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COSMOS: a platform for real-time morphology-
based, label-free cell sorting using deep learning
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Cells are the singular building blocks of life, and a comprehensive understanding of mor-

phology, among other properties, is crucial to the assessment of underlying heterogeneity.

We developed Computational Sorting and Mapping of Single Cells (COSMOS), a platform

based on Artificial Intelligence (AI) and microfluidics to characterize and sort single cells

based on real-time deep learning interpretation of high-resolution brightfield images.

Supervised deep learning models were applied to characterize and sort cell lines and dis-

sociated primary tissue based on high-dimensional embedding vectors of morphology

without the need for biomarker labels and stains/dyes. We demonstrate COSMOS cap-

abilities with multiple human cell lines and tissue samples. These early results suggest that

our neural networks embedding space can capture and recapitulate deep visual character-

istics and can be used to efficiently purify unlabeled viable cells with desired morphological

traits. Our approach resolves a technical gap in the ability to perform real-time deep learning

assessment and sorting of cells based on high-resolution brightfield images.
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Technological advances have made single-cell characteriza-
tion at the genomic, transcriptomic, and proteomic levels a
reality, yielding comprehensive cell atlases with detailed

molecular data on hundreds of cell types from multiple
organisms1–5. Yet, tools for assessing high-dimensional cell
morphology at single-cell resolution have not kept pace with
advancements in molecular characterization. Cell morphology
has been used by pathologists and clinicians for years as the gold
standard for disease diagnosis and prognosis6. A growing body of
evidence shows morphology serves as a readout of genomic and/
or functional states, including gene expression, metastatic
potential, and mechanism(s) of drug response7,8. Beyond epitope
and biomarker-based cell capture, fluorescence-activated cell
sorting (FACS) data provides useful morphology-related infor-
mation, including cell size and granularity9,10, further high-
lighting the value of morphology quantification. To complement
current technologies that assess cell biology at single-cell resolu-
tion, the ability to directly quantify morphology using multiple
dimensions and sort populations of interest for downstream
analysis is critical.

Recent efforts in image-based cell sorting, which deploy high-
speed image capture of cells in flow, have recognized the potential
to discern and study visual information of cells10–17. However,
these innovations are limited by dependence on biomarker
staining14 or deformability assays12, which compromise cell via-
bility for downstream functional assays. Some approaches that
use feature engineering of low-resolution or reconstructed images
may not capture the entirety of complex morphological infor-
mation. Accordingly, the number of morphological traits that are
simultaneously characterized may be limited13,16. Some techni-
ques require manual processes to define a small number of fea-
tures to quantify and sort cells based on morphology. For
instance, sorting decisions are made based on population gating
on a small number of specific spectral signals that allude to the
morphological characteristics of cells14. In a previous report,
image features based on fluorescent signals are used to establish a
hierarchical gating strategy for cell sorting that is fine-tuned to a
specific application14. The application of deep learning and
machine intelligence can simultaneously deepen and generalize
the characterization of image traits. Machine intelligence has
allowed accurate classification of cells on pathology slide
images18, including recapitulation of immunohistochemistry
signals from light microscopy alone19. One group combined
shallow convolutional neural network (CNN) classification with a
sorting device to classify and isolate a limited set of cells with
clear morphological differences based on reconstructed cell
images13,20. Despite tremendous progress and insights from
recent work, real-time deep learning classification and sorting
decisions based on high-resolution images have remained pro-
hibitively challenging. Machine learning approaches for single-
cell sorting remain limited to small datasets due to technical
constraints in integrating deep neural network architectures with
real-time cell sorting.

We present Computational Sorting and Mapping of Single
Cells (COSMOS), a cloud-enabled platform that performs real-
time cell imaging, analysis, and sorting using deep learning-based
morphology representations (Fig. 1, Supplementary Figs. 1 and
2). The platform classifies and sorts live cells based on high-
resolution brightfield images, thereby enabling quantification and
mapping of cell morphology as a biological descriptor11. COS-
MOS is outfitted with a data infrastructure to host a large atlas of
annotated single-cell images, a library of deep learning models
with the computational capacity to classify label-free brightfield
images, and fluidics hardware to isolate target cells based on
model classifications (Fig. 1). Several approaches that apply deep
learning to cell sorting rely on readouts that can be reconstructed

into an image, rather than actual images of cells. A potential
drawback of this approach is lower information content and
resolution. Here, we analyzed and sorted cells based on high-
resolution brightfield images of single cells using deep learning.
This approach is critical in multiple ways. First, a model that can
capture minute variations in images at this resolution is
demanding to train and requires relatively large datasets. For
instance, many studies developed a model using thousands of
images12,20,21, compared to millions of images in our study. The
selected model architecture (InceptionV3) is deep enough to
represent high-resolution images of multiple complex objects.
Second, running inferences on this deep architecture in real-time
to sort cells using high-resolution image data is computationally
challenging. To achieve real-time classification, computation is
distributed across an ultra-high-speed camera, microcontroller,
CPUs, and GPUs with an optimized version of the Inception
architecture. Third, we designed the microfluidics system to keep
cells in an ultra-tight focus range. This is critical to the perfor-
mance of a system that captures high-resolution images and is
sensitive to slight variations of focus. Finally, we used dimen-
sionality reduction techniques and high-dimensional data visua-
lization analysis tools (e.g., UMAP) to enable intuitive
interpretation of deep morphological representations22. Detailed
descriptions of instrument specifications, including latency time,
sorting purity, cell flow rate, and base code, can be found in
Supplementary information.

