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A self-supervised deep learning method for
data-efficient training in genomics
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Alice C. McHardy 3,4, Philipp C. Münch 3,4,5,6,7✉ & Mina Rezaei 1,2,7✉

Deep learning in bioinformatics is often limited to problems where extensive amounts of

labeled data are available for supervised classification. By exploiting unlabeled data, self-

supervised learning techniques can improve the performance of machine learning models in

the presence of limited labeled data. Although many self-supervised learning methods have

been suggested before, they have failed to exploit the unique characteristics of genomic data.

Therefore, we introduce Self-GenomeNet, a self-supervised learning technique that is custom-

tailored for genomic data. Self-GenomeNet leverages reverse-complement sequences and

effectively learns short- and long-term dependencies by predicting targets of different

lengths. Self-GenomeNet performs better than other self-supervised methods in data-scarce

genomic tasks and outperforms standard supervised training with ~10 times fewer labeled

training data. Furthermore, the learned representations generalize well to new datasets and

tasks. These findings suggest that Self-GenomeNet is well suited for large-scale, unlabeled

genomic datasets and could substantially improve the performance of genomic models.
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In bioinformatics, using unlabeled data to augment supervised
learning can reduce development costs for many machine
learning (ML) applications that would otherwise require large

amounts of annotation that are expensive to acquire, such as
functional annotation of genes1 or chromatin effects of single
nucleotide polymorphisms. This is particularly the case in
genomics due to the availability of large quantities of unlabeled
sequence data from large databases and metagenomic studies.

In contrast to supervised methods, self-supervised learning
(SSL) techniques learn representations that contain information
about the properties of the data without relying on human
annotation. The concept of SSL has been studied for several years
in the field of ML. These SSL methods are unsupervised tasks,
that are trained prior to the actual supervised training. Then,
instead of training a supervised model from scratch, the repre-
sentations learned from the SSL method can be used as a starting
point for downstream supervised tasks such as taxonomic pre-
diction or gene annotation. In this way, the pre-trained models
can be used as a starting point that contains meaningful repre-
sentations from the SSL tasks2,3. Several different methods for
self-supervised representation learning have been proposed, e.g.,
in the fields of natural language processing (NLP)4–8 and com-
puter vision (CV)3,9–11. However, only a limited number of SSL
methods have been developed for bioinformatics, and even fewer
for omics data12–15. Thus, SSL has not yet seen such widespread
adoption and remains an important and challenging endeavor in
this field.

Existing methods for representation learning on omics-data
have typically been adapted from other application fields of DL
such as NLP or CV16–18. For example, DNA-Bert19, which
identifies conserved sequence motifs and candidate functional
genetic variants, is an adaptation of BERT2, which is a form of
language model (LM)20 that predicts masked tokens. These
tokens are words in NLP, and nucleotides or k-mers in genome
sequences. Contrastive-sc18 is a method adapted from CV used
for cell clustering based on single-cell RNA sequencing data. It
creates two copies of each sequence with randomly masked
nucleotides and then trains the network to maximize the agree-
ment between the copies using a contrastive loss function, a
method commonly used in CV3. CPCProt17 is an adaptation of
the contrastive predictive coding (CPC)21 to protein data and is
trained by predicting future amino acid sequence patches.
However, there are specific properties of genome sequences that
these methods do not take into account, resulting in non-optimal
representations and limited use. Although used in several
supervised methods, reverse-complement (RC) sequences have
not been integrated into SSL methods. Additionally, nucleotides
and k-mers contain low-content information compared to words
in natural languages, and this is not taken into account when SSL
methods developed for NLP are applied to genome data.

Self-GenomeNet overcomes these limitations. First, Self-
GenomeNet uses RC sequences to create symmetry in the archi-
tecture. This increases predictive performance and reduces the
number of model parameters. This may also have the desirable side
effect of implicitly encoding RC-awareness in our architecture.
Secondly, Self-GenomeNet predicts targets of different lengths as an
SSL task. This way, a wider range of semantic relationships within
the DNA data is learned. Finally, due to the way recurrent networks
process their data, representations of many subsequences at dif-
ferent length scales are evaluated simultaneously within a single
training step, leading to increased computational efficiency.

