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Improving genetic risk prediction across diverse
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Risk prediction models using genetic data have seen increasing traction in genomics. How-

ever, most of the polygenic risk models were developed using data from participants with

similar (mostly European) ancestry. This can lead to biases in the risk predictors resulting in

poor generalization when applied to minority populations and admixed individuals such as

African Americans. To address this issue, largely due to the prediction models being biased

by the underlying population structure, we propose a deep-learning framework that leverages

data from diverse population and disentangles ancestry from the phenotype-relevant infor-

mation in its representation. The ancestry disentangled representation can be used to build

risk predictors that perform better across minority populations. We applied the proposed

method to the analysis of Alzheimer’s disease genetics. Comparing with standard linear and

nonlinear risk prediction methods, the proposed method substantially improves risk predic-

tion in minority populations, including admixed individuals, without needing self-reported

ancestry information.
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Prediction of complex phenotypic traits, particularly for
complex diseases like Alzheimer’s disease (AD) in humans,
has seen increased traction in genomics research1. Over the

past decade, genome-wide association studies (GWAS) have
dominated genetic research for complex diseases like AD. Different
approaches2–4 like polygenic risk score (PRS) and wide-range of
linear models have been proposed for risk prediction of complex
diseases based on the genotype–phenotype associations for variants
identified by GWAS. More recently, with increased data avail-
ability, non-linear methods like deep learning5 have been con-
sidered for constructing prediction models6.

Most genetic studies of complex human traits have been
undertaken in homogeneous populations from the same ancestry
group7, with the majority of studies focusing on European ancestry.
For instance, despite African American individuals being twice as
likely to develop AD compared to Europeans, genetic studies on
African Americans are scarce8. Moreover, the genomic studies for
admixed individuals are limited, although they make up more than
one-third of the US population, with the population becoming
increasingly mixed over time9. This lack of representation for
minority populations and admixed individuals, if not mitigated,
will limit our understanding of true genotype–phenotype associa-
tions and subsequently the development of genetic risk predictions.
This will eventually hinder the long-awaited promise to develop
precision medicine.

The discussion for mitigating the limited diversity in genetic
studies has been more pronounced recently due to the consistent
observation that the existing models have far greater predictive
value in individuals of European descent than of other ancestries10.
For example, PRS for blood pressure, constructed using GWAS of
European ancestry, didn’t generalize well for Hispanics/Latinos11.
Similarly, the PAGE study found that genetic risk prediction
models derived from European GWAS are unreliable when applied
to other ethnic groups12. This lack of generalization to minority
populations, including admixed individuals are critical limitation of
human genetics. One major reason for this poor generalizability is
the prediction models being biased by the underlying population
structure. Both linear and non-linear models are susceptible to
overfitting the training participants, which essentially comprises
European ancestry in genomics. Although the non-linear models
via deep learning produce impressive results across domains, they
are more prone to overfitting—failing to generalize even with
minor shifts in the training paradigm13.

Studies have shown that one way to address this is by having
multi-ethnic training participants. For instance, limited general-
ization of PRS for blood pressure, as reviewed above, substantially
increased when the GWAS of Europeans were combined with the
GWAS of Hispanics/Latinos11. Similarly, Martin et al. pointed
out that the misdiagnoses of multiple individuals with African
ancestry would have been corrected with the inclusion of even a
small number of African Americans14. Although efforts to
increase the non-European proportion of GWAS participants are
being implemented, the proportion of individuals with African
and Hispanic/Latino ancestry in GWAS has remained essentially
unchanged15. As such, increasing training participants of other
ancestries, particularly for admixed individuals, is not likely to
occur any time soon without a dramatic priority shift, given the
current imbalance and stalled diversifying progress over the
recent years10.

In this work, we aim to learn robust risk prediction models that
generalize across different ancestry. Previous studies for learning
robust and unbiased genotype-phenotype relationships against
population bias have mostly been carried out with the PRS and
its variants16,17. These studies are focused on specific ancestry or
with an assumption that at least part of the background of the
genome is still of European origin17. In addition, PRS won’t capture

the complex genotype-phenotype relationship. Alternatively, deep
learning has recently shown improved predictability across domains
(e.g., vision, language, etc.) due to its ability to capture the complex
input-output relationship. However, standard deep-learning
approaches often fail to learn robust and unbiased representation,
which is also the case for PRS-based methods. The major line of
work for learning robust and unbiased representation with deep
learning involves learning domain-invariant representation, where
participants from different domains share common traits (e.g.,
genotype participants from different ancestry with common
phenotype)18,19. Adversarial learning paradigms are often con-
sidered to learn such domain-invariant representations. However,
such an adversarial approach is difficult to train and would require
extensive hyperparameter tuning.

