C. Quach 1, Yuelong Guo2, Laura J. Bierut 3, Nathan C. Gaddis1,

Dana B. Hancock 1, Grier P. Page 1,4 & Eric O. Johnson 1,4✉

Where sufficiently large genome-wide association study (GWAS) samples are not currently

available or feasible, methods that leverage increasing knowledge of the biological function of

variants may illuminate discoveries without increasing sample size. We comprehensively

evaluated 17 functional weighting methods for identifying novel associations. We assessed

the performance of these methods using published results from multiple GWAS waves

across each of five complex traits. Although no method achieved both high sensitivity and

positive predictive value (PPV) for any trait, a subset of methods utilizing pleiotropy and

expression quantitative trait loci nominated variants with high PPV (>75%) for multiple traits.

Application of functionally weighting methods to enhance GWAS power for locus discovery

is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS, but

these results suggest that applying functional weighting to GWAS can accurately nominate

additional novel loci from available samples for follow-up studies.
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The genome-wide association study (GWAS) has been
widely successful for discovering genetic loci contributing
to complex traits1. Yet, a survey of the GWAS catalog

identified 88 traits without genome-wide significant findings
despite theoretically adequate sample size2. Traits with worse
than expected performance even when thousands of cases are
available include autism spectrum disorder3, heart failure4,5,
major depressive disorder (MDD)6,7, and some addictions8–11.
Increasing sample size to increase statistical power for discovery
is not always practical, as encountered for rare diseases12,
expensive phenotyping13, phenotypic heterogeneity14, hard-to-
reach or socially disadvantaged populations15, and population
isolates16. Our ability to discover trait-associated loci that are
ancestry-specific or subject to gene-environment interaction lags
in a field where the overwhelming majority of GWAS samples are
of European ancestry17. Further, increasing sample size some-
times fails to achieve the expected gain in significant loci18.

Attempts to improve the discovery power of GWAS without
increasing sample size by incorporating functional information,
defined here as regulatory annotation of variants or evidence of
pleiotropy, is not new19. An evaluation of gene- and pathway-
based GWAS methods found low sensitivity overall for discovery,
and that high sensitivity was achieved at the expense of more false
positives20. Methods to combine GWAS summary statistics with
additional information to perform in silico functional follow-up
are plentiful21–25 and range from fine-mapping to determining
the biological underpinnings of the variant-trait association;
many of these in silico approaches to uncover the functional
causes underpinning GWAS associations have been previously
reviewed20,26–30. Some authors suggest that a secondary usage of
these methods is to augment the ability of a given GWAS to
identify novel trait-associated loci. Evaluation of the performance
of such methods for locus discovery has been done ad hoc for
select methods,21–23,31 but to our knowledge, a comprehensive
evaluation of many methods and multiple GWAS traits against
objective criteria has not been published.

To identify suitable method(s) for improving GWAS statistical
power to uncover novel loci, we performed the largest, most
comprehensive evaluation of published functional weighting
methods to date: 17 functional weighting methods, and an
unweighted suggestive p-value threshold, applied to multiple
waves of GWAS for five diseases and traits. We applied these
methods to publicly available GWAS summary statistics and
evaluated their ability to nominate trait-associated loci that were
confirmed by a subsequently larger, more powerful GWAS,
henceforth referred to as GWAS1/GWAS2/GWAS3, for the same
trait. To represent varying genetic architectures, phenotypic
heterogeneity, and gene regulation by tissue type, we selected
three psychiatric traits: schizophrenia, bipolar disorder, and
MDD available from the Psychiatric Genomics Consortium
(PGC); and two blood cell traits: mean platelet volume (MPV)
and white blood cell (WBC) counts, available from the UK
Biobank.

Results
We selected 17 published functional weighting methods; we also
evaluated a suggestive p-value threshold of 1 × 10−5 as an 18th
method (Table 1 and Supplementary Data 1). We applied these
methods to five model traits, described in Supplementary Data 2.
Nine methods provided results for individual variants, and nine
provided gene-based results aggregated across variants. When
evaluated on a per-variant basis according to the schema in
Supplementary Data 3, the number of nominated variants, after
excluding statistically significant variants from GWAS1, ranged
from zero to 177,698 in the blood cell traits and zero to 4147 in

the psychiatric traits (Supplementary Data 4 and 5). Statements in
these published papers that indicating that the method may
increase variant-trait association discovery are provided in Sup-
plementary Note 1.

Briefly, we applied each published functional weighting
method (Table 1) to genome-wide summary statistics from each
GWAS1 study. Details of additional annotation datasets and
statistical significance thresholds used for each method are
described in the “Methods” and Supplementary Data 1. To
facilitate cross-method comparisons, our primary way to evaluate
both variant-based and gene-based method performance used a
+/−500 kb window to define a locus, unless specified otherwise.
Overlapping loci were merged. To exclude the possibility of
methods re-discovering loci already identified as trait-associated
in GWAS1, we did not consider loci if they overlapped with a
+/−500 kb window surrounding the top variant of a locus that
was genome-wide significant in GWAS1. Each functionally
weighted GWAS1 was then compared to the corresponding
GWAS2 of that trait to identify nominated loci from GWAS1 that
overlapped with genome-wide significant loci first identified in
GWAS2. A minimum overlap of 250 kb was required. Our
scheme for defining classification metrics (True Positive [TP],
etc.), is illustrated in Supplementary Data 3. Our primary eva-
luation metrics, Positive Predictive Value (PPV) and Sensitivity
(SN), were derived from these classification metrics.

Global evaluation. No method had both high SN and PPV
(>0.50, Fig. 1, Quadrant I). In general, there was an inverse
relationship between SN and PPV (Fig. 1). Quadrant IV, with
high SN and low PPV, was dominated by methods providing
variant-level results and by the blood cell traits MPV and WBC.
Quadrant II, with low SN and high PPV, was dominated by
eQTL-based methods, which tended to nominate fewer loci than
the variant-level methods (Supplementary Data 5). Exceptions to
the pattern of finding eQTL-level methods in Quadrant II were
MTAG and the weighted eQTL methods. These methods nomi-
nated fewer loci for their respective traits than was typical for
other variant-based methods (Supplementary Data 4).

Quadrant III of Fig. 1, representing low SN and low PPV,
included results from all five traits and a preponderance of MDD,
specifically around SN= 0 and PPV= 0. Only five out of nine
methods nominated any variants for MDD (Supplementary
Data 4), which had no significant hits in GWAS1. Like the
variant-based methods, only four out of nine gene-based methods
yielded any nominations for MDD, and none of those overlapped
with the GWAS2 hits for MDD, regardless of the evaluation
method used (Supplementary Data 5).