Self-GenomeNet makes more efficient use of unannotated
genomic data to substantially improve various genomic tasks
when limited labeled data is available, making it more suitable for
genomic applications than existing SSL methods. In computa-
tional biology, such pre-training learning schemes could benefit a

wide range of ML tools, where large amounts of unlabeled data
such as metagenomic sequences are available to improve super-
vised models built on nucleotide-level training datasets.

Results
Self-GenomeNet is an efficient self-supervised pre-training
method, tailored for genomics. Self-GenomeNet is a SSL method,
where the network is trained without the need of labels on
available sequential genome data. Then this network, particularly
the trained weights of this network, can be used as the initial
point of the model that will be trained for the supervised tasks,
which are also called downstream tasks. We provide a model,
which is trained on bacteria, virus, and human data without using
labels. This model, named generic Self-GenomeNet, demonstrates
robust performance across diversified tasks, providing researchers
a readily accessible solution to leverage the power of our model in
their own studies, particularly for their own supervised tasks. We
have uploaded the trained generic Self-GenomeNet model to
GitHub for easy access (see self.genomenet.de). Additionally, we
have prepared interactive coding notebooks that provide detailed
instructions on how to use this model to obtain embeddings of
data and how to apply it to other datasets.

Self-GenomeNet learns representations of genome sequences
through a defined pre-training task that does not require labels.
This task is as follows: For a given input sequence of length N ,
S1:N, an embedding of a subsequence S1:t , predicts the embedding
of the RC of the remaining subsequence �SN:tþ1. Thus, the model
encodes in the learned representation of the given subsequence
the essential information necessary to predict the RC of a
neighboring subsequence. Self-GenomeNet encodes these two
subsequences through a representation network consisting of a
convolutional encoder network f θ, and a recurrent context
network Cϕ (Fig. 1a). The architecture of Self-GenomeNet is
implemented to perform this prediction for multiple values of t in
one iteration, enabling a more efficient training procedure.

The network of Self-GenomeNet takes both S1:N and �SN:1 as
inputs. Self-GenomeNet encodes these two subsequences through
a representation network consisting of a convolutional encoder
network and a recurrent context network. As a result of the
proposed architecture, the representations of subsequences S1:t
and �SN:tþ1 are computed for multiple values of t as intermediate
outputs of the context network, while the whole sequences S1:N
and �SN:1 are encoded. Later, on top of the embedding
representation, a linear prediction layer qη estimates the
embedding of �SN:tþ1 from the embedding of S1:t using a
contrastive loss against other random subsequences. Due to the
symmetry of this design, qη is also used to predict the embedding
of �SN:tþ1 from the embedding of S1:t . Although only one
prediction is shown in the figure for visual simplicity, the
prediction is computed for multiple values of t. Contrastive loss is
used for the optimization, meaning that the network is optimized
so that the sequences (e.g., S1:t) aims to predict the representation
of the RC of its own neighbor (e.g., �SN:tþ1) among other
representations in the training batch. The convolutional encoder
network, the recurrent context network, and the linear prediction
layer each consist of a single layer in our experiments to keep the
architecture simple; however, more complex architectures are
possible. The hyperparameters of the convolutional and recurrent
networks are mentioned later in the paper, in the “Network
Architecture Design” section.

After self-supervised training of the representations, these
representations can be used for downstream supervised tasks by
constructing a supervised deep learning model consisting of f θ
and Cϕ, followed by a fully connected output. The weights of f θ
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and Cϕ are initialized with the training results from the SSL task,
but they are further trained (fine-tuned) together with the linear
layer on the new supervised task (Fig. 1b).

We evaluated the performance of the representations obtained
via Self-GenomeNet on different benchmarks (supervised tasks)
using data of either viral, bacterial, or human origin: (i) The virus
dataset contains viral genomes from GenBank22 and RefSeq23,

where the task is to classify prokaryotic viruses (bacteriophages)
and eukaryotic viruses (termed “non-phages”). (ii) For bacterial
data, we designed a supervised task on type VI secretion system
identification (T6SS), where the task is to identify effector
proteins among T6SS immunity proteins, T6SS regulators, and
T6SS accessory proteins (SecReT624). (iii) For the human dataset,
we focus on the DeepSEA dataset25. The task is to classify 919