Here, we introduce DisPred, a deep-learning-based framework
that can integrate data from diverse populations to improve the
generalizability of genetic risk prediction. The proposed method
combines a disentangling approach to separate the effect of
ancestry from the phenotype-specific representation, and an
ensemble modeling approach to combine the predictions from
disentangled latent representation and original data. Unlike PRS-
based methods, DisPred captures non-linear genotype-phenotype
relationships without restricting specific ancestral composition.
Unlike adversarial learning-based methods, DisPred explicitly
removes the ancestral effect from phenotype-specific representa-
tion and involves minimal hyperparameter tuning. Although
there have been recent efforts in using deep learning to capture
nonlinearity within high-dimensional genomic data6,20,21, these
works haven’t considered any specific strategy to separate the
effect of ancestry from phenotype-specific representation. More-
over, DisPred does not require self-reported ancestry information
for predicting future individuals, making it suitable for practical
use because human genetics literature has often questioned the
definition and the use of an individual’s ancestry22,23, and at
the minimum, the ancestry information may not be available
during the test time. We evaluate DisPred performance to predict
AD risk prediction in a multi-ethnic cohort composed of AD
cases and controls and show that DisPred performs better than
existing models in minority populations, particularly for admixed
individuals.

Results
Overview of the proposed workflow with DisPred. DisPred is a
three-stage method to improve the phenotype prediction from the
genotype dosage data (each feature has a value between 0 and 2).
We present the workflow summary in Fig. 1. First, as shown in
Fig. 1a, we built a disentangling autoencoder, a deep-learning-based
autoencoder, to learn phenotype-specific representations. The
proposed deep-learning architecture involves separating latent
representation into ancestry-specific representation and phenotype-
specific representation. In this way, this stage explicitly separates the
ancestral effect from phenotype-specific representation. Second, as
shown in Fig. 1b, we used the learned phenotype-specific repre-
sentation extracted from the disentangling autoencoder to train the
prediction model. We consider a linear model for the phenotype
prediction model in our case. Since the phenotype-specific repre-
sentation is non-linear, the prediction model, despite being linear,
will still capture the non-linear genotype-phenotype relationship.
Finally, as shown in Fig. 1c, we create ensemble models by com-
bining the predictions from the learned representations, i.e., the
result of our second stage, with the predictions from the original
data, i.e., the existing approach of building prediction models. The
second stage builds the prediction model from the disentangled
representations and the ensemble in the third stage aims to enhance
the prediction accuracy.
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We consider a training data D ¼ fxi; yi; aigNi¼1 with N
participants, where y represents the disease label (e.g., case and
control for binarized data), and a represents the environment
label for the data (e.g., categorical ancestral label). An encoder
function Fθ xð Þ decomposes original data x into ancestry-specific
representation za and phenotype-specific representation zd, and a
decoder function Gθ0 ðza; zdÞ reconstruct the original data as x̂
using za and zd. Both the encoder function (θ) and decoder
function (θ0) are parameterized by deep neural networks, and
together represent the disentangling autoencoder. Primarily, the
parameters θ and θ0 are optimized by minimizing LRecon, the
average reconstruction loss over N training examples.

To disentangle the latent bottleneck representation, we propose a
latent loss based on the following assumptions: for any data pair
originating from the same environment, the corresponding pair of
latent variables za should be similar, and different if the data pair
belongs to a different environment a. Similarly, the latent zd should
be similar or different if the pair belongs to the same or different
disease label y. We propose LSC , contrastive loss24–26 to enforce
these similarities in the latent space. We apply LSC independently
to both za and zd: Overall, the objective function for training the
disentangled autoencoder takes the following form:

LDisentgl�AE ¼ LRecon þ αd �LSC
zd

þ αa �LSC
za

ð1Þ
where α� represent the hyperparameter for the corresponding
latent loss. For each latent variable, the contrastive loss will enforce
the encoder to give closely aligned representations to all the entries
from the same label in the given batch encouraging disentangle-
ment of disease and environment features in two separate latent
variables.