Using multiple cell lines and solid tumor biopsy samples, we
show that the COSMOS tool can be used to (1) visualize deep
morphological distinctions across biological samples, (2) dis-
criminate and enrich specific cells of interest with high accuracy
in a label-free manner, and (3) provide a link between mor-
phology and molecular biology through delivering minimally
perturbed cells with distinct morphological characteristics. This
platform presents a framework with promising applications in
the discovery of inherent morphological phenotypes and the
ultimate integration of morphology with multi-omics data
analysis.

Results
Cell clusters in the embedding space. To demonstrate COS-
MOS’s ability to identify different cell types based on morphol-
ogy, we trained a CNN model using peripheral blood
mononuclear cells (PBMCs), fetal nucleated red blood cells
(fnRBC), non-small cell lung cancer (NSCLC), and hepatocellular
carcinoma (HCC) cell lines using the indicated number of
cells–termed the “Circulating Cell Classifier” (Fig. 2a). Repre-
sentative images of each of these four classes are shown in Fig. 2b,
Supplementary Fig. 3a. Low-dimensional representations that
capture AI descriptors of cell images, “embeddings”, were
extracted and plotted as Uniform Manifold Approximation and
Projection (UMAPs). Distinct cell types (e.g., NSCLC vs HCC)
clustered separately from one another (Fig. 2c). Within NSCLC
and HCC clusters, the three cell lines were clustered separately,
suggesting morphological differences not only between cell types
but also between cell lines within the same cell type (e.g., H23,
H522, and A549 for NSCLC). PBMC samples showed high
morphological variation, consistent with the heterogeneous
composition of PBMCs (e.g., lymphocytes, monocytes, and den-
dritic cells). HEP3B2 and H23 cell lines are equivalent in size but
plot separately in embedding space, indicating that additional AI
vectors beyond cell size contribute to the morphological differ-
ences driving this separation (Fig. 2d, Supplementary Fig. 3b, c).

Next, we assessed COSMOS’s ability to distinguish healthy cells
in varying cell states using T cell activation and differentiation as
examples. Embedding projections shown using t-distributed
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stochastic neighbor embedding (tSNE) plots demonstrate distinct
clusters between activated and naive T cells (Supplementary
Fig. 4a). Additionally, a time-course (Day 0–5) study of T cell
differentiation shows morphological properties shift with chan-
ging cell state and identity, as reflected in projected embeddings
(Supplementary Fig. 4b). These results suggest T cell activation
and differentiation state, in addition to PBMCs versus malignant

cells, can be distinguished by deep morphological analysis of
brightfield images (Supplementary Fig. 4).

In silico evaluation of model performance and cell enrichment.
In silico analysis was performed to examine the accuracy of the
Circulating Cell Classifier in classifying the four cell types above
in a supervised fashion. The confusion matrix shows that model
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prediction for fNRBCs, HCCs, NSCLCs, and PBMCs matches the
actual cell class at 87%, 100%, 92%, and 100%, respectively
(Fig. 2e).

We tested COSMOS’s ability to identify low-abundance
NSCLCs, HCCs, and fnRBCs from a PBMCs background using
positive or negative selection from an in silico mixture of known
cell type datasets in varying proportions. For the NSCLC cell
class, classifier performance yielded an area under curve (AUC) of
0.9842 for positive selection and 0.9996 for negative selection. For
the HCC cell class, AUC was 0.9986 and 0.9999 for positive and
negative selection, respectively (Supplementary Fig. 5a, b). While
we demonstrated low false positive rates (FPR) for both modes of
classification, positive selection in both cases enabled higher
yields at low FPR < 0.0004. For the fnRBC cell class, we assessed
only the mode of positive selection, which yielded an AUC of 0.97
(Supplementary Fig. 5c). This in silico analysis shows that even at
1:100,000 dilution, the model supports the detection of target cells
at >70% precision (positive predictive value or post-enrichment
purity) and 50% recall (sensitivity) in both the fnRBC and HCC
samples, while recall drops to 15% for NSCLC class (Fig. 2f,
Supplementary Fig. 6).

Performance of target cell enrichment. Cells classified as target
cells can be sorted into a collection reservoir for validation and/or
further downstream analysis (see “Methods”). Cell sorting is
performed using a pair of pneumatic microvalves controlled by a
digital signal processing (DSP)-based microcontroller (see
“Methods”). The valve timing can be adjusted based on desired
purity or yield, depending on cell rate. Supplementary Fig. 1
shows the tradeoff between purity and yield based on cell rate, in
addition to valve timing adjustments required for desired purity
and yield. For example, at 3000 cells/min sorting rate, at ~80%
yield, ~60% purity can be achieved with the valve window
adjusted to ~15 ms (Supplementary Fig. 1). To biologically vali-
date our in silico analysis, we performed simultaneous classifi-
cation and enrichment experiments by spiking NSCLC cell lines
and fnRBCs from 1:1000 to 1:100,000 into PBMCs and estimated
sorted cell purity using single nucleotide polymorphism (SNP)
assays. A549 and H522 cells exhibited similar enrichment and
purity (Fig. 2g, Supplementary Fig. 7, Supplementary Table 1),
even though the classifier was trained on A549 cells. At a
1:100,000 spike-in ratio, 20% and 30–33% purities corresponding
to 13,904 and 30,000–32,500-fold enrichment were obtained for
A549 and H522 cells, respectively.