Fig. 1 Pre-training of Self-GenomeNet and using the learned weights on a down-stream task. a Self-GenomeNet takes part of a sequence as input and
predicts the reverse-complement of the remaining sequence. The representations are learned by dividing unlabeled DNA sequences and their reverse-
complements into patches, each of which is given as an input to an encoder network fθ. The outputs of fθ are then fed sequentially to a recurrent context
network Cϕ, resulting in representations of the input sequence up to a point t (S1:t) and representations of the reverse-complement of the input sequence
going from tþ 1ð Þ to the end (i.e., �SN:tþ1). The representations are computed for multiple values of t simultaneously. Finally, the representations of S1:t (zi)
and �SN:tþ1 (z

0
n�1�ið Þ) predict each other for multiple values of t by using a contrastive loss, i.e, these sequences are matched among existing sequences in the

training batch. Thus, in one iteration of the training of Self-GenomeNet, each of the computed representations zi and z0n�1�ið Þ are utilized efficiently since zi
predicts z0n�1�ið Þ and z0n�1�ið Þ predicts zi for i 2 1; 2; ::; n� 2ð Þ in one iteration of training. In the figure, we only show that z2 predicts z0n�3ð Þ for visual
simplification. b The weights of fθ and Cϕ are initialized with the training results from the self-supervised learning task, but they are further trained (fine-
tuned), along with the linear layer on the new supervised task.
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binary chromatin features such as transcription factor binding
affinities, histone marks, and DNase I sensitivity.

We evaluated the performance of the representations obtained
via Self-GenomeNet on different benchmarks (supervised tasks)
using data of either viral, bacterial, or human origin: (i) The virus
dataset contains viral genomes from GenBank22 and RefSeq23,
where the task is to classify prokaryotic viruses (bacteriophages)
and eukaryotic viruses (termed “non-phages”). The bacteriophage
class contains approximately 1.0 billion nucleotides, the non-
phage virus dataset ~0.5 billion nucleotides. (ii) For bacterial data,
we designed a supervised task on type VI secretion system
identification (T6SS), where the task is to identify effector
proteins among T6SS immunity proteins, T6SS regulators, and
T6SS accessory proteins (SecReT624). This task is provided to
demonstrate that our method works well on a dataset with real
label scarcity, where the training set contains only 75 FASTA
entries and ~0.3 million nucleotides. (iii) For the human dataset,
we focus on the DeepSEA dataset25. It contains approximately 5
million subsequences of the human genome, with each sample
containing 1000 nucleotides as input and a label vector for 919
binary chromatin features such as transcription factor binding
affinities, histone marks and DNase I sensitivity. (iv) For the
fungi-protozoa classification task, we downloaded DNAs of fungi
and protozoa that may be pathogenic to humans from RefSeq23.
Here, the training set contains approximately 2.7 billion
nucleotides. (v) Finally, the bacteria data contains genomes from
GenBank22 and RefSeq23, comprising ~83 billion nucleotides. It is
used only for self-supervised pre-training.

In the results section, we will initially justify the choices we
have made in our architectural design. First, we design an
experiment to show the superiority of predicting targets of
varying lengths over targets of fixed length. Then, we compare
having the RC of neighboring subsequences as targets to be
predicted with neighboring subsequences or their reverse. After
justifying our design choices, we test Self-GenomeNet in data-
scarce settings, where the labeled data is limited to a certain
amount of the unlabeled data, and in transfer learning settings,
where the pre-trained models are trained on different smaller
datasets. Finally, we test Self-GenomeNet using the linear
evaluation protocol3,9,10,21,26–28, where the weights learned by
self-supervision are frozen and thus not updated in the down-
stream tasks. Here, only the fully connected layer on top of the
frozen layers is trained. In these experiments, we compare Self-
GenomeNet to four SSL baselines and the supervised baseline
where the model is not pre-trained.

In all experiments except DeepSEA dataset, we report class-
balanced accuracy and not precision/recall/F1 scores because
these metrics put an emphasis on positive samples and also
choosing a positive class. However, artificially choosing a
positive class is harmful as detection of both classes holds equal
importance for phage/non-phage classification and fungi/pro-
tozoa classification tasks. For the effector protein prediction
task, assigning a positive class is also hard as the number of
“effector protein” samples are more in both training, validation,
and test set. For our experiments on the DeepSEA dataset, we

opted for average PR AUC as a metric, based on the findings of
Quang and Xie29, who demonstrated that the sparsity of positive
binary targets in this dataset can artificially inflate the ROC
AUC and thus PR AUC is a more suitable indicator of
performance.