In the second stage, we utilize the trained autoencoder to
extract phenotype-specific representation zd to train the predic-
tion model for the given phenotype. Our prediction models are
trained with linear regression, regressing zd to the corresponding
disease label y. Finally, in the third stage, we create ensemble

models by combining pz; the predictions from the linear model
using the phenotype-specific representation zd; with px , the
predictions from the linear model using the original data x:

pe ¼ α � pz þ β � px ð2Þ
where α and β are the weighing parameters determined using
gradient-based search using the validation set. We use the same
training and validation data as in earlier stages to obtain pz and px
and learn the weighing parameters α and β. Here pe represents
prediction from the additive ensemble model, a complex model that
combines the predictions resulting from linear and non-linear
relationship between original data and the phenotype target.

Application of DisPred to Alzheimer’s Disease (AD) risk pre-
diction. We use the DisPred framework to predict AD using
genetic data. The aim is to evaluate the prediction accuracy (via
Area under the curve: AUC) of the proposed DisPred in com-
parison to other methods in genomics trained on participants of
European ancestry, including Polygenic Risk Score (PRS)27, and
the supervised Neural Network (NN). We considered two con-
ventional PRS methods: PRS by clumping (PRS-Clumping) and
PRS by Lasso-based penalized regression (PRS-Lasso). For all
comparison methods, we considered the same set of genetic
variants identified by existing GWAS as features, including 5,014
variants associated with AD from Jansen et al. (2019)28 (variants
with p < 1e-5) and 78 variants from Andrews et al. (2020)29. We
evaluated these methods using two cohorts: the Alzheimer’s
Disease Sequencing Project (ADSP) and the UK Biobank (UKB).
The outcome or phenotype label for the ADSP is the clinical
diagnosis for the presence or absence of AD, and for the UKB is a
dichotomized version of continuous proxy-phenotype derived
from the information from family history (first-degree relative
with reported AD or dementia). After filtering for participants
and variants, the final dataset includes 11,640 participants for the
ADSP cohort and 461,579 participants for the UKB, with 3892

Fig. 1 Modeling strategy. a Disentangling autoencoder learns ancestry and phenotype-specific representation separately using autoencoder architecture
and unique contrastive latent loss. b The disentangled phenotype-specific representation is then used for the phenotype prediction. A separate linear
prediction model is trained on the obtained representation for the phenotype prediction. c To increase prediction power, we use the ensemble modeling
approach, where the parameters can be obtained either from grid-search or gradient-based search.
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variants. We split the ADSP data into training and test and
divided the training set into training and validation sets with
stratification based on the phenotype labels. To compare pre-
diction accuracy, we present the results of the models tested on
independent test data from the ADSP and all data from the UKB.

We consider self-reported ancestry labels in the training
dataset to train the disentangling autoencoder and other ancestry-
specific linear and non-linear models. The independent test data
consists of 2101 participants for the ADSP and 461,579
participants for the UKB. To evaluate the performance of the
proposed method to predict AD status in minority populations or
admixed individuals, we estimated ancestry percentages from
genome-wide data using SNPWeight v2.130. Then we used these
ancestry estimates to divide the test data into different ancestries
to present the results. This is to ensure that the partitions
accurately reflect the actual genetic-ancestry background and
enable a more rigorous evaluation of the methods. Details for
dataset preparation are explained in the Methods section.

Although unconventional, we also consider the models trained
using other non-European ancestries like African American
population (AFR) to understand the effect of training models with
training participants other than European ancestry. Furthermore,
we also considered adversarial learning to capture domain-
invariant representations where we treated ancestry as domains
(Adv). These different results are presented in the Methods section.

Representation learned via disentangling autoencoder. We
analyzed the representations learned from the proposed DisPred
framework. In Fig. 2, we present the Uniform Manifold Approx-
imation and Projection (UMAP)31 plots for the ancestry-specific
representation za and phenotype-specific representation zd to

assess whether the proposed method can separate the ancestry
effect from the GWAS variants. First, we note that the repre-
sentation captured the ancestry-related information on the left
plots. The three training ancestry groups for the ADSP cohort were
clearly separated and three out of four training ancestry groups for
the UKB cohort were also separated. However, the admixed
(MIX) group in the UKB cohort is mixed with other ancestries
(left panel on bottom row). This is a limitation of the proposed
regularization, or the proposed architecture, which may not be able
to completely separate the MIX group from other ancestries. On
the right side of both figures, when ancestry labels are applied to the
phenotype-specific representation zd, we note that the ancestry
labels are scattered without forming clear clusters. This means that
our proposed method correctly identified a latent representation zd
that is invariant to ancestry background, which we later use to build
the prediction models.