We next assayed for a frameshift mutation in TP53
(c.572_572delC), which is homozygous in H522 and wildtype
in A54923 (Fig. 2h, Supplementary Table 2). Even at 1:100,000
spike-in ratio, the mutation was present at 23% allele fraction in
DNA extracted from enriched cells, suggesting functionally
important mutations are detected even when cells containing
them are at <1:100,000 concentrations.

To further test the performance of identifying and isolating
low-abundance cells, A549 cells were spiked into whole blood at
40 cells/mL and 400 cells/mL. To simulate negative enrichment
workflows by depleting cells other than cells of interest, RBC lysis
and CD45+ cell depletion were performed prior to COSMOS
processing. SNP analysis of sorted samples had final purities (and
fold enrichment) of 55% (>10,900x) and 80% (>29,000x) for 400
cells/mL replicates and 43% (>33,500x) and 35% (>27,800x) for
40 cells/mL replicates (Fig. 2i, Supplementary Table 3, Supple-
mentary Fig. 8).

Gentle and label-free sorting yields viable cells with unaltered
scRNA-Seq profiles. We tested whether live cells sorted with
COSMOS maintain viability and are amenable to downstream
scRNA-Seq analysis with minimal changes to the transcriptomic
profile. We found COSMOS had minimal or no impact on cell
viability among cell lines and primary cells tested (Supplementary
Table 4). Single-cell gene expression profiles between unprocessed
and COSMOS-processed PBMCs by scRNA-Seq showed a high
correlation between gene expression profiles using both a targeted
immune response panel (R2= 0.97) and whole transcriptome
amplification (WTA) (R2= 0.983), indicating that COSMOS
processed cells are transcriptionally comparable to unprocessed
cells (Supplementary Fig. 9a–c). We next examined the impact of
COSMOS on gene expression profiles using a cell type known to
be sensitive to cell processing24. We used FACS, a common lab
technique involving cell processing, as a reference point for gene
expression alterations. (Supplementary Fig. 9d). Comparison of
gene expression profiles of viable cells that were COSMOS-sorted
cells showed fewer up- or down-regulated genes relative to con-
trol cells compared to FACS (Supplementary Fig. 9e, Supple-
mentary Table 5). Additionally, COSMOS processing resulted in
less activation in genes involved in multiple immune cell activa-
tion pathways and neutrophil degranulation pathways (Supple-
mentary Fig. 9f).

Application of COSMOS on identification and enrichment of
NSCLC tumor cells from dissociated solid tissue biopsies. To
apply COSMOS to a real-world use case of identifying and
enriching NSCLC tumor cells from primary dissociated tumor
cell (DTC) tissue, we trained a separate model termed Lung
Tumor Classifier (Supplementary Table 6). The Lung Tumor
Classifier confusion matrix shows the model prediction for
NSCLCs, stromal cells, and white blood cells (WBC) matches the
ground truth cell class at 82%, 78%, and 96%, respectively (Fig. 3a,
Supplementary Fig. 10a).

We validated model accuracy in identifying malignant cells
using three NSCLC DTC samples, which showed high con-
cordance to the percent malignant cells determined by scRNA-
Seq for low (2.2% vs 4.6%), medium (12% vs 16.8%), and high
(40% vs 46.7%) malignant cell purities (Supplementary

Fig. 1 COSMOS platform workflow and schematic. a System diagram. The hardware includes Fluidics (Fluid Control and Valve Control Modules), Optics
and Imaging Module, and Hardware Control Unit for auto-focusing and -alignment (Tracking and Automation Modules). The software includes Classifier,
Controller, and Data Storage modules. b Data annotation workflow. AI-assisted image annotation software is used to cluster individual cell images. A
human expert uses the labeling tool to adjust and batch-label the cell clusters. In the example shown, one acute myeloid leukemia (AML) cell was
misclustered with a group of PBMCs, and an image showing debris was misclustered with a group of NSCLC cells. These errors are corrected by the
“Expert Clean-up” step. The annotated cells are then integrated into the Deep Cell Atlas (DCA). c Model training and validation process. Annotated cell
images are split into independent training and validation image sets. AI image analysis depicting the InceptionV3 model architecture is shown. The fully
connected layer of the architecture is used for cell clustering and UMAP visualization. The softmax layer generates per-cell classification and prediction
probabilities. d Real-time AI-based sorting workflow. Images of single cells are converted to a vector, and a user-selected classifier assesses each cell. The
embedding vector generated by the model is used to visualize the sample profile (e.g., UMAP depiction is drawn based on the embeddings). Real-time
inferences guide a sorting decision based on user preferences. See “Methods” for comprehensive details.
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Fig. 10b–g). As confirmation that COSMOS can enrich malignant
cells from tumor tissue, we sorted cancer cells from a DTC
sample of a stage IIB NSCLC patient. The sample was split into
two aliquots, which were run on separate instruments. Sorted