Predicting the sequences of varying lengths improves the per-
formance and has theoretical justifications. Self-GenomeNet is a
genome-tailored SSL method that aims to train meaningful
representations for various genomic tasks by capturing the unique
properties of genomic data. However, current models, such as
LMs or CPC21, use a fixed target sequence length, i.e., the part of
the input sequence they are trying to predict has a constant size
(up to 50 nucleotides). As supported by experiments comparing
our method with these methods (Figs. 2, 3, and 4), training with
such small subsequences does not yield optimal results, which
may be because nucleotides and n-mers contain less information
than words in natural languages. Optimal training for genomics
also requires longer sequences with higher information content.
Therefore, Self-GenomeNet predicts sequences of varying lengths,
ranging from small to the maximum length of sequences that the
model can capture.

Self-GenomeNet outperforms all other SSL methods (Figs. 2, 3,
and 4) that predict sequences of fixed length, which may indicate
the effectiveness of having targets of different lengths. However,
we design an additional experiment that closely examines the
effect of having target sequences of different lengths, which is
unique to our model compared to the baselines. We show that
having target sequences of different lengths helps the network to
learn better representations. Thus, two self-supervised models are
trained on the virus dataset with a sequence length of 1000 for the
phage classification task. The first model, Self-GenomeNet, used
varying-length targets as subsequences with a length range of
x 2 f40; 60; 80; :::960g, which predicted a subsequence with a
length of 1000 − x. The second model, also Self-GenomeNet, but
with one modification, uses only two fixed-length sequences of
500 nt to predict each other, and all other settings are the same as
the first model. Our evaluations show that predicting subse-
quences of varying lengths instead of fixed-length subsequences
results in a considerable improvement in model accuracy.
Specifically, the class-balanced accuracy on the test set increased
from 83.3% to 88.6% when the weights learned through self-
supervision (without using any labels) were frozen and only a
fully connected layer was trained on top of these frozen layers
using the same dataset as the downstream task (Table 1).

Predicting the reverse-complement of the neighbor sequence
improves the performance. Most SSL methods were originally
developed for NLP or CV tasks and did not consider the unique
properties of genomic data. Self-GenomeNet, on the other hand,
takes advantage of specific characteristics of genomic data by
exploiting the fact that the reverse complement (RC) of a DNA
sequence is also a valid DNA sequence. This allows for a sym-
metric construction of the SSL method, which reduces the

Table 1 Experimental results in terms of class-balanced accuracy performance for design choices of Self-GenomeNet.

Target Sequences Pre-training Dataset / Dataset of Down-stream Task

Length Targets Virus / Virus (1000 nt.) Bacteria / Virus Bacteria / T6SS

Fixed Length Reverse–Complement 83.3 - -
Varying Length Reverse 87.8 76.9 70.2
Varying Length Forward 85.8 - -
Varying Length Reverse–Complement 88.6 82.1 79.3
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number of model parameters and mitigates the risk of overfitting.
Furthermore, we incorporate RC awareness into our learned
representations by predicting RC targets.

We conducted an experiment to compare the effectiveness of
different potential target sequences in self-supervised pre-
training. Specifically, we compared the use of RC neighbor
sequences �SN:tþ1 (which we refer to as “RC”) with the use of

neighbor sequences Stþ1:N (referred to as “Forward”) and the
reverse of neighbor sequences SN:tþ1 (referred to as “Reverse”).
We examine both settings on a viral dataset (1000 nt) using the
linear evaluation protocol3,9,10,21,26–28, meaning that we freeze
the weights trained on the viral dataset without using labels and
then train a linear layer on top of these weights using the labels.
We find that using RC targets results in a relative class-balanced