DisPred improved AD risk prediction for minority popula-
tions and for admixed individuals. We report the main results in
Fig. 3. First, test data distribution for different ancestries for the
two cohorts is presented in panel A. We considered 90% and 65%
as estimated ancestry cut-offs, respectively, for the ADSP and the
UKB to stratify test participants into five super populations:
South Asians (SAS), East Asians (EAS), Americans (AMR),
Africans (AFR), and Europeans (EUR), and an admixed group
composed of individuals not passing cut-off in any ancestry. Since
UKB primarily comprises European participants, we set the
threshold low for non-EUR participants for our analysis. In both
datasets, individuals of EUR ancestry correspond to the largest
proportion (48% for the ADSP and 98% for the UKB). For the
ADSP, we consider two sub-groups of test datasets: (i) African

Fig. 2 Learned latent representation. UMAP plots of ancestry-specific representation (left column) and phenotype-specific representation (right column)
were learned from Disentgl-AE for the ADSP (top row) and the UKB (bottom row). We colored the points with self-reported ancestry labels (EUR:
European, MIX: admixed, ASN: Asian, and AFR: African), demonstrating that phenotype-specific representation is invariant to the ancestry background.
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participants (n= 169) (ADSP AFR) (Panel B), and (ii) admixed
individuals (n= 916) (ADSP admixed) (Panel C). This is to
evaluate different models’ performance on non-European min-
ority populations. For the UKB, we consider a non-European sub-
group of test datasets: (i) South Asian participants (n= 8083)
(UKB SAS) (Panel D. This is to evaluate different models’
performance on dataset shift (or distribution shift), i.e., the
application of models trained on one cohort to participants of a
separate cohort. Across all cases, DisPred achieves the best result.
The PRS-Lasso is the second-best model in all cases, demon-
strating its superiority in sparse domains above standard Neural
Network models. PRS-Clumping and PRS-Bayes generally per-
formed worst across all cases. We also note that although we did
not leverage data from SAS, we significantly improved prediction
accuracy for UKB SAS. The proposed Disentgl-AE utilizes all the
available training participants to separate the effect of ancestry
from the phenotype representation. As such, the obtained phe-
notype representation demonstrated the best predictive abilities.

DisPred performs better in the presence of ancestral mismatch.
Since existing methods are often ancestry-specific, ancestry
information is required for predicting future patients or indivi-
duals in a practical setting. However, human genetics literature
has often questioned the definition and the use of an individual’s
ancestry22,23, and at the minimum, the ancestry information may
not be available during the test time. Without accurate ancestry
information, the participants could either align or mismatch with
the corresponding ancestry of training populations. For such
conditions, we present the results in Fig. 4. We consider two
different test scenarios: (i) ADSP EUR (n= 1014) and (ii) ADSP
AFR (n= 161) and compared the performance of DisPred against
models trained with ADSP EUR participants (left panel) and
models trained with ADSP AFR participants (right panel). We
use the same ancestry percentage cut-off in the previous section
to stratify the test participants into EUR and AFR for ADSP.

Since the effect sizes (or betas) for calculating PRS are derived
from EUR participants, we don’t have results for PRS-Clumping
AFR in the above table. In each panel, the dotted lines separate
the scenarios for ancestral alignment (left) or mismatch (right).
We note that among all the analyzed cases, only when the EUR
test participants aligned with the EUR training population,
DisPred obtain less predictive accuracy than PRS-Lasso. Other
than that, DisPred achieved better results when the test partici-
pants didn’t align with the training population for AFR and
EUR analysis and for AFR, even when they aligned. This
demonstrates that we learned an invariant representation robust
to ancestry background. Overall, these results show the practical
usability of the DisPred model over existing methods when there
is an ancestral mismatch.