cells were split into multiple fractions for molecular analysis
(Fig. 3b, Supplementary Table 7). Using a targeted lung cancer
panel, we found one KRAS and two TP53 mutations, with sorted
sample allele frequencies increased from <3% up to ~20% and
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Fig. 3 Performance of COSMOS in identifying and isolating target cells. a Confusion matrix representing Lung Cancer Classifier prediction accuracy
(x-axis) vs the ground truth (y-axis) on the validation dataset. b Workflow schematic of COSMOS sorting and downstream molecular analysis of DTCs
applied to (c–i). c Allele frequency of KRAS mutation (Chr12:25245351C>A) and TP53 mutations (chr17:7673783C>A and chr17:7675208C>T) detected in
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(log10(molecules per cell per gene)) for pre-sorted and sorted cells from the EpCAM+/PTPRC(CD45)− cluster. Each data point is a gene. The gene
expression correlation coefficient (R2) was 0.98.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05325-9

6 COMMUNICATIONS BIOLOGY | (2023)6:971 | https://doi.org/10.1038/s42003-023-05325-9 | www.nature.com/commsbio

www.nature.com/commsbio


1–6% up to ~80%, respectively (Fig. 3c). Accordingly, mutations
initially at low levels were significantly enriched, suggesting
COSMOS enrichment captured mutational heterogeneity of the
pre-sorted sample and improved confidence in mutation calling
beyond any technical noises for low tumor content samples.
Additionally, COSMOS yielded a significant increase in sensitivity
of copy number variation (CNV), in which chr8q was amplified
(location of MYC and PRDM1425) (Fig. 3d–f).

We next confirmed the identities of the sorted cells and
compared the scRNA profiles to pre-sorted cells using a WTA
workflow (Fig. 3b). In the DTC sample, 6.71% pre-sorted and
94.16% sorted populations were EpCAM+/CD45−, indicating
high purity in the sorting capability (Fig. 3g, h, Supplementary
Fig. 11a, b)26,27. Additional NSCLC transcriptional biomarkers
(KRT18, CEACAM6, HOPX, FOXC1, CDH1) were also enriched
in sorted samples (Supplementary Fig. 11a, b)27–29. Sorted and
pre-sorted cells from the EpCAM+/CD45− cluster showed
strong gene expression correlation (R2= 0.98), and overlapped
in all subclusters, suggesting sorting was unbiased for the EpCAM
+ population and did not change gene expression profile due to
the gentle microfluidic flow (Fig. 3i and Supplementary Fig. 11c,
d). A close examination of 166 stress and apoptosis-related genes
(a preloaded gene set from BDTM Data View v1.2.2 software (BD
Biosciences, CA)) also did not show differences in the sorted cells
compared to the pre-sorted sample (Supplementary Fig. 11e–g).
Together, this data indicates processed DTC samples retain
viability and RNA expression profiles, including stress and
apoptosis genes, indicating cells are unaltered by instrument
processing and amenable to downstream molecular analyses.

Discussion
Here, we present COSMOS, a platform for the characterization,
classification, isolation, and enrichment of cells based on high-
dimensional, quantitative morphology profiles. Recent work has
motivated image-based cell sorting by using visual cell pheno-
types as an analyte but with the prerequisite of using fluorescent
labels, which can (1) exclude biomarker-negative but biologically
interesting cells in heterogeneous populations for discovery pur-
poses and (2) compromise downstream viability due to chemical
toxicity or molecular alterations14. Our user-friendly framework
enables deep interpretation of single-cell morphology in real-
time, without prerequisites for sample pre-processing, cell gating,
feature engineering, and/or bioinformatics capabilities, thereby
enabling discovery and analysis of cell populations with unknown
phenotypic or molecular makeup.

The applications of this platform are similar to other image-
based cell sorting methods, including the classification and pur-
ification of target cells using visual phenotypes. However, COS-
MOS extends this technology with several main advances for
either research or clinical use, as recently envisioned by other field
experts30,31. First, by isolating viable unaltered cells from either
solid or liquid tissue, sorted cells can be further cultured or grown
ex vivo for live functional assays such as 3D organoids, in vitro
assays, drug testing to guide therapeutic decisions, and/or inform
mechanism of action. Second, although cells are classified in real-
time based on complex phenotypes using machine learning, high-
content images are captured and stored in the image database.
This cloud-enabled image database, which has amassed >1.5
billion images to date, allows for continuous measurement and
reanalysis of captured images to potentially detect additional
phenotypes resulting from differing cell states/types, drug treat-
ments, or genetic perturbations at single-cell resolution.