Fig. 2 Comparison of self-supervised methods in data-scarce settings. Self-GenomeNet representations outperform other baseline methods, such as
language models20 trained by predicting single nucleotides or 3-grams, Contrastive Predictive Coding21, and Contrastive-sc18, especially when a large
fraction of available labels are omitted. We train the models in the datasets without using labels and then successively withhold labeled samples to mimic
scenarios where labels are scarce (from 100% of available labeled samples to 0.1%). Each point in the plots is trained separately using the corresponding
amount of labeled data. The weights of the context and encoder models are initialized with the training results from the SSL task, but they are trained
further (fine-tuned), together with the linear layer, on the new supervised task. The label “Supervised” corresponds to the setting without any pre-training,
where the weights are initialized randomly for the supervised task. a Overview of dataset and tasks used for evaluation. b The results of the viral dataset for
150 nt sequences, (c) the DeepSEA dataset, (d) and the viral dataset for 1000 nt sequences. The human icon representing the patient was created by
Marcel Tisch and is available under a CC0 license. Original icon sourced from Bioicons. Twitter link for Marcel Tisch | CC0 License. The phage icon was
created by DBCLS and is licensed under a CC-BY 4.0 Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0
License. The virus icon representing hepatitis was created by Servier and is licensed under a CC-BY 3.0 Unported license. Modifications were made.
Original icon sourced from Bioicons. Servier | CC-BY 3.0 License. The chromatin structure icon was created by DBCLS and is licensed under a CC-BY 4.0
Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0 License.
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accuracy performance increase of 0.9% compared to using
reverse targets and 3.3% compared to using forward targets
(Table 1).

Since the difference between RC and reverse targets was small
in the experiment on the virus dataset, we investigate further. In
the following experiments, we freeze the self-supervised weights
trained on a bacteria dataset and train a linear layer on top of
these weights for downstream tasks on the viral pre-training
dataset, where the task is phage and non-phage classification and
T6SS effector gene prediction. Our results show that using RC
targets improved relative performance by 6.8% and 13.0%
compared to using reverse sequences for these tasks, respectively.
Therefore, our results suggest that using RC targets leads to better
performance without increasing the number of parameters

(Table 1). We also discuss potential reasons for this performance
change in the Discussion section.

Self-GenomeNet outperforms baselines in data-scarce settings,
reducing the need for additional labeled data. Generating large
labeled datasets requires a substantial investment of resources
that may not be feasible in computational biology. This limits the
effectiveness of DL techniques. The use of unlabeled data is
especially necessary when the labeled data is scarce since the
accuracy of supervised DL models drops considerably in the low-
data regime. We propose Self-GenomeNet as a data-efficient
learning method to reduce the need for annotated data samples.

We mimic label scarcity scenarios by using the full datasets of
virus and DeepSea datasets without labels and artificially reducing

Fig. 3 Comparison of self-supervised methods for transfer learning tasks. Self-GenomeNet representations outperform other baseline methods, such as
language models20 trained by predicting single nucleotides, 3-grams or 6-grams, Contrastive Predictive Coding21, and Contrastive-sc18, when pre-trained
with the bacteria dataset and then fine-tuned for effective gene detection and bacteriophage classification tasks. We also provide an additional evaluation,
where we train Self-GenomeNet on a wider range of datasets, which includes bacteria, virus and human data (generic Self-GenomeNet). This model achieves
even higher performance compared to Self-GenomeNet, showing that a wider range of data improves the performance of Self-GenomeNet. The context and
encoder model weights are initialized with training results from the SSL task, but are further trained (fine-tuned) on the new supervised task along with an
additional linear layer on top. The label “Supervised” and “7-mer frequency profile” corresponds to the setting without any pre-training, where the weights
are randomly initialized for the supervised task. Here, the first model is the same architecture used in SSL settings, which similarly takes the one-hot
encoded sequences. The second model is the CNN model developed by Fiannaca et al. 31, and it uses a 7-mer frequency profile as input. a Overview of the
dataset and tasks used for evaluation. b The class-balanced accuracy performance for the effector gene detection task, the bacteriophage detection task,
and for the protozoa-fungi prediction task. This figure was created in part with BioRender.com. The phage icon was created by DBCLS and is licensed under
a CC-BY 4.0 Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0 License.
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Self-GenomeNet”. This model achieves even higher performance compared to Self-GenomeNet, showing that a wider range of data improves the
performance of Self-GenomeNet.
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the available labeled samples. Specifically, we test Self-GenomeNet
by training on the full virus and DeepSEA datasets without using
labels. We then quantify how model performance decreases as we
successively withhold labeled samples to imitate scenarios where
labels are scarce (from 100% of available labeled samples to
0.1%)3,30. Three different models are trained using Self-
GenomeNet and baseline methods. Specifically, two models for
150 nt and 1000 nt long sequences are trained on virus data and
one model is trained on the DeepSEA dataset. Then, each of these
models is trained on data-scarce settings.