DisPred with increasing individual-level heterogeneity.
DisPred, compared to existing methods, improved predictability
for the minority population, including admixed individuals. Since
admixed individuals’ genome is an admixture of genomes from
more than one ancestral population, we identified that different
models struggle as individual heterogeneity increases. This sec-
tion presents an in-depth evaluation of this issue for the ADSP
cohort. Estimated ancestral percentages were used to calculate the
heterogeneity. For each sample in the test set, the variance of
ancestral proportion was computed, and we sorted these in
decreasing order, obtaining a sequence from homogeneity to
heterogeneity. For such an arrangement, Fig. 5 shows the results,
where we created numerous data subsets by sliding window-based
process with a window size of 750 participants and a stride length
of 50 participants. This way, the data subset heterogeneity
increases from left to right. The background is color-coded with
the proportion of the estimated ancestral percentage for each data
subset. All methods considered in this work start to degrade as we
move toward heterogeneity or admixed individuals. The proposed
DisPred performs well when there is a sharp decline in the

Fig. 3 Predictive analysis. a Test data distribution for the ADSP and the UKB cohorts. The pie chart presents the proportion of different ancestries for the
ADSP and the UKB. b Prediction accuracy (AUC) for different models trained on European participants (PRS-Clumping, PRS-Bayes, PRS-Lasso, Neural
Network (NN)) and proposed DisPred trained on all data on different subsets of the test dataset: African participants (ADSP AFR), and c admixed
individuals from ADSP cohort, and d South Asian participants (UKB SAS) from the UKB cohort.
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proportion of European ancestry (in the middle region of the
graph) and slowly decreases towards the end. Overall, the DisPred
produces the best result. These results also suggest that the lack of
generalization cannot be addressed by simply increasing the non-
European training participants by recruiting more homogeneous
individuals from minority populations. An equal effort needs to
be given toward designing unbiased and fairer algorithms like
DisPred.

Discussion
As the population becomes increasingly mixed over time, under-
standing how to analyze and interpret admixed genomes will be
critical for enabling transethnic and multi-ethnic medical genetic
studies and ensuring that genetics research findings are broadly
applicable. Yet, existing AI-based approaches in genomics are lar-
gely focused on homogeneous European ancestry. We thus urge a
joint research effort to confront the existing approach for ancestry-
specific AI frameworks and focus on building unbiased alternatives.
This study introduced DisPred, a deep-learning-based framework

for improving AD risk prediction in minority populations, parti-
cularly for admixed individuals. First, we developed a disentangling
autoencoder to disentangle genotypes into ancestry-specific
and phenotype-specific representations. We then build predictive
models using only phenotype-specific representation. Finally, we
used ensemble modeling to combine the prediction models built
using disentangled latent representation, and the model built using
the original data. We constructed DisPred for unbiased and robust
predictions for diverse ancestry, particularly for the non-European
population. With AD GWAS data from the ADSP and the UKB
cohort, we confirmed the effectiveness of the disentanglement-
based framework for non-European minority populations.

In this study, we also demonstrated that, unlike existing practices
where models built for particular ancestry are applied to individuals
of the same ancestry requiring ancestry information at the test time,
DisPred is robust to different ancestry compositions without the
need for self-reported ancestry information. We believe this is an
appealing feature of DisPred as there has been a long-standing
debate on the use of self-reported race/ethnicity/genetic ancestry in
biomedical research. The scientific, social, and cultural considera-
tions make it challenging to provide an optimal label for race or
ethnicity, which could result in ambiguity, contributing to mis-
diagnosis. Moreover, at the minimum, such ancestry information
may not be available. As such, a method like DisPred that does not
require ancestry information is beneficial to get around this critical
issue. Similarly, dataset shift, i.e., different training and test data
distributions (or cohorts), although a common practical scenario,
makes generalization challenging for machine learning models. We
showed that compared to existing methods, DisPred demonstrated
better predictive abilities in the presence of dataset shift. However,
note that, compared to other methods, the increase in prediction
performance for non-European individuals comes with a decrease
or similar prediction performance for European individuals.
Overall, existing methods typically improve predictions by lever-
aging data from the target population and, in turn, make the model
more sensitive to the ancestry background and thus require rele-
vant ancestry information at prediction stages. Unlike them,
DisPred is different and unique as it learns invariant representation
robust to ancestry background and performs well in a diverse test
environment.

However, certain limitations are not well addressed in this
study. First, in this study, we didn’t perform any feature impor-
tance analysis to understand if specific variants were more pro-
nounced for admixed groups than the homogenous European
ancestry. Due to the multi-stage framework involving different
training and optimization processes, unlike other AI approaches,
it is not straightforward to relate the predicted phenotype to the
original data level. A detailed study is required to trace the flow of

Fig. 5 Predictive performance with increasing ancestry heterogeneity.
Prediction accuracy (AUC) for different models on data subsets with
increasing ancestry heterogeneity for the ADSP cohort. The background is
color-coded with the proportion of the estimated ancestral percentage
(EUR: European, AFR: African, AMR: American, EAS: East Asian, and SAS:
South Asian) for each data subset.