One limitation of COSMOS is that it relies on images and sorts
single cells flowing in suspension, which requires a dissociation
step if applied to solid tissues. The dissociation process could alter

the morphology of single cells after tissue dissociation. However,
despite this change, we have shown that the potentially altered
morphology is still a useful fingerprint to characterize and sort
cells of interest within the tissue. A second limitation of COSMOS
is its relatively lower throughput in comparison to conventional
sorters. This is due to two reasons: (1) the speed of pneumatic
valves used for gentle sorting of viable cells and (2) utilization of
high-resolution brightfield images and deep inferences, which
contrasts with prior related work based on reconstructed images
and light computations13,18–20. As modeled in Supplementary
Fig. 1, depending on desired purity and yield, the sorting
throughput of the current system can be pushed to 6000 cells/
min. This would be suitable for applications with lower total cell
numbers to be processed (hundreds of thousands, up to a mil-
lion). While we have shown the ability to sort low-abundance
cells in this paper (1:100,000), this was done on fixed cells, which
allowed flexibility to run longer experiments. If sorting live cells at
this rate is desired, the throughput of the current system would be
limiting. Addressing the two limiting factors mentioned above
could significantly improve the sorting throughout. Third, though
the promise of machine intelligence lies in the detection of
characteristics indiscernible to the human eye, quantifying and
distilling AI-detected distinguishing features as conventionally
understandable features, such as size or shape, would enable
biological interpretability. Accordingly, future advancements to
COSMOS will include the explainability of AI predictions to link
machine intelligence to cell biology. Given advances in optics and
ultra-high-resolution microscopy, future expansion of this tech-
nology could include label-free visualization, classification, and
isolation of cells based on subcellular organelle structures and
spatial localization. Integration of COSMOS and high-
dimensional morphology profiling to current single-cell mod-
alities holds promise in unveiling insights with profound basic,
translational, and clinical impact.

Methods
COSMOS platform overview. Cells in suspension are input into
the cartridge and focused on a single z-plane and lateral trajec-
tory. High contrast, brightfield images of single cells are captured
while flowing in the microfluidic cartridge, with two images
collected per cell. The model prediction for debris, doublets, and
cell clumps is used to report on sample quality, and the softmax
layer outputs z-plane focus metrics used to report on image
quality. The sorting decision then translates into valve control
signals. The laser tracking system detects cells as they arrive at
different outlets by evaluating two photomultiplier tube (PMT)
signals. The system generates reports of the number and type of
analyzed cells, the number of sorted cells, sorting purity and yield,
focus plane, synchronization signals, and fluidic pressures and
flow rates. The system uses this information in a feedback loop to
adjust system parameters.

Sample processing and cell culture. All human blood samples
were collected at external sites according to individual institu-
tional review board (IRB) approved protocols, and informed
consent was obtained for each case. For adult control and
maternal blood samples, peripheral blood mononuclear cells
(PBMCs) were isolated from whole blood by first centrifugation,
then the buffy coat was lysed with Red Blood Cell (RBC) Lysis
Buffer (Roche) and then washed with PBS (Thermo Fisher Sci-
entific). Fetal cells were isolated from fetal blood by directly lysing
with the RBC Lysis Buffer and then washed with PBS. A549, NCI-
H1975, NCI-H23 (H23), NCI-H522 (H522), NCI-H810, Hep G2
(HEPG2), SNU-182, SNU-449, SNU-387, Hep 3B2.1–7
(HEP3B2), BxPC-3, PANC-1, Kasumi-1, Reh, and HTR-8/SVneo
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cell lines were purchased from ATCC and cultured in a humidity
and CO2-controlled 37 °C cell culture incubator according to
ATCC recommended protocols. GM12878 cell line was obtained
from the NIGMS Human Genetic Cell Repository at the Coriell
Institute for Medical Research and cultured according to their
recommended protocols. When applicable, cells were treated with
4% paraformaldehyde (Electron Microscopy Sciences) and stored
in PBS at 4 °C for long-term usage of these “fixed” cells. Live cells
were used for viability, bulk, and scRNA-Seq experiments.

For experiments in which cell lines were spiked into whole
blood, live A549 cells were stained with CellTracker Green
CMFDA (Thermo Fisher Scientific), spiked into whole blood
(collected in EDTA tubes) at predefined ratios (e.g., 400 or 4000
cells/10 mL blood), followed by buffy coat RBC lysis and fixation.
The cell mixtures were pre-enriched by selective depletion of
CD45-positive PBMC cells using magnetic beads (Miltenyi
Biotec). Then, 20% of each sample was saved for flow cytometry
analysis to estimate the number of total cells and cancer cells
before and after CD45 depletion. The remaining sample was
processed, and A549 cells were sorted on COSMOS.

Dissociated tumor cells (DTCs) from NSCLC patients were
purchased from Discovery Life Sciences (DLS; Los Osos, CA,
USA). Cancer type, stage information, and cell type composition
reports from flow cytometry were provided by the vendor. To
account for possible cell type composition changes from the
freeze-thaw process, after thawing the DTC aliquots, we split the
samples to analyze and sort by flow cytometry. The antibody
panel used for flow cytometry included markers for EpCAM,
CD45, CD3, CD16, CD19, CD14, and CD11b.