We provide representative Manhattan plots32 to illustrate the
performance of two functional weighting methods for the high
PPV (MTAG, Fig. 2a, b) and high SN (LSMM, Fig. 2c, d)
scenarios, respectively. When comparing the variants nominated
by MTAG for SCZ1, using BPD1 as the pleiotropic trait, relative
to both waves of the SCZ GWAS, the nominated variants of
MTAG clustered around established “peaks”, including some that
are just below the genome-wide significance threshold in GWAS1
(Fig. 2a). Some of these variants (e.g., see Chromosomes 3 and 12)
are in loci that become significant in GWAS2 (Fig. 2b),
contributing to the high PPV of this method-trait combination,
while others fall below even the suggestive threshold in GWAS2
(e.g., see Chromosome 7). However, these particular non-
significant nominated variants are within 500 kb of the GWAS2
top hit (Supplementary Data 4).

LSMM with global FDR nominated 3395 more variants for
SCZ than MTAG, resulting in high SN (Supplementary Data 4).
In contrast to MTAG, a striking proportion of these nominated
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variants exhibited a sharp decrease in significance from GWAS1
(Fig. 2c) to GWAS2 (Fig. 2d), contributing to the low variant-
based PPV under both FDR options for LSMM; the PPV also
remained low in the locus-based evaluation (Supplementary
Data 4).

Figure 3 illustrates the performance of gene-based methods. To
provide parity in evaluating nominated genes, we calculated gene-
based p-values using a modification of MAGMA (see “Methods”).
The gene-based methods nominated fewer loci than the variant-
based methods. For both EUGENE and SMR, which were applied
using Brain eMETA cohort annotations, nominated genes tended
to have higher MAGMA p-values (Fig. 3a, c) but lower p-values in
GWAS2 (Fig. 3b, d).

Top method for positive predictive value. Focusing on the
ability of methods to accurately nominate loci that were truly
trait-associated but inadequately powered for detection in
GWAS1, we compared PPV across all traits (Table 2). When
multiple databases were applied to a functional weighting
method, we chose its highest PPV to carry forward for overall
evaluation. Any method ties were all assigned the lowest rank,
and methods that failed to nominate any variants/eQTL/genes
were ranked lower (NA) than methods with a PPV of 0%. Overall,
the best-performing method was MTAG33, even after a sensitivity
analysis excluding the MDD rankings, where MTAG tied with the
weighted eQTL method of Li et al. This ranking was made despite
MTAG failing to nominate any variants for MPV (Supplementary
Data 4). The best-performing method for MPV alone was Sher-
lock, which was a middle performer for the three PCG traits.

Effect of evaluation strategy. Only one evaluation strategy
allowed for direct comparison between variant-level and eQTL-
level methods; however, we also considered several strategies that
permitted us to rank variant-level and eQTL-level methods
amongst themselves, respectively. Among variant-based method
evaluations, the top method for SN changes from LSMM to a tie
between LSMM and GPA when evaluated on a variant-to-variant
comparison; GPA was ranked second by the 500 kb comparison.
There were no changes in the top performing method for PPV.
Among the eQTL-based method evaluations, there are no chan-
ges across the three ways to calculate SN (Supplementary Data 6).
For PPV, both the 500 kb and ENSG-boundary-based

comparisons have COLOC as the top performer; however, using
Magma to evaluate performance, the top performer is JEPEG,
which is otherwise in the middle of the pack for PPV.

Consistency of true associations nominated across methods.
We evaluated whether loci nominated by multiple methods are
more likely to be TP, as running the same summary statistics
through multiple methods is cheaper than conducting a larger
GWAS. In general, this was an effective strategy. For example,
seven methods was the minimum number necessary to achieve
PPV ≥ 50% (Supplementary Data 7) for four out of the five traits.
For MPV and WBC, we did not see a monotonic increase in PPV
with larger numbers of nominating methods, and for MDD, only
two methods successfully nominated any TP loci. We examined
combinations of functional weighting methods to determine if
there existed an ensemble set that consistently achieved PPV ≥
50% across traits (Supplementary Fig. 4). Across SCZ, BPD,
MPV, and WBC, the methods GenoCanyon and LSMM were
common to all method ensembles with a minimum of seven
methods; however, the inclusion of one or both of these methods
does not preclude a false positive (FP). None of the ensemble sets
could be used to reliably nominate TPs across traits.

Evaluating false positives. Some loci nominated by the func-
tional weighting methods and labeled as FP by our definition may
be truly associated with the trait but remain undiscovered in
GWAS2. As a sensitivity analysis, we used GWAS3 waves and
calculated the PPV of the nominated loci after removing findings
from GWAS1, similar to our primary analysis approach. Figure 4
shows the SN and PPV of the functional weighting methods for
the three psychiatric traits based on their GWAS3 waves. GWAS3
were not available for the blood cell traits MPV and WBC. Like
Fig. 1, no methods appeared in Quadrant I. In general, PPV was
higher and SN was lower when using GWAS3, compared to using
GWAS2, as the gold standard. A substantial number of the
method-trait combinations remained in Quadrant III with low
SN and PPV. Supplementary Data 8 shows that no methods had a
worse PPV when GWAS3 was used as the gold standard rather
than GWAS2. An improved PPV when compared to the larger
GWAS3 is expected when additional nominated loci are trait-
associated. For BPD and MDD, most methods with any suc-
cessful nominations still had PPV < 50% when compared to

Table 1 Description of functional weighting methods.

Method name Classification Level Citation Significance threshold

Suggestive NA Variant NA p < 1e−5
GenoCanyon10K Annotation Variant Lu et al. Sci. Rep. 2015 Prediction Score >0.5
GenoSkyline Annotation Variant Lu et al. PLoS Genet. 2017 Prediction Score >0.5
Sveinbjornsson Annotation Variant Sveinbjornsson et al. Nat. Genet. 2016 Annotation-based threshold
LSMM Annotation Variant Ming et al. Bioinformatics 2018 FDR < 0.05
GPA Pleiotropy Variant Chung et al. PLoS Genet. 2014 FDR < 0.05
MTAG Pleiotropy Variant Turley et al. Nat. Genet. 2018 p < 5e−8
fGWAS eQTL Variant Pickrell. AJHG 2014 PPA > 0.9
Weighted eQTL eQTL Variant Li et al. Front. Genet. 2013 p < 5e−8
COLOC eQTL eQTL Giambartolomei et al. PLoS Genet. 2014 Approximate Bayes Factor >0.75
MOLOC eQTL eQTL Giambartolomei et al. Bioinformatics 2018 Posterior Probability >0.80
Jepeg eQTL eQTL Lee et al. Bioinformatics 2014 Bonferroni-adjusted Jepeg p-value
Sherlock eQTL eQTL He et al. AJHG 2013 Log Bayes Factor >= 4.0
SMR eQTL eQTL Zhu et al. Nat. Genet. 2016 FDR q-value < 0.05; Heidi p-value < 0.05
TWAS/FUSION eQTL eQTL Gusev et al. Nat. Gen. 2016 Bonferroni-adjusted TWAS p-value
fastENLOC eQTL eQTL Wen et al. PLoS Genet. 2017 RCP >= 0.50
EUGENE eQTL eQTL Ferreira et al. JACI 2017 p-value corresponding to largest FDR < 0.05
UTMOST eQTL eQTL Hu et al. Nat. Genet. 2019 Bonferroni-adjusted UTMOST p-value