Fig. 4 Predictive performance for misaligned train and test cohorts. Prediction accuracy (AUC) for different models (PRS-Clumping trained on European
(PRS-Clumping EUR), PRS-Bayes trained on European (PRS-Bayes EUR), PRS-Lasso trained on European (PRS-Lasso EUR), PRS-Bayes trained on African
(PRS-Bayes AFR), PRS-Lasso trained on African (PRS-Lasso AFR), Neural Network trained on European (NN-EUR), Neural Network trained on African (NN-
AFR), and DisPred) on the practical setting of when there is alignment or mismatch between the ancestry of training and test participants. All prediction
models are trained on ADSP (EUR participants on the left and AFR participants on the right).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05352-6

6 COMMUNICATIONS BIOLOGY |           (2023) 6:964 | https://doi.org/10.1038/s42003-023-05352-6 | www.nature.com/commsbio

www.nature.com/commsbio


information from the genetic variants to disentangled repre-
sentations and then to the predicted phenotype. In this study, we
couldn’t perform extensive comparisons with several related
methods. In particular, the PRS-based multi-ethnic genetic pre-
diction approaches32–36 are one of the most active statistical
genetic research areas and have shown improvement for non-
European populations. Most of these works propose statistical
methods to integrate genome-wide association study summary
statistics from different populations effectively. Our work on the
other hand, doesn’t incorporate such summary statistics (which
can be from multiple ancestries), and instead trains on individual-
level data. The third is the engineering efforts. The deep-learning
architecture, proposed in this work constructed using multi-layer
perceptron with ReLU activation, potentially has space for
improvements. Our framework used contrastive loss24–26 to
achieve disentanglement in the latent space. In recent years, many
advanced similarity-enforcing losses37,38 have been proposed in
the deep-learning literature, which could improve our framework.
We have open-sourced the disentangling autoencoder to encou-
rage future research in this direction. It is worth mentioning that
our proposed framework is not confined to AD risk prediction
and can be extended to other phenotypes. Third, we restricted the
training set to significant variants, and with PRS-clumping, this
set was further shrunk. As such, it might seem a bit unfair
comparison as it is known that sub-threshold single nucleotide
polymorphisms (SNPs) also carry information. However, we note
that all the methods are compared with the same set of variants
and participants, so the overall comparison is fair. Further, the
use of significant variants (threshold of 1e-5 or 5e-8) for risk
calculation or similar other meta-analyses is still common in AD
genetics literature1,39.

Methods
In this section, we first describe how we constructed the dataset
and provide details of our proposed method and implementations
for collaboratively training the AI model.

Dataset preparation. This study considers two datasets: the
ADSP and the UKB. We use the p < 1e-5 threshold to obtain the
candidate regions of 5014 GWAS variants obtained from Jansen
et al. (2019)28 and Andrews et al. (2020)29. We remove SNPs with
more than a 10% missing rate to ensure marker quality resulting
in 3892 variants. We then remove participants with absent AD
phenotype or ancestral information. For the ADSP, we have a
dichotomous case and control label for the AD phenotype. For
the UKB, we use the AD-proxy score defined in Jansen et al.
(2019)28, which combines the self-reported parental AD status
and the individual AD status. Since AD is an age-related disease,
we removed control participants below age 65 (age-at-last-visit).
A total of 10,504 participants were obtained for the ADSP cohort
and 461,579 participants for the UKB. We held out 20% of the
participants for the ADSP for the test data and the rest as the
training data. The training data consists of 8403 participants,
including 2061 AFR, 4780 EUR, and 1562 HIS based on self-
reported ancestry labels. These self-reported ancestry labels are
incorporated into the proposed method to learn the latent
representation. Further, we held out 1000 participants as the
validation data. The data division into training, test, and valida-
tion is stratified using phenotype labels, i.e., each set contains
approximately the same percentage of participants of phenotype
labels as the complete set. Overall, the number of training, test,
and validation participants for the ADSP is 7403, 2101, and
1000, respectively. For the sub-groups test datasets presented in the
main result (Fig. 3), the case-control statistics are as follows, ADSP

AFR (n= 169, case= 63, control= 106), and ADSP admixed
(n= 916, case= 340, control= 576).