For neutrophil isolation and sorting, human neutrophils were
isolated from whole blood using the EasySep Direct Human
Neutrophil Isolation kit from Stemcell Technologies by immu-
nomagnetic negative selection. When applicable, isolated neu-
trophils were labeled with a panel of primary antibodies: anti-
CD3, anti-CD45, anti-CD19, anti-CD14, anti-CD66b, anti-CD15
(BioLegend, San Diego, CA) for 20 min at room temperature and
washed twice. Live cells (not fixed) were used for experiments,
and propidium iodine was added to the cell mixture prior to
acquisition and sorting on a BD FACSMelody instrument.

For cell viability assessment, live pre-sorted or sorted cells were
stained with either trypan blue or a Calbiochem Live/Dead
Double Staining Kit (Millipore Sigma), which uses a cell-
permeable green fluorescent Cyto-dye to stain live cells and
propidium iodine to stain dead cells. Cells were then counted
under a fluorescent microscope.

PBMCs were isolated by Ficoll gradient using Ficoll-Paque (GE
Healthcare). CD4+ T cells were isolated using the EasySep™
Human Naïve CD4+T Cell Isolation Kit (Stemcell Technologies)
and activated using Dynabeads-conjugated CD3/CD38 human T
cell activator (Thermo Fisher Scientific) according to manufac-
turer instructions and cultured for 3–4 days. Naive or activated
T cells were fixed and imaged on COSMOS. For T cell
differentiation, cryopreserved naive T cells isolated from PBMCs
were purchased from AllCells (Alameda, CA). They were
differentiated using the CellxVivo Human Th1 Cell Differentia-
tion Kit protocol (R&D Systems). At timepoints day 0, 1, 2, 3, 4
and 5, cells were collected and imaged live on COSMOS.

Workflow. A single-cell suspension sample containing
1000–10,000,000 cells (ranging between 5–40 µm in cell diameter)
at concentrations up to 500,000 cells/mL was aliquoted into a
15 mL conical tube. For cell-spike experiments, a concentration of
1,000,000 cells/mL was used. The tube containing the sample and
a single-use microfluidic cartridge are loaded onto the COSMOS
system. On the interface software, several steps are performed to

initiate the automated sample run. First, the appropriate pre-
trained deep neural network model (e.g., Circulating Cell Clas-
sifier) is selected from a drop-down menu of available options,
and the desired cell classes are selected for either positive (cell
retrieval) or negative (waste) routing outlets. Second, the classifier
confidence threshold for identifying and sorting target cell(s) of
interest is set according to the desired stringency. Third, the run
stop criteria, such as the number of analyzed cells, the number of
sorted cells, or the volume of processed sample, is set as desired.
From this point on, analysis and sorting are performed auto-
matically by the system without user involvement. The micro-
fluidic cartridge is automatically brought into the field of view of
the imaging module, and the z-plane focus is automatically
adjusted. The cell suspension sample is then pressurized, and
individual cells flow into the microfluidic cartridge. A combina-
tion of inertial focusing and sheath flow is used to focus the cells
on a specific lateral and z-focusing position into a single file.
Images of cells flowing through the microfluidic cartridge are
captured and classified based on user selection and then sorted
into the positive or negative collection reservoir. After the run is
completed, target cells are retrieved from the system. For data
analysis, images of all cells run through COSMOS are auto-
matically sent to the Deepcell Cloud, which provides an analysis
platform to visualize cell images from specific runs, generate
UMAPs of the embedding space, and run additional deep neural
network models on samples in silico.

Microfluidics. Each cartridge design has a microfluidic channel
height between 15 and 40 µm, chosen to be a few micrometers
greater than the largest cells to be processed. A filter region at the
input port prevents large particles, cells or cell aggregates from
entering the flow channel. A buffer reagent (1X PBS) is intro-
duced into the flow alongside the cell suspension on either side,
achieving hydrodynamic focusing that keeps cells flowing at a
consistent speed near the center of the flow horizontally. The flow
rate used (~10 µL/min) is also high enough that the effects of
inertial focusing32 are realized, confining cells to the vicinity of
two vertically separated planes close to the center of the flow
channel.

Hardware. A microfluidic cartridge allows for the input and flow
of cells in suspension with confinement along a single lateral
trajectory to obtain a narrow band of focus across the z-axis.
Using a combination of hydrodynamic and inertial focusing, we
collect high-speed brightfield images of cells (up to 1.2 million
frames/minute) as they pass through the imaging zone of the
microfluidic cartridge. Images capture subcellular and subnuclear
features of the single cells in high contrast, with each pixel
representing an area of 0.044 µm2. The automated object detec-
tion module (see Supplementary Materials) tracks the cells as they
flow through the channel. The images are fed into a CNN for the
generation of high-dimensional morphological descriptors and
classification in real-time. Based on the classification, pneumatic
valves are used for sorting a cell into either the cell collection
reservoir or waste outlet (Fig. 1a, d and Supplementary Fig. 1a–c).
Sorted cells are then retrieved for downstream analysis. A laser-
based tracking system identifies cells in real-time to assist with
imaging, sorting and reporting on the purity and yield of the run.
The instrument can automatically align the microfluidic chip
within the camera’s field of view, re-focus the optical z-plane, and
adjust its operation based on sensors during instrument setup,
imaging, and sorting.