FDR false discovery rate.
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GWAS3. For the variant-based methods, only MTAG out-
performed the approach of simply using a suggestive p-value
threshold in the original GWAS1 when using either GWAS2 or
GWAS3 as the gold standard for both SCZ and BPD (Supple-
mentary Data 8).

Evaluating the stringency of genome-wide significance. We
present a subset of the SN versus PPV results shown in Fig. 1 as
the SN versus PPV results for only PGC traits in Supplementary
Fig. 1 for ease of comparison with sensitivity analyses. The
evaluated methods do not employ a consistent strategy for mul-
tiple testing correction or determination of statistical significance.
We used a Bonferroni correction based on the number of valid
test statistics for methods that calculated a p-value but did not
provide a prespecified significance threshold. To evaluate whether
this conservative approach hampered our ability to detect trait-

associated loci, we performed a sensitivity analysis by calculating
a local FDR and using a q-value of 0.05 as the threshold for
statistical significance for those methods previously subjected to a
Bonferroni correction. Results were largely unchanged (Supple-
mentary Fig. 2), except for a substantial drop for MTAG and
JEPEG, which had achieved perfect PPV with some traits when
using the Bonferroni correction.

Evaluating the amount of overlap. We evaluated the impact of
our primary choice for defining a minimum overlap (250 kb)
between nominated loci and gold standard loci. We performed a
sensitivity analysis utilizing different minimum overlaps of one
base, 500 kb, and 750 kb. In general, we found a slight reduction
in SN and PPV with increasing size of the required overlap for all
five traits (Supplementary Fig. 3a–e). However, we did not find

Fig. 1 Relationship between sensitivity and positive predictive value for all method-trait combinations. Scatterplot of the relationship between
sensitivity (SN; proportion of loci that are significant exclusively in the second wave GWAS [GWAS2] that are also nominated by a given method when
applied to GWAS1) and positive predictive value (PPV; proportion of all nominated loci by a given method when applied to GWAS1 that are also significant
exclusively in GWAS2) for all method-trait combinations whose results contained at least one gene or locus that was nominated as trait-associated by
each method, respectively, after excluding loci identified in GWAS1. SN and PPV were calculated using the +/−500 kb locus-based evaluation and
requiring a minimum overlap of 250 kb between nominated loci and GWAS2 significant loci. Horizontal and vertical lines denote PPV and SN of 50%,
respectively.
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that our results, particularly our high PPV method-trait combi-
nations, were dependent on overlap size.

Discussion
Our comprehensive, multi-method evaluation presents scenarios
where functional weighting methods might prove helpful in
expanding the number of novel loci uncovered by GWAS in lieu
of increased sample size. None of the eighteen methods achieved
both high PPV and high SN, which would have been the ideal
result: nominating a substantial proportion of TP loci that would
be found in the next GWAS wave without nominating excessive
FP loci. Instead, our evaluation demonstrated that the use of
functional weighting methods presents a tradeoff between high
SN and high PPV. MTAG33 had the best performance overall

with respect to PPV, and LSMM with respect to SN. To weight
equally SN and PPV by choosing the method that yields the
highest F1 score, or harmonic mean of SN and PPV, when
evaluating the +/−500 kb locus overlap, one can simply use the
common suggestive p-value threshold of 1 × 10−5.

When comparing functional weighting GWAS results to
standard GWAS results from larger sample sizes as the gold
standard, the PPV for many method-trait combinations exceeded
50%, indicating that most nominations were trait-associated by
the standard defined here. For BPD and SCZ, where GWAS1
were adequately powered to detect genome-wide significant
associations, most eQTL-based methods were able to consistently
nominate TP loci when compared to GWAS3 as the gold stan-
dard; however, SN decreased across method-trait combinations,
indicating that functional weighting GWAS methods combined

Fig. 2 Identifying variants nominated by MTAG and LSMM methods in wave 1 schizophrenia GWAS results and their results in the wave 2 GWAS
results. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a, c) and 2(SCZ2; b, d) with the variants nominated by MTAG (a, b) using bipolar
disorder GWAS wave 1 (BPD1) as the pleiotropic trait and the LSMMmethod using a global FDR (LSMM) (c, d) highlighted in green. P-values were derived
from the publicly available downloads of SCZ1 and SCZ2 provided by the Psychiatric Genomics Consortium, respectively. These plots include the full
downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1 regions.
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with contemporaneous annotation databases were unable to
identify a correspondingly large fraction of the trait-associated
variants that can be captured with a larger GWAS sample size
incorporating tens of thousands of additional cases. For SCZ,
functionally weighted GWAS applied to SCZ1 uncovered 74.7%
of the loci that were genome-wide significant for the first time in
SCZ2, which dropped to 58.1% of the loci that were genome-wide
significant for the first time in SCZ3. Differences in the number of
methods that were able to nominate any loci across the three
psychiatric traits reiterate that trait heterogeneity, frequency, and
variant association magnitude contribute in combination with
study sample size to determine the minimum adequate GWAS34.

If the goal is high-confidence nominations, then there is little
additional cost to applying multiple functional weighting meth-
ods using publicly available annotation data. Our findings did not
show an ideal ensemble approach, whereby nominations that

intersected a subset of specific methods subsequently became
genome-wide significant in later GWAS waves. Instead, for traits
that had relatively few genome-wide significant loci identified in
GWAS1, we found that increasing the number of functional
weighting methods increased the PPV of those nominations. An
ensemble approach may be achievable in the future as functional
annotation data in disease-relevant tissues and cell types expands,
enabling a comparison of methods with more complete annota-
tions across the genome.