For the virus dataset in both cases of 150 nt (Fig. 2b) and 1000 nt
(Fig. 2c) sequence length and the DeepSEA dataset (Fig. 2d), our
method outperforms the four SSL baselines adapted from NLP or
CV as well as the supervised baseline without any self-supervised
training, at all evaluated fractions of available labels. We observe
the most pronounced improvement in extreme data-scarce settings,
such as 0.1% and 1%, with an average relative improvement of
11% and 14% over the second-best SSL method, respectively.
Self-GenomeNet outperforms the supervised baseline that is trained
with ten times more data (0.1% vs. 1%, 1% vs. 10%) on average
across all experiments. This highlights that Self-GenomeNet
representations are particularly effective in scenarios where labels
are expensive to obtain—for example, in settings where genomic
features must be manually validated in the lab.

Learned representations of Self-GenomeNet can be transferred
and adapted to new tasks and datasets. We have quantified the
transfer-learning capacity of representations trained on a large
dataset of genome sequences to perform downstream supervised
tasks on different and smaller genome datasets (Fig. 3)3,30. This
evaluation particularly important because (i) for a given supervised
downstream task, there may be little or no matching unlabeled
training data (e.g., in the case of a newly discovered taxon, there
may be no suitable training data available to train representations),
and (ii) while performing the downstream task (training an arbi-
trary supervised model on top of the representations) is compu-
tationally fast, training the representation usually requires
specialized hardware that is not available to many researchers.

For the transfer-learning tasks, we trained Self-GenomeNet and
baseline models on a broad bacterial dataset. We then evaluated
their predictive power on two tasks. First, we tested the transfer-
learning ability of the pre-trained models on a very specific case: the
effector gene prediction task, where we used the T6SS dataset24. The
goal is to determine whether the pre-training regime works when
the final supervised task is only a small subset of the self-supervised
task. Next, we evaluated whether a biased training set for the pre-
training task affects the prediction of the final supervised model.
Here, the models (pre-)trained on the bacterial dataset (which
might contain integrated prophages) are applied to the downstream
tasks of separating bacteriophages from eukaryotic viruses.

Self-GenomeNet representations outperform those generated by
the four competing baseline methods as well as the non-pretrained
model. Self-GenomeNet, pre-trained on the bacteria dataset reduces
the misclassification rate by 9% on the effector gene prediction task
and by 33% on the phage identification task compared to the best
performing SSL baseline. Compared to the non-pretrained baseline,
the improvement on these tasks is as high as 60% and 63%,
respectively. This shows that trained representations generalize well
and are transferable to tasks with labeled data, even when this data
differs from the self-supervised training data. This allows for
applications where no suitable pre-training data is available.

Self-GenomeNet outperforms all baselines in linear evaluation
method. We have shown that the representations learned by
Self-GenomeNet exhibit transfer-learning capacity and that

Self-GenomeNet excels in data-scarce settings, consistently out-
performing SSL baselines and supervised models over different
fractions of available labels. However, all of the above evaluations
include fine-tuning of the pre-trained weights (of the encoder and
context networks). While the fine-tuning improves the perfor-
mance in most of the cases, it makes it more difficult to evaluate
the direct contribution of the SSL method due to the updated
weights. To evaluate the quality of the embeddings learned by the
SSL methods without making any modification on them, speci-
fically by not fine-tuning them on downstream tasks, we use the
linear evaluation protocol3,9,10,21,26–28. This method requires
freezing the weights learned by self-supervision and thus not
updating them in the downstream task, and training a fully
connected layer is trained on top of the frozen layers on the
downstream task. Therefore, the embeddings, which are the
output of the pre-trained model, remain unchanged for a given
input after the training on the downstream task. This simple and
efficient method thus compares the effectiveness of SSL methods
by directly comparing the embeddings themselves. In addition,
training only the last linear layer is less computationally intensive
than training the entire network, and achieving high performance
without training the entire network may be useful for researchers
with limited computational resources.