Cell annotation. Images of single cells are the input to the AI-
assisted image annotation software (Fig. 1b), which uses an
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unsupervised learning approach to assign annotations to images
to train machine learning models. Agglomerative clustering is
used to cluster cell images, which can be viewed grouped by their
focal plane. These cell groups are generated in 2 modes:
(1) clusters that are formed based on morphological similarities
deduced by an expressive unsupervised model, and (2) mor-
phological proximity to cells annotated within the same session or
prior sessions. This software enables a human expert, such as a
cytotechnologist, to re-assign annotations to cells that are
incorrectly annotated or partition morphologically distinct clus-
ters into multiple cell annotations. Trained users typically
annotate up to 6000 cells/minute using this tool. For quality
control, multiple rounds of labeling were performed by inde-
pendent labelers, and when mismatch rates between independent
labelers exceeded 5%, runs were queued back to the re-labeling
pipeline.

DCA. The DCA is a database of expert-annotated images of
single cells collected from a variety of immortalized cell lines,
patient body fluids, and human patient tissue biopsies. At the
time of this manuscript, DCA has amassed over 1.6 billion images
of single cells. The annotations are structured based on a cell
taxonomy which may allow a cell to be assigned multiple anno-
tations on its lineage. The training pipeline extracts training and
validation sets from DCA to train and evaluate neural net models
aimed at identifying certain cell types and/or states. During
training, one or more annotations may be selected for each cell
image according to the architecture of the model (Fig. 1c).

Training and validation sets. Images were split into training and
validation sets. Model performance was measured on the vali-
dation set. Distinct samples were used for training versus vali-
dation to evaluate how well the model generalizes to new samples.
Samples were split such that at least 30% of images were used for
validation while maximizing sample diversity in the training set.
The final models were derived from the TensorFlow imple-
mentation for InceptionV333, with custom model training para-
meters such as image augmentation algorithms that mimic
imaging artifacts. Two classifiers were developed and used in this
study: Circulating Cell Classifier (Fig. 2, Supplementary Figs. 3, 5,
6, 8, 9 Supplementary Tables 1, 2, 3, 5) and Lung Tumor Classifier
(Fig. 3, Supplementary Figs. 4, 10, 11, Supplementary Table 7) as
outlined in Supplementary Table 6. For the Circulating Cell
Classifier training, out-of-focus cells and debris images constitute
39.01% and 6.57% of the sample, respectively. For the Lung
Tumor Classifier, out-of-focus cells and debris images constitute
17.06% and 15.37% of the sample, respectively.

Model performance. Model accuracy (Figs. 2e, f, 3a, Supple-
mentary Figs. 5a–c, 10a) was measured on in silico mixtures of
known cell types from the validation set (Supplementary Table 6).
Out-of-focus cells and debris images (Supplementary Fig. 1d)
were filtered out from the validation set before measuring per-
formance. The model performance was further biologically vali-
dated (Fig. 2g, h) with simultaneous classification and enrichment
experiments using spike-in mixtures of known cell types.

Machine learning. A machine learning infrastructure capable of
real-time analysis of cell images was developed to generate high-
dimensional morphologic descriptors and classifications (Fig. 1c).
Our model architecture is based on the InceptionV333 CNN,
modified for grayscale images and to output quantitative mor-
phological descriptors (often called “embeddings” in the machine
learning literature). This architecture consists of 48 layers and 24
million parameters. Features from cell images are summarized as

an embedding from which cell class annotations are predicted.
These embedding vectors are not generally interpretable in terms
of conventional morphology metrics but can be used to perform
cluster analysis to group morphologically similar cells and
visualized using tools like UMAP34 and clustered heatmaps. This
architecture runs in real-time on our instrument, allowing images
to be analyzed by previously trained models and generate clas-
sification and high-dimensional morphology descriptions for
each imaged cell. When applicable, the model outputs are used to
determine whether to discard or retain each cell and, if retained,
which collection well to route each cell.

Brightfield imaging of cells in flow. The microfluidic cartridge is
mounted on a stage with lateral (horizontal) XY control and a
fine Z control for focus. The objectives, camera, laser optics, and
fluidics components are all mounted on the same platform. After
the microfluidic cartridge is loaded into COSMOS, it is auto-
matically aligned, and a focusing algorithm is used to bring the
imaging region into the field of view. An LED illumination light
(SOLA SE) is directed to the imaging region, and multiple images
of each cell are captured as it flows through. Brightfield images
are taken through objectives of high magnification (Leica
40X–100X) and projected onto an ultra-high-speed camera. To
achieve higher accuracies and adjust for potential artifacts in the
image, at least two images are captured from each cell as they flow
downstream in the channel. These high-resolution cell images
reveal not only the cell shape and size but also finer cellular
structural features within the cytoplasm and the nucleus that are
useful for discriminating cell types and states based on their
morphology.