Applying functional weighting methods for the discovery of
novel loci and variants carries important considerations. First,
applying these methods to a GWAS in the “dead zone” of sta-
tistical power18, where no genome-wide significant loci have been
identified using standard GWAS, may not provide a reliable
approach to find trait-associated variants. Using MDD as an
example, only a minority of the tested methods were able to

Fig. 3 Identifying variants nominated by EUGENE and SMR methods in wave 1 schizophrenia GWAS results and their results in the wave 2 GWAS
results. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a, c) and 2 (SCZ2; b, d) with the variants nominated by the EUGENE (a, b) and SMR (c, d)
methods using Brain eMETA cohort annotations (SMR2) highlighted in green. P-values were derived from applying MAGMA to SCZ1 and SCZ2, respectively.
These plots include the full downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1 regions.
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nominate any loci for MDD, and few nominated variants were
significant in MDD2 (Supplementary Data 4, 5) or MDD3
(Supplementary Data 8). This difficultly in nominating TP loci for
MDD suggests that functional annotation is unlikely to overcome
insufficient statistical power for GWAS with sample sizes that are
far below what is needed to identify robust genome-wide sig-
nificant loci. For these situations, increasing the GWAS sample
size is ideal6,35,36. However, if a second, contemporaneous GWAS
of a highly pleiotropic trait is available, applying pleiotropy-based
methods such as MTAG or GPA may provide an alternative
approach. Although identifying the minimum required SNP-
based genetic correlation is beyond the scope of this analysis, we
note that SCZ and MDD have a SNP genetic correlation ranging
from 0.34–0.51, depending on the study6,37–39. It is also worth
considering that while improvements in trans-ethnic GWAS
methods boost discovery power40, uncovering ancestry-specific
loci will require investments to increase the sample size of either
the ancestry-specific GWAS or the ancestry-specific functional
database41,42.

Second, by using a distance-based locus definition, we could
not evaluate whether the nomination captured the putative causal
variant or gene identified in GWAS2. For example, MTAG and
fgwas successfully nominated the HLA region as associated with
MDD. As is typical with findings located in this region, more
work is necessary to identify the causal mechanism for the
association between HLA and MDD; initial work by the PGC
noted that the C4A and C4B genes were unlikely to be causal for
MDD6, although these genes were functionally characterized as
potentially causal for SCZ43. Subsequent fine-mapping of the
classical MHC region by the PGC also did not support variation
in C4 genes to be the source of the MDD association44, though an
eQTL-based analysis identified C4A as a candidate risk gene for
MDD45. The extended HLA region was confirmed in a sub-
sequent GWAS of MDD, though with a different lead SNP35. In
our study, MTAG used pleiotropy to find what is likely a true
association between the extended HLA region and MDD earlier
than it could be discovered with the MDD GWAS1 sample size,

but this is likely driven by linkage disequilibrium in the region,
rather than genuinely shared pleiotropy between causal genes44.

Third, our study focused on comparing three categories of
methods which we describe as annotation, pleiotropy, and eQTL.
These three categories represent some of the most popular and
long-standing methods, collectively with >3000 citations as of July
2022. Other categories of functional genomic annotation exist,
such as methylation22 and protein23 QTLs, and were beyond the
scope of the present analysis; we expect that their performance
would not substantially differ from the methods evaluated here,
but we cannot account for significant GWAS2 loci acting through
other mechanisms whose functional annotations were not eval-
uated here. Other mechanisms may explain some of the low SN,
but PPV would be unaffected.

Fourth, our definition of “gold standard” using GWAS2 hits
assumes that all genome-wide significant variants in GWAS2 are
truly trait-associated. In the modern GWAS era with independent
replication as a best practice, this assumption likely holds for most
loci and their variants. By evaluating variants and their broad
flanking regions, our approach minimized FNs and FPs caused by
changes in lead variants for a given locus across GWAS waves and
equalized the playing field for variant- and eQTL/gene-based
methods, allowing for simultaneous comparison.

Fifth, our definition of a FP depended on the sample size of
GWAS2. Variants or loci nominated by functional weighting
methods could be classified as FP when compared against the
gold standard of GWAS2, but it is possible that they represent TP
associations that GWAS2 remained underpowered to detect. By
performing a sensitivity analysis using recently published GWAS3
as our gold standard for the three psychiatric traits, we confirmed
that a portion of the genome classified as FP in our primary
analysis, with GWAS2 as the gold standard, were trait-associated.
In a real-world application, the ability to arrive at this conclusion
would require either substantial laboratory follow-up or an
increase in GWAS sample size of 2–4 times to bridge the gap
between GWAS2 and GWAS3, using the psychiatric traits as
representative sample sizes.

Table 2 Ranking of all methods by best performing PPV, as measured by locus (+/−500 kb).

Method BPD MDD SCZ MPV WBC

Best PPV Rank Best PPV Rank Best PPV Rank Best PPV Rank Best PPV Rank Median
Rank

Median Rank
excluding MDD

MTAG 0.571 1 1.000 1 1.000 2 NA 18 1.000 1 1 2
TWAS/FUSION 0.500 3 NA 18 0.500 6 0.533 4 0.368 8 6 5
UTMOST- (best
result)

0.333 5 0.000 9 0.500 6 0.440 8 0.300 11 8 7

Jepeg 0.333 5 NA 18 1.000 2 0.333 11 0.375 7 7 5
COLOC 0.200 8 0.000 9 0.600 4 0.607 3 0.566 3 4 3
EUGENE 0.500 3 NA 18 0.400 8 0.329 12 0.282 12 12 10
Sherlock 0.182 11 0.000 9 0.286 9 0.690 1 0.538 4 9 3
moloc 0.000 14 0.000 9 0.667 3 0.455 5 0.500 5 5 4
GPA 0.231 7 0.000 9 0.275 10 0.451 6 0.335 10 9 8
Suggestive 0.286 6 0.000 9 0.455 7 0.338 10 0.349 9 9 8
fgwas 0.143 10 0.077 2 0.190 13 0.442 7 0.250 14 10 10
GenoSkyline 0.083 12 NA 18 0.273 11 0.285 13 0.250 14 13 12
GenoCanyon 0.079 13 0.000 9 0.196 12 0.222 14 0.207 16 13 13
LSMM 0.185 9 NA 18 0.181 14 0.216 15 0.225 15 15 15
SMR (best
performing)

NA 18 NA 18 0.000 15 0.429 9 0.400 6 15 9

Weighted eQTL NA 18 NA 18 NA 18 0.667 2 0.667 2 18 2
fastENLOC NA 18 NA 18 NA 18 NA 18 NA 18 18 18
Sveinbjornsson NA 18 NA 18 NA 18 NA 18 NA 18 18 18