We performed this experiment and compared our method to the
baselines on the virus dataset (phage classification task) for both
150 nt and 1000 nt, where the virus dataset is used for the pre-
training and the downstream task. Additionally, we similarly froze
the representations learned during the self-supervised pre-training
on the bacteria dataset (for 1000 nt sequences) and evaluated the
performance of these representations on the T6SS and virus
datasets. We show that Self-GenomeNet outperforms the baselines
in all experiments, and the relative increase in class-balanced
accuracy over the second best method is 9% on average (Fig. 4).

Discussion
We introduced Self-GenomeNet, a SSL technique designed spe-
cifically for genomic data. By leveraging RC sequences and pre-
dicting targets of different lengths, Self-GenomeNet overcomes the
limitations of previous SSL methods and offers a more efficient
use of unannotated genomic data. In our experiments, we com-
pare Self-GenomeNet with several SSL baselines. We have shown
that Self-GenomeNet outperforms CPC21, which is potentially the
most similar SSL method to ours, since both methods predict a
target subsequence with contrastive loss. It also outperforms
Contrastive-sc18 as well as LMs20 based on predicting single
nucleotides and 3-grams. Both of these were originally proposed
for CV and NLP, respectively, and have been applied in several
cases in bioinformatics (Supplementary Methods, Supplementary
Figs. 1, 2).

We have shown that Self-GenomeNet can also outperform
supervised baselines that take normalized k-mer frequency as
input. Specifically, we compare our model to the CNN model
proposed by Fiannaca et al. 31. The input of this model is a 7-mer
frequency profile—the normalized frequency of 7-mers observed
in the sequence. This input is fed into the model consisting of two
convolutional layers with max-pooling layers, a flattened layer,
and two fully connected layers. While this model requires an
additional pre-processing step (in order to create the histogram
based on 7-mers) and has approximately six times the number of
parameters compared to our Self-GenomeNet model, our
approach consistently outperforms this baseline in all experi-
ments (Virus dataset (1000 nt) for phage/non-phage classification
task, on T6SS dataset) (Fig. 3). Notably, Self-Genomenet archives
substantially superior performance, particularly in data-scarce
settings (Supplementary Fig. 4).
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We tested the learned representations in the data-scarce
regime, with only 0.1%, 1%, and 10% of the labeled data, and
showed that Self-GenomeNet outperforms standard supervised
training with only ~10 times less labeled training data. We tested
the transfer learning capability and showed that our method
achieves better performance compared to other SSL methods on
our datasets. Finally, we show that the use of varying target
lengths (based on a theoretical explanation) and the use of RC
targets improve accuracy.

The effectiveness of the generic Self-GenomeNet model, which
incorporates pre-training on virus, bacteria, and human data,
consistently outperformed models pre-trained solely on virus data
or bacteria data across all tested datasets on transfer learning
tasks, under the linear evaluation protocol and across all pro-
portions of labeled in data-scarce settings (Figs. 3, 4 and Sup-
plementary Fig. 3). These results confirm the expected advantage
of a network that is pre-trained on multiple sources of data
compared to a network pre-trained on a single source. This aligns
with the fundamental principles of ML, where leveraging diverse
pre-training data often leads to improved performance.

Our study reveals an adaptation in SSL techniques that makes
them well-suited for analysis of genomic datasets, allowing for
more efficient use of genomic data. One adaptation is the use of
the RC for data processing. Typically, DNA sequences are read
from one end, but genes can be located on either strand of the
DNA molecule. By accounting for RCs, Self-GenomeNet can
efficiently learn powerful representations using the symmetry in
the design. Processing both sequences with the same ML model
and evaluating the average of the model’s decisions in order to
predict regulatory and taxonomic features is observed in several
models in supervised training32,33. Therefore, feeding these two
sequences to the same model such as a CNN and RNN model is a
well-established practice for supervised learning tasks. However,
the goal in these tasks is not to learn self-supervised representa-
tions, unlike our method, which to the best of our knowledge is
the first method to use RC to make an SSL method more effective
and efficient. On the other hand, these works justify the weight-
sharing strategy in the encoder and context networks of our
architecture.