Computation. The COSMOS software workload is distributed
over an Intel Xeon E-2146G central processing unit (CPU), a
Xeon 4108 CPU, an Nvidia® Quadro P2000 Graphical Processing
Unit (GPU) and a custom microcontroller. The camera is peri-
odically polled for the availability of new images. Image frames
from the high-speed brightfield camera are retrieved over a
dedicated 1 Gbps ethernet connection. Images are cropped to
center cells within them, and the cropped images are sent to the
GPU for classification by an optimized CNN that has been
trained on relevant cell categories. The network architecture is
based on the InceptionV3 model architecture33, is implemented
using the TensorFlow v1.1535 and is trained using cell images
annotated with their corresponding cell categories. Nvidia®
TensorRT™ (v7.0.0) is used to create an optimized model that is
used for inference on the GPU. The classification inference from
the models is sent to the microcontroller, which in turn sends
switching signals to synchronize the toggling of valves with the
arrival of the cell at the sorting location. To maximize through-
put, image processing happens in a parallel pipeline such that
multiple cells can be in different stages of the pipeline at the same
time. The primary use of the GPU is to run the optimized CNN.
Some basic image processing tasks, such as cropping cells from
the images, are performed on the instrument CPU. The instru-
ment CPU is also used to control all the hardware components
and to read in sensor data for monitoring. The training and
validation tasks are set up as recurring Apache Beam-based data
processing pipelines in the Google Cloud Platform (GCP).
Training and prediction jobs are orchestrated by Apache Airflow,
and Google Cloud Dataflow is used to combine predictions,
embeddings, and annotations. Models are trained using TPU Pod
Operators on Google Cloud on version 3 of Google’s Tensor
Processing Units. PostgreSQL, Google Big Query, and Google
Cloud Storage are used to store and query model predictions,
embeddings, and run metadata.
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Data augmentation and model training. Several steps were
taken to make the image classifier robust to imaging artifacts by
systematically incorporating variations in cell image character-
istics into our training data. Cells were imaged under a range of
optical focus conditions to sample the effects of changes in focus
during and across instrument runs. Images are gathered across
four instruments to sample instrument-to-instrument variation.
Several augmentation methods were implemented to generate
altered replicas of the cell images used to train our classifier.
These included standard augmentation techniques such as hor-
izontal and vertical flips of images, orthogonal rotation, the
addition of Gaussian noise, and synthetic scaling of intensity
contrast variation. We also added salt-and-pepper noise to images
to mimic microscopic particles such as dust or other pixel-level
aberrations. Finally, we incorporated an additive augmentation to
simulate specific noise patterns observed from the camera and
framebuffer that are sometimes visible as patterns vertical stripes
in some of our early images. Finally, we studied systematic var-
iation in our image characteristics to develop custom augmen-
tation algorithms that simulate chip variability and sample-
correlated imaging artifacts on our microfluidic cartridge.

All cell images were resized to 299 × 299 pixels to make them
compatible with the InceptionV3 architecture. We trained a
model comprising cell types present in normal adult blood, cell
types specific to fetal blood, trophoblast cell lines, and multiple
cancer cell lines drawn from NSCLC, HCC, pancreatic carcinoma,
acute lymphoblastic leukemia (ALL), and AML. The model was
also trained to detect out-of-focus, debris, and cell clump images
as additional model output classes. This information was used for
auto-focusing during instrument runs and to exclude out-of-focus
cell images from possible misclassification (Supplementary
Fig. 1d).

AI-assisted annotation of cell images. For the supervised model,
we collected high-resolution images from 25.7 million cells,
including cells from normal adult blood, fetal blood, trophoblast
cell lines, and multiple cell lines derived from NSCLC, HCC,
pancreatic carcinoma, ALL, and AML. Images were collected by
an ultra-high-speed brightfield camera as cell suspensions flowed
through a narrow, straight channel in a microfluidics cartridge.
We deployed a combination of techniques in self-supervised,
unsupervised, and semi-supervised learning to facilitate cell
annotation on this scale. First, we used subject and sample source
data to restrict the set of class labels permitted for each cell; as an
example, fetal cell class annotations were disallowed in cells
drawn from non-pregnant adult subjects. Next, we extracted
embedding vectors for each cell image in two pre-trained CNNs:
one trained on the ImageNet dataset36 and the other on a subset
of our own manually annotated cell images. We then used
agglomerative clustering of these feature vectors to divide the
dataset into morphologically similar clusters, which were pre-
sented for manual annotation, thereby facilitating efficient cell
annotation at scale.

To further enhance the accuracy of subsequent cell classifica-
tion, selectively annotated false positive images were identified
from the predictions of previously trained models in an iterative
manner. Finally, we balanced the classes to be discriminated by
feeding the harder examples of more abundant classes inspired by
an active learning approach. The hard examples were identified as
those that a model trained on a smaller training set had classified
incorrectly37.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Cell images used to generate presented UMAPs and associated embeddings, predictions,
and labels are publicly available at https://github.com/deepcell/Salek_2022. Raw and
processed RNA-Seq data were deposited in the NCBI Gene Expression Omnibus
(GSE241837). All processed whole genome sequencing and targeted mutation data from
this study are in Excel spreadsheet format as Supplementary Data 1. All other raw data
can be provided upon reasonable request. The following data are publicly available:
images used to generate presented UMAPs, embeddings associated with
images, predictions associated with the entire set of images for which we calculated
predictions and the corresponding models, and labels associated with the entire set of
images.

Code availability
Software code and data to reproduce representative types of analysis and figures are
available at https://github.com/deepcell/Salek_2022. These include scripts used to
generate ROC curves, confusion matrices, mutation allele counts, and CNV plots.
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