Ties between methods resolved using the Olympic method.
BPD bipolar disorder, MDD major depressive disorder, SCZ schizophrenia, MPV mean platelet volume, WBC white blood cell count, PPV positive predictive value, kb kilobase, NA not applicable.
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Functional annotation databases continue to expand and
contribute broadly to understanding human biology and unco-
vering causal underpinnings of variant-trait associations.
Although functionally weighting GWAS is not a substitute for
pursuing large samples for well-powered GWAS, these summary
statistics-focused methods can be a cost-efficient approach to
discovery. Our results show that no method applied system-
atically across five traits produced both high SN and high PPV.
Functional weighting GWAS methods might boost either SN or
PPV where larger sample sizes are not feasible and the currently
available GWAS has generated at least some genome-wide sig-
nificant loci for the trait of interest. Greater tolerance for FPs can
be endured by a research pipeline incorporating inexpensive,
high-throughput, and/or in silico steps, while a pipeline intended
to move GWAS nominations into model organisms may require
more confidence that the nominated loci are truly trait-associated.
Functional weighted GWAS results can generate leads for follow-
up studies of the genetic drivers of complex traits with a rea-
sonable likelihood of being true, particularly for associations that
come through multiple methods.

Methods
Method selection. We reviewed the published literature through
February 2020 to identify methods that met the following criteria:

i. Descriptively categorized as (a) annotation-based; (b)
pleiotropy-based; or (c) eQTL-based.

ii. Utilized GWAS summary statistics, as opposed to
individual-level genotype data.

iii. Implemented using freely-available software or packages.
iv. Provided either method-specific annotation or eQTL files

for use with the method, or were amenable to use with
publicly available annotation datasets (e.g., GTEx46).

v. Originally proposed primary or secondary usage included
the discovery of novel trait-associated variants, genes,
eQTL, or loci.

We found 17 functional weighting methods that met our
inclusion criteria. We also evaluated the performance of a
“suggestive” p-value threshold, defined as 5 × 10−8 ≤ p < 1 × 10−5

to illustrate the tradeoffs of simply choosing a more liberal p-
value cutoff, without the addition of any functional weighting

Fig. 4 Relationship between sensitivity and positive predictive value for method-psychiatric trait combinations. Scatterplot of the relationship between
sensitivity (SN) and positive predictive value (PPV) for method-psychiatric trait combinations that return nominated variants. SN and PPV were calculated
using +/−500 kb overlap criteria and compared to GWAS3 as the gold standard. Horizontal and vertical lines denote SN and PPV of 50%, respectively.
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information. The full list of 18 methods evaluated in the present
analysis is presented in Table 1. These methods varied in their
determination of significant trait associations. For methods that
listed specific threshold values for test statistics, we used those
thresholds. For methods whose test statistics were p-values and
whose authors did not provide a significance threshold, we used a
Bonferroni correction on the number of valid p-values output by
the method. Details for significant trait association determina-
tions for each method are detailed below and in Supplementary
Data 1.

Suggestive. For all traits, we considered “suggestive” variants as
those with p-values < 1 × 10−5 and ≥5 × 10−8. To define sugges-
tive loci, we defined a region +/−500 kb surrounding the variant
with the smallest suggestive p-value, and collapsed regions that
overlapped by any amount into a single locus.

GenoCanyon. We downloaded the prediction scores for the
human genome smoothed over 10-kb segments47 (zhaocenter.-
org/GenoCanyon_Downloads.html) and applied them to each of
the five GWAS1 using the signal prioritization software
GenoWAP48. We used the recommended posterior probability of
0.50 to define statistical significance.

GenoSkyline. We downloaded tissue-specific functional
predictions49 (http://genocanyon.med.yale.edu/GenoSkyline)
based on the Roadmap Epigenomics Project (Roadmap) for
whole blood and brain tissue and applied them to the blood traits
and psychiatric traits, respectively, using the signal prioritization
software GenoWAP48. We used the recommended posterior
probability of 0.50 to define statistical significance.

Weighted eQTL. Following the method of Li et al.50, we calculated
both binary and general eQTL-based weights for all five traits. In
each case, we set α= 0.05 and power = 0.6. For binary weights,
the parameter M was the number of included variants in each
GWAS1, respectively, and ε was calculated as the percentage of
eSNPs, defined as those with significant eQTL associations in the
relevant tissue. We used the significant GTEx v7 Brain Nucleus
Accumbens for PGC traits and the significant GTEx v7 Whole
Blood for blood cell traits. Weights were then normalized and
applied to the downloaded p-values. Statistical significance was
defined as pweighted < 5 × 10−8.

The general eQTL weight was calculated as √(−log10peQTL) for
eSNPs and 1 for all others, where eSNPs are defined as above.
Weights were then normalized and applied to the downloaded p-
values. Statistical significance was defined as pweighted < 5 × 10−8.
The parameters α, power, and M were also defined as above.

GPA. Genetic analysis incorporating Pleiotropy and Annotation51

(GPA) was performed using pairwise comparisons between two
traits of interest. For each pair of traits, we matched variants on
hg19 chromosome and position. In the case of duplicate variants,
the variant with the smaller p-value was retained. We performed
GPA with both global and local FDR strategies using a cutoff of
0.05 in both cases to determine statistical significance.

For each of the three PGC traits, we used as pleiotropic traits
the remaining two PGC traits. For blood cell traits, we used the
second blood cell trait as a pleiotropic trait for the first.
Additionally, we used SCZ152, BMI53, height54, and two GWAS
for HDL55,56 (http://www.nealelab.is/uk-biobank/). FDR cutoffs
were defined as above in all cases.

MTAG. Multi-Trait Analysis of Genome-wide association sum-
mary statistics (MTAG33) was performed using pairwise com-
parisons between two traits of interest. For all traits, we used the

subset of downloaded variants with valid rsIDs and allele fre-
quencies in the downloaded GWAS1 summary statistics. Statis-
tical significance was defined as pMTAG < 5 × 10−8. For each of the
three PGC traits, we used as pleiotropic traits the remaining two
PGC traits. For blood cell traits, we used the second blood cell
trait as a pleiotropic trait for the first. Additionally, we used
SCZ152, BMI53, height54, and two GWAS for HDL56,57 (http://
www.nealelab.is/uk-biobank/).

fgwas. We combined fgwas31 with eQTL results from GTEx46 as
the annotation database. Our eQTL dataset of choice was the
significant eQTL dataset for expression in the Nucleus Accum-
bens from GTEx, v7 for PGC traits and the significant GTEx v7
Whole Blood eQTL dataset for blood cell traits. Each significant
eQTL was defined as a “segment”. All GWAS1 variants whose
position fell within the start and end positions58 of a significant
eQTL were assigned to that segment. Variants that remained
unassigned to any segment were excluded, along with variants
having missing allele frequencies or odds ratios of zero in the
downloaded summary statistics. If more than one variant was
localized to the same position in GWAS1, the variant with the
smallest p-value was retained. We used the default likelihood
penalty of 0.2 to run fgwas. Statistical significance was defined as
a PPA > 0.9.