Ancestry determination. For each cohort included in our ana-
lysis, we first determined the ancestry of each individual
with SNPWeight v2.130 using reference populations from the
1000 Genomes Consortium40. Prior to ancestry determination,
variants were filtered based on genotyping rate (<95%), minor
allele frequency (MAF < 1%), and Hardy–Weinberg equilibrium
(HWE) in controls (p < 1e-5). By applying an ancestry percen-
tage cut-off >90% (for ADSP) and >65% (for UKB), the parti-
cipants were stratified into five super populations: South Asians,
East Asians, Americans, Africans, and Europeans, and an
admixed group composed of individuals not passing cut-off in
any ancestry.

Disentangling autoencoder. The disentangling autoencoder
comprises of an encoder function Fθ �ð Þ and the decoder function
Gθ0 �ð Þ. The encoder decomposes original data x into ancestry-
specific representation za and phenotype-specific representation
zd; and the decoder reconstruct the original data as x̂ using za and
zd, which are concatenated together. The parameters of the
autoencoder, i.e., θ and θ0 are optimized by minimizing the
LRecon; average reconstruction error over N training examples.

LRecon ¼ 1
N

∑
N

i¼1
Lr xi; x̂i
� � ¼ 1

N
∑
N

i¼1
Lr xi;Gθ0 Fθ xi

� �� �� � ð3Þ

where Lr is mean squared error. To achieve disentanglement, we
propose contrastive loss24–26 to enforce the similarities between
the latent representations obtained from the data pair in the
latent space. For a batch with N randomly sampled pairs,
fxk; ykgNk¼1, the contrastive learning algorithm use two random
augmentations (commonly referred to as “view”) to create 2N
pairs fexl; eylg2Nl¼1, such that ey 1:N½ � ¼ ey Nþ1:2N½ � ¼ y 1:N½ �. In our case,
we simply replicate the batch to create 2N pairs. Using this multi-
viewed batch, with index i 2 I � f1¼ 2Ng and its augmented
pair j ið Þ, the supervised contrastive (SC) loss41 takes the following
form:

LSC ¼ �∑
i2I

1
S ið Þ ∑

s2SðiÞ
log

expðzi � zsÞ=τ
∑r2Ii exp zi � zr

� �
=τ

ð4Þ

where S ið Þs � fs 2 Ini : eyp ¼ ypg is the set of indices of all the
positives in the multi-viewed batch distinct from i and τ is a
temperature parameter. We apply LSC independently to both za
and zd. Overall, the objective function for training disentangled
autoencoders takes the following form:

LDisentgl�AE ¼ LRecon þ αd �LSC
zd

þ αa �LSC
za

ð5Þ
where α� represent the hyperparameter for the corresponding
latent loss. We set these hyperparameters through grid search
using a held-out validation set. For each latent variable, the
contrastive loss will enforce encoder to give closely aligned
representations to all the entries from the same label in the given
batch encouraging disentanglement of disease and environment
features in two separate latent variables.

Model architecture and training setting. We used the Python
package scikit-learn42 to implement all the linear models and
PyTorch43 to implement all the non-linear models, including the
proposed Disentangling Autoencoder. The proposed disen-
tangling autoencoder (Supplementary Fig. 1, top row) comprises
four layers in the encoder and three layers in the decoder. The
encoder layers are designed to learn low-dimensional features,
and the decoder layers to upscale the low-dimensional features
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into high-dimensional data space. We consider the ReLU acti-
vation function for all the non-linear layers in the autoencoder.
We train DisentglAE with Adam44 optimizer with a constant
learning rate of 5e-3. We train the model till N epochs. We first
let the model focus entirely on the reconstruction task till N1

epochs by setting the weight parameters for similarity loss as 0.
From N1+ 1 epochs and to N2 epochs, we linearly ramp the
weight parameters α� to 1, and then continue training till N
epochs. We conduct hyperparameter testing selecting the model
that results in the best validation AUC for the following hyper-
parameters: zd (30, 40, 50), za (30, 40, 50), τ (0.03, 0.05), and α�
(0.0001, 0.0003), where zd, za, τ, and α� are selected, respectively,
as 40, 40, 0.03, and 0.0001. Other used values for the hyper-
parameter include, N= 500, N1= 100, N2= 250, and batch size
= 256. We then use ordinary least square linear regression to
minimize the residual sum of squares between y, the phenotype
labels and pz ; the targets produced by the zd.