Our study shows that using shared weights for the reciprocal
prediction of two sequences, both of which are the RC of the
upcoming subsequences for each other, improves the overall
performance. While Self-GenomeNet predicts the representation
of the RC of a neighboring subsequence �SN:tþ1 from S1:t , the
symmetry of the setup allows for also predicting S1:t from �SN:tþ1
and using shared weights for the whole model (prediction net-
work, context network, and encoder network). Importantly,
among the subsequence pairs that we can consider and study,
only the subsequence pair S1:t and �SN:tþ1 can use the same
encoder network, context network, and prediction network to
predict each other, ensuring that the ML network performs the
same task in both predictions. Specifically, we use these networks
to predict the RC of the upcoming data for both predicting S1:t
using �SN:tþ1 and predicting �SN:tþ1 using S1:t . For other sub-
sequence pairs we considered, which are S1:t and neighbor
sequences Stþ1:N (referred to as “Forward”), and S1:t and the
reverse of neighbor sequences SN:tþ1 (referred to as “Reverse”),
these networks do not have the same task, which results in a
decrease in performance. Specifically, in the “Reverse” condition,
context network with shared weights read these subsequences S1:t
and SN:tþ1 in opposite directions and in the “Forward” condition
the prediction networks with shared weights predict upcoming
neighboring sequence when S1:t predicts Stþ1:N and past neigh-
boring subsequence when Stþ1:N predicts S1:t . The use of shared
weights, which is possible by our proposed strategy of using the
RC of the neighboring subsequences to predict each other,

reduces the number of learned parameters and the risk of over-
fitting and thus improves the performance.

Self-GenomeNet’s ability to reduce computation time by
exploiting symmetry and RC is important for genomic research,
where large datasets must be explored to gain insight into com-
plex biological systems. Self-GenomeNet allows for efficient
training by generating representations of multiple subsequence
pairs simultaneously. Specifically, the representations of S1:t and
�SN:tþ1, are computed for multiple values of t in a single iteration.
This is done by feeding both the input sequence S1:N ¼
½s1; s2; ¼ ; sN � and the RC of that input �SN:1 ¼ ½�sN ;�sN�1; ¼ ;�s1�
into the network, where si 2 fA;C;G;Tg and �si is the com-
plementary nucleotide, e.g., �A ¼ T. The network then evaluates
representations of S1:t and �SN:tþ1 for multiple values of t by
design. We use all matching (neighbor) representations as pairs
for self-supervised training. This leads to considerable efficiency
in self-supervised pre-training. For example, in our experiments,
there are 18 and 47 matching representations per each data
sample in the batch respectively for 150 nt and 1000 nt sequences,
respectively. Additionally, the number of predictions in an
iteration is even double these values because the matching
representations predict each other. All of these predictions are
then used to optimize the model in one iteration (36 and 94
predictions, respectively) instead of having only one prediction
per data sample in the batch, as is common with several other
methods3,18. This makes Self-GenomeNet a computationally effi-
cient SSL method.

Long short-term memory (LSTM) layers, which we use in our
context network, are known to be less effective when they are fed
inputs that contain much more time steps than 10034. Con-
sidering this, we designed our architectures to have 49 and 22
time steps fed into the context network, for our 1000 nt and
150 nt models, respectively. Specifically, we reduced the number
of time steps by having a distance between the initial nucleotides
of the created patches (Fig. 1) to be 20 and 6 respectively for these
models. Having these values greater than 1 reduces the number of
time steps considerably and using even greater values for this
distance is recommended to be used for sequences that are much
longer than 1000 nt. Therefore fairly limited short-term memory
of LSTM can be managed. Additionally, it is also possible to
change LSTM altogether with transformer-based models, which
we will evaluate in the next version.

Self-GenomeNet has been shown to outperform other SSL
methods in experiments with sequences of 150 and 1000 nt input
lengths, demonstrating its effectiveness for sequences of varying
lengths. Furthermore, Self-GenomeNet can be used to learn
representations of sequences even longer than 1000 nt. However,
pre-trained models that are trained on read-level sequences may
not be effective for considerably longer sequences. Therefore, it
may be necessary to pre-train a new model using Self-GenomeNet
with longer sequences. It should be noted that training models on
very long sequences can require a substantial amount of memory,
making it difficult to fit many samples on a GPU. To ensure high
batch size values, methods such as batch accumulation should be
used instead of using a very small batch size (~10), which can
negatively impact the effectiveness of self-supervised training.
Therefore, practitioners should consider using batch accumula-
tion when working with long sequences. Additionally, we suggest
being cautious when interpreting results or masking low infor-
mation sequences when the dataset contains a high repeat content