Sveinbjornsson. We applied the functional-weighted GWAS
method described by Sveinbjornsson et al.59, dubbed here the
“Sveinbjornsson” method. This method relies on an annotation
classification for each variant into one of four categories, where
each category has a Bonferroni-adjusted family-wise error weight
reflecting the likelihood of protein function alterations caused by
that variant. The categories and p-value thresholds are loss-of-
function (p < 5.5 × 10−7), moderate impact (p < 1.1 × 10−7), low
impact (p < 1.0 × 10−8), and other (p < 1.7 × 10−9). We annotated
GWAS1 summary statistics using SnpEff software60 and applied
the aforementioned p-value cutoffs according to the annotation
category to determine statistical significance.

LSMM. We performed latent sparse mixed model (LSMM61)
following the example annotations of the method authors,
requiring three sets of input: variants and p-values from GWAS
summary statistics, ANNOVAR62, and GenoSkylinePlus63 using
annotations from the original source. We downloaded the hg19
annotations from the ANNOVAR website and used the
dbSNP147 database to annotate GWAS1 variants. Annotations
were then collapsed into nine categories: downstream, exonic,
intergenic, intronic, ncRNA/exonic, ncRNA/intronic, upstream,
3’UTR, and 5’UTR, with each variant assigned a value of 0 or 1 to
denote category membership.

COLOC. For PGC traits, our colocalization25 dataset of choice
was the significant eQTL dataset for expression in the Nucleus
Accumbens from GTEx, v746. We defined a region to test for
colocalized signal as +/−200 kb upstream and downstream from
start and stop positions of a single eQTL probe, and included all
GWAS1 SNPs contained within that region. This was repeated for
all eQTL probes available in the downloaded dataset.

For blood cell traits, we repeated the same procedure using the
significant Whole Blood GTEx v7 dataset46. For all GWAS1,
evidence of statistically significant colocalization was defined as
an Approximate Bayes Factor greater than 0.75.

ENLOC. We performed the fastENLOC implementation of the
ENLOC method64. We downloaded the multi-tissue eQTL anno-
tation derived from GTEx v865 hg38 position and provided Eur-
opean LD definition file (https://github.com/xqwen/fastenloc/). We

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05413-w ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1199 | https://doi.org/10.1038/s42003-023-05413-w |www.nature.com/commsbio 9

http://genocanyon.med.yale.edu/GenoSkyline
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://github.com/xqwen/fastenloc/
www.nature.com/commsbio
www.nature.com/commsbio


then used LiftOver66 to convert all five GWAS1 from hg19 to hg38
genomic coordinates. We applied the Nucleus Accumbens eQTL
dataset For PGC traits and the Whole Blood eQTL dataset for
blood cell traits.

EUGENE. For all traits, we used the subset of downloaded var-
iants with valid rsIDs as GWAS1. We downloaded the required
input datasets for gene position from the EUGENE website67,
grouped GTEx brain tissues as the eQTL data for the PGC
traits46, and grouped whole blood eQTL data for the blood cell
traits46,68,69 after performing additional quality control on the
whole blood eQTL data to remove discrepant rsIDs. We used
Satterthwaite’s approximation to calculate the gene-based sum-
mary statistics70. We then estimated the FDR thresholds using
EUGENE and identified the p-value threshold closest to the FDR
threshold of 0.05 to determine statistical significance (Supple-
mentary Data 1).

JEPEG. We downloaded the SNP annotation data (v0.2.0) and
reference panel (1000 Genomes EUR Phase 1 Release 3)71 from
the JEPEG website (https://dleelab.github.io/jepeg/). For all traits,
we used the subset of downloaded variants with valid rsIDs. For
blood cell traits, in the case of duplicate rsIDs, we retained the
variant with the smaller p-value. Statistical significance of the
results was determined by a Bonferroni correction applied to the
JEPEG p-value.

MOLOC25. For PGC traits, our colocalization dataset of choice
was the significant eQTL dataset for expression in the Nucleus
Accumbens from GTEx, v746. The methylation dataset used for
PGC traits was downloaded from the processed data available on
the GEO data repository at accession number GSE74193 and
reflects the identification of meQTLs in the prefrontal cortex of
191 schizophrenia patients and 335 controls without psychiatric
illness72. We defined a region to test for colocalized signal as
+/−200 kb upstream and downstream from start and stop
positions of a single eQTL probe, and included all GWAS1 SNPs
and meQTL probes contained within that region. This was
repeated for all eQTL probes available in the downloaded dataset.

For blood cell traits, we repeated the same procedure using the
significant Whole Blood GTEx v7 dataset. The methylation
dataset used for blood cell traits was the methylation QTL results
from the ALSPAC Accessible Resource for Integrated Epige-
nomics Studies (ARIES)73 at the middle-aged timepoint (https://
data.bris.ac.uk/data/dataset/r9bxayo5mmk510dczq6golkmb).

Sherlock. Only variants with valid rsIDs were submitted to
Sherlock for each GWAS. For the PGC traits, the Sherlock-
provided eQTL data was chosen as GTEx v7 Brain – Nucleus
accumbens. Sample sizes from Supplementary Data 2 were used,
and disease prevalence was taken as 0.5% for schizophrenia74, 1%
for bipolar disorder75, and 15% for major depressive disorder76.
For the UK Biobank traits, the Sherlock-provided eQTL data was
chosen as GTEx v7 Whole Blood, and the sample sizes from
Supplementary Data 2 were entered for sample size. As Sherlock
output is sometimes presented as a gene symbol and sometimes
as an Ensembl gene ID (ENSG), we used the GENCODE
annotations58 to match gene symbols to Ensembl IDs and eval-
uated the overlap with our gold standards using Ensembl IDs.

SMR. For all GWAS1 inputs, we used the subset of downloaded
variants with valid rsIDs and valid allele frequencies. Formatted
eQTL data were downloaded from the SMR website (https://
cnsgenomics.com/software/smr/#DataResource). For PGC traits,
we evaluated the performance of SMR using three different eQTL
datasets: GTEx v7 data from the Brain Nucleus Accumbens46, the

“lite” version of the GTEx v7 data from the Brain Nucleus
Accumbens, and the Brain-eMeta eQTL data77 derived from a
meta-analysis of GTEx brain, Common Mind Consortium78, and
ROSMAP consortium79 studies. For UK Biobank traits, we
evaluated the performance of SMR using the GTEx v7 data from
Whole Blood46, both full and “lite” versions. For all datasets, we
evaluated with and without the requirement for a Heidi p-value of
<0.05 to exclude trait-eQTL associations due to pleiotropy.