For the ensemble modeling, we combine pz ; predictions from
learned representations and px , prediction from the original data.
For the prediction from the original data, we consider Lasso
linear model to make fair comparison with existing models. To
combine these predictions, we conduct both grid-search and
gradient-based search. For grid-search, we test all the values from
0.1 to 1.5, increasing at 0.1 for both α and β, and found α= 1.4
and β= 0.4 for the ADSP, and α= 1.2 and β= 0.6 for the UKB,
which produces the best AUC for the validation set. For the
gradient-based search, we consider α and β as the parameter,
initialize their weights as 1.1 and 0.9, and train the ensemble
function (pe) with an SGD optimizer for 5000 epochs. The best
result was produced by α= 1.103 and β= 0.720 for the ADSP,
and α= 1.121 and β= 0.560 for the UKB. The reported results
for both UKB and the ADSP using the parameters from grid-
search. The result from the gradient search was similar to the
grid-search result.

We used the Sherlock high-performance computing (HPC)
device at Stanford University to conduct our experiments. The
configurations for the cluster of remote machines were GPU:
Nvidia GeForce RTX 2080 Ti 11GB; and CPU: Intel Xeon Silver
4116 2.10 GHz; OS: Ubuntu16.04.3 LTS. The computational time
for DisPred primarily depends on the number of input features,
dataset size, batch size, and total epochs used to train the
Disentangling autoencoder. For the standard setup in our study,
using the computing resources presented above, training of
Disentangling Autoencoder for 500 epochs for the ADSP training
dataset took 14 min.

Baseline methods. In Supplementary Fig. 1 (middle row and
bottom row), we present the architecture for other neural network-
based methods considered in this work. This includes supervised
Neural Network (NN) and adversarial learning for capturing
domain-invariant representations with ancestry as domains (Adv).
For training NN, we consider the following parameters for ADSP:
number of epochs= 200, learning rate= 5e-3, batch size= 64, and
for the UKB: number of epoch= 100, learning rate= 5e-3, batch
size= 256. For Adv, we consider Wasserstein distance for captur-
ing domain-invariant representation and followed the experi-
mental setup from Shen et al. (2017)45. We provide the detailed
results of these methods in Supplementary Note 1 and Supple-
mentary Figs. 2 and 3.

To derive PRS, we used three different approaches: PRS by
clumping (PRS-Clumping), PRS by Naive Bayes-based penalized
regression using individual-level data (PRS-Bayes), and PRS by
Lasso-based penalized regression using individual-level data (PRS-
Lasso). For PRS-Clumping, we start with a PRS based on the well-
known APOE locus for AD risk prediction (rs429358 and rs7412)

and then perform clumping (i.e., thinning and prioritizing
associated SNPs) for the rest SNPs so that the retained SNPs are
largely independent of each other27. To ensure independence, we
used the Pearson correlation, and starting from the most significant
SNPs (anchor SNP), we removed all other SNPs with R2 greater
than 0.5 that are within 1MB distance of the anchor SNP. We then
compute the sum of risk alleles corresponding to the AD phenotype
for each sample, weighted by the effect size estimates. We obtain
the effect size from the genetic variants identified by Jansen et al.
(2019)28 and Andrews et al. (2020)29. For PRS-Bayes, we construct
polygenic risk scores via Gaussian Naive Bayes using individual-
level data from ADSP. The best model is selected by 5-fold cross-
validation using the whole training set. Unlike PRS-Clumping and
PRS-Lasso, PRS-Bayes doesn’t induce any additional sparsity. For
PRS-Lasso, we construct polygenic risk scores via Lasso penalized
regression46 using individual-level data from ADSP. The Lasso
linear models are fitted with iterative fitting along a regularization
path, and the best model is selected by 5-fold cross-validation using
the whole training set. We set alphas automatically and consider
Nalpha (number of alphas along the regularization path)= 10, the
maximum number of iterations= 5000, and the tolerance value for
optimization= 1e-3.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The dataset used in this paper, i.e., the Alzheimer’s Disease Sequencing Project (ADSP)
and the UK Biobank (UKB), are publicly available data cohorts and are available at
https://adsp.niagads.org and https://www.ukbiobank.ac.uk, respectively. We used
publicly available summary statistics from Jansen et al. (2019)28 and Andrews et al.
(2020)29. The source data behind the graphs in Figs. 3, 4 and 5, and Supplementary
Figs. 2-3 can be found in Supplementary Data 1, 2, 3, and 4, respectively.

Code availability
The code for data preprocessing is written in R programming language. The code for
DisPred’s training, prediction and evaluation are written in Python with PyTorch and
scikit-learn. The codes are available on the GitHub platform (https://github.com/
Prasanna1991/DisPred)47.
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