TWAS. For all GWAS1 inputs, we used the subset of downloaded
variants with valid rsIDs. We downloaded reference LD data for
the 1000 Genomes EUR samples provided by the Broad Institute
Alkes Group (https://data.broadinstitute.org/alkesgroup/
FUSION/). We downloaded (https://gusevlab.org/projects/
fusion/) and applied pre-computed gene expression weights for
GTEx v7 Brain Nucleus Accumbens for PGC traits and Whole
Blood for blood traits46.

UTMOST. For all GWAS1 inputs, we used the subset of down-
loaded variants with valid rsIDs. We used the pre-calculated
covariance matrices using the 44 GTEx v746 tissues (https://
github.com/Joker-Jerome/UTMOST). For all five GWAS1, we
evaluated the full cross-tissue expression UTMOST results. We
additionally evaluated the single-tissue UTMOST output for the
Nucleus Accumbens for PGC traits and Whole Blood for blood
traits.

Model trait selection. We evaluated the performance of the
functional weighting methods using five traits meeting the fol-
lowing criteria:

1. At least two “waves” of GWAS summary statistics that were
publicly available for download.

2. Both available waves were conducted in the same ancestral
population.

3. The waves had to differ in sample size to such a degree that
the larger GWAS contained more genome-wide significant
associations than the smaller wave.

We deliberately chose early phase GWAS (which we refer to as
GWAS1) for each trait to allow for validation of results in
subsequent GWAS for the traits (referred to as GWAS2 and/or
GWAS3). We evaluated three traits with summary statistics
available from the Psychiatric Genomics Consortium (PGC):
schizophrenia52 (SCZ), bipolar disorder80 (BPD), and major
depressive disorder14 (MDD). We also evaluated two blood cell
traits examined in the UK Biobank, mean platelet volume (MPV)
and white blood cell count (WBC)81, as examples of traits with a
larger explained heritability, many genome-wide significant loci,
minimal heterogeneity in phenotyping, and comprehensive
tissue-specific functional annotations. In addition to meeting
the above criteria, these five traits, collectively, represent the
spectrum of GWAS discovery, from no statistically significant
variants to identifying nearly all common variation in the studied
population. Additional details of the GWAS used to test the
functional weighting methods are presented in Supplementary
Data 2.

We used Liftover82 to convert the GWAS of the psychiatric
traits from hg18 to hg19. For MPV, p-values were truncated at
7.41 × 10−323, due to the extremely small p-values not being read
into R (v3.6.0).

Definition of a gold standard. For comparison to each GWAS1,
we used as our “gold standard” a larger, more powerful GWAS,
hereafter referred to collectively as GWAS2, performed on the
same trait and by the same consortium to reduce variability in
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findings due to differences in trait definition, analytic strategies,
or recruitment of study participants (Supplementary Data 2). Our
gold standard “hits” for each GWAS2 were defined as those
variants meeting the standard genome-wide significance thresh-
old of 5 × 10−8. We defined a significant locus as the region
extending +/−500 kb from the variant with the smallest p-value.
Additional variants with genome-wide significant p-values within
this region were included within the locus of the lead variant. This
procedure was repeated in a stepwise fashion until all genome-
wide significant variants were captured. As a final step, over-
lapping one-megabase intervals were combined into a single
locus, and the extended HLA region was defined as the region
spanning from base pair 25,000,000 to 35,000,000 on
chromosome 6.

Exclusion of significant GWAS1 hits. All GWAS1 contained
statistically significant loci except for MDD (Supplementary
Data 2). To avoid giving credit to the functional weighting
methods for “re-discovering” these significant loci, we excluded
them from evaluation after applying the functional weighting
method to GWAS1. We defined a significant locus in GWAS1 as
the region extending +/−500 kb from the variant with the
smallest p-value. Additional variants with genome-wide sig-
nificant p-values within this region were included within the locus
of the variant of the smallest p-value. This procedure was repe-
ated in a stepwise fashion until all genome-wide significant var-
iants were accounted for. As a final step, overlapping one-
megabase intervals were combined into a single locus and the
extended HLA region was defined as above.

To exclude GWAS1 hits from the set of GWAS2 “gold
standard” hits available for discovery, we used the Genomi-
cRanges R package83 to remove from GWAS2 any loci with any
degree of overlap with the defined GWAS1 significant loci.

Evaluation metrics. Because we focused on method performance
to discover novel GWAS hits, our evaluations were based on
calculating sensitivity (SN), positive predictive value (PPV), and
the F1 score (F1, the harmonic mean of SN and PPV). Definitions
can be found in Supplementary Data 3. Because variants with
non-significant p-values in GWAS1 may be truly associated with
the trait, but GWAS1 was not statistically powerful enough to
uncover their associations, we avoided evaluation metrics that
depend on the definition of a TN.

Evaluation of variant-level methods. Nine functional weighting
methods, including the use of a suggestive p-value threshold,
provided results for individual genetic variants (Table 1). To
evaluate the performance of these nine methods on a per-variant
level, TP variants were defined as those with matching chromo-
some and position that were both genome-wide significant in
GWAS2 and nominated as significant by the functional weighting
method either by the threshold specified by the method or, if no
threshold was explicitly stated, by a Bonferroni multiple testing-
corrected threshold (Supplementary Data 1). To exclude variants
that were statistically significant in GWAS1, we excluded variants
within the +/−500 kb boundaries of GWAS1 hits defined above
(see the section “Exclusion of significant GWAS1 hits”).

Because the functional weighting methods cannot account for
secondary signals and some do not account for linkage
disequilibrium, we also calculated SN, PPV, and F1 using a
locus-based definition of statistical significance. In this evaluation,
we defined each locus in the same manner as we identified
GWAS1 significant hits (see the section “Exclusion of significant
GWAS1 hits”). A TP was defined as an overlap of at least 250 kb

in the 1 MB flanking window of a top locus in GWAS2, as defined
above, and a +/−500 kb window of a variant nominated by a
functional weighting method. A FP was defined as a +/−500 kb
window nominated by a functional weighting method with less
than 250 kb overlap among any GWAS2 loci. A FN was defined
as a GWAS2 locus with less than 250 kb overlap with any locus
nominated by the functional weighting method being evaluated.
This locus-to-locus comparison was performed assessing any
degree of overlap between the gold standard GWAS2 loci,
excluding the significant GWAS1 loci, and the loci calculated
from the results of the functionally weighted GWAS1 using the
GenomicRanges package83 in R.

Evaluation of eQTL-level methods. To comparably evaluate
methods that yield results on the level of eQTL or gene, we cal-
culated transcript- or gene-based p-values using MAGMA84. As
most of the eQTL data used in these comparisons came from
GTEx, we downloaded and used their GENCODE annotations58

for transcript/gene names and genomic locations. Statistical sig-
nificance for GWAS2 was determined at a GWAS-specific Bon-
ferroni correction to the MAGMA p-value after excluding eQTL-
based gene results that did not yield a MAGMA p-value.

For methods that did not provide a significance threshold, we
first excluded any results that did not result in a valid statistic,
then performed a Bonferroni correction based on the number of
remaining tests. To exclude established significant loci from
GWAS1, we excluded nominated transcripts/genes where the
midpoint of the genomic location was within +/−500 kb of the
GWAS1 loci, defined above (see the section “Exclusion of
significant GWAS1 hits”). We did not exclud genes from either
GWAS1 or GWAS2 MAGMA results.

For MAGMA-based evaluations, TP, FP, and FN were
determined by matching either the Ensembl ID or gene symbol,
depending on what was used by the particular functional
weighting method (Supplementary Data 1), to the output of our
modified MAGMA analysis to each GWAS2. A TP was defined as
an eQTL/gene that was nominated as significant by the functional
weighting method and identified as statistically significant by
MAGMA as described above. FP and FN were defined
analogously, and we calculated SN, PPV, and F1.

We also conducted locus-based evaluations in two other ways.
The first was to use the boundaries of the nominated eQTL/gene,
either defined by the functional weighting method when provided
or the GENCODE annotation boundaries used to generate the
MAGMA p-values (Supplementary Data 1). The second approach
was to define the locus boundaries for a functionally weighted
eQTL/gene as +/−500 kb from the midpoint of the previously
stated boundaries. To avoid possible double-counting, we merged
overlapping eQTL/genes into a single locus. Loci were determined
in a similar fashion as before (see the section “Exclusion of
significant GWAS1 hits”) using the midpoint of the GENCODE-
defined start and end positions, with no truncation at the ends of
chromosomes or centromeres, with the exception of EUGENE,
where we used the chromosome and position defined by
EUGENE output.

We performed a locus-to-locus comparison by looking for a
minimum of 250 kb of overlap when nominations were defined as
+/−500 kb from the midpoint, and 2500 bases of overlap when
nominations were defined by the start and end positions using the
GENCODE annotation boundaries between the gold standard
loci calculated from GWAS2 (see the section “Definition of a gold
standard”) and the loci calculated from the results of the
functionally weighted GWAS1 using the GenomicRanges
package83 in R.
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Generation of UpSet plots. To identify an optimal ensemble
approach, we examined the overlap among nominations across
functional weighting methods for each trait by generating UpSet
plots. Plots were generated using the ComplexUpset package85,86

in R. To construct the UpSet plot, for each trait, functional
weighting GWAS methods were ordered from largest to smallest
number of nominated loci, defined using +/−500 kb from either
the top variant or gene midpoint. For methods with multiple
options, the top performing option was selected based on largest
PPV. A matrix of nominated loci vs the fwGWAS methods was
created in a stepwise fashion. The method nominating the largest
number of loci was populated first, and then each of its nomi-
nated loci was tested for overlap of at least 250 kb with loci
nominated by all other methods and these overlaps populated the
matrix. For each subsequent functional weighting GWAS
method, only nominated loci that had not been found to overlap
with loci from previously examined methods were added to the
matrix. These new additions were then checked for overlap with
all remaining method nominations, and all methods nominating
a new locus were noted on the matrix.

Application of 17 functional weighting methods and a sug-
gestive threshold to model traits. Full details of the application
of each functional weighting method can be found in the Sup-
plementary Note 1, with details of significance cutoffs and
functional databases presented in Supplementary Data 1. Briefly,
we used the default inputs, external databases, and statistical
significance cutoffs recommended by the method developers to
the full extent that they were provided. When statistical sig-
nificance cutoffs were not provided, we applied a standard
threshold of either a Bonferroni-corrected p-value or a false dis-
covery rate cutoff of 0.05, as appropriate for the statistics calcu-
lated by the functional weighting method.

For the choice of functional database to use with each method,
our default was to use a preformatted database provided by the
method developers (e.g., TWAS/FUSION). When multiple
databases were made available (e.g., SMR), we chose the largest
database representing a tissue type appropriate to the model trait
being evaluated.

When no functional database was made available by the
method authors (e.g., COLOC), we used the statistically
significant GTEx v7 nucleus accumbens data downloaded from
the GTEx data portal to apply the functional weighting methods
to the three psychiatric traits87–89 and the corresponding
statistically significant GTEx v7 whole blood data for the two
blood cell traits46.

We investigated the performance of the pleiotropy-based
methods GPA and MTAG in each psychiatric trait using
contemporaneous GWAS of the other two psychiatric traits.
For the blood cell traits, we used a variety of potentially
omnigenetic traits: SCZ52, HDL cholesterol56,57 (http://www.
nealelab.is/uk-biobank/), BMI53, height54, and the other blood
cell trait81.

Sensitivity analyses. To determine whether the 250 kb overlap
between a nomination and a novel GWAS2 locus impacted our
results, we tested overlaps of 1 base, 500 kb, and 750 kb, used to
replace the +/−500 kb and Ensembl locus definitions.

We investigated whether a less stringent cutoff resulted in
better performance by applying an FDR significance cutoff for
those methods (suggestive, MTAG, Weighted eQTL, JEPEG,
TWAS/FUSION, and UTMOST) for which we used a Bonferroni
multiple testing correction. The FDR correction was implemented
using the fdrtool R package90 and a cutoff of q < 0.05 was used to
determine statistical significance.

We sought to determine the accuracy of our FP definition by
using wave 3 GWAS, hereafter referred to as GWAS3, recently
released by the PGC for the three psychiatric traits. Known loci
from GWAS1 were excluded as described above.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data used in this study has been previously published and all methods are freely
available. A complete list of links to data and methods used in this study is available in
Supplementary Data 9. Data used to compile scatterplots and UpSet plots are available as
Supplementary Data 10 and 11, respectively.

Code availability
Code used to generate scatterplots and UpSet plots are provided as Supplementary
Notes 2 and 3, respectively. Additional code available upon request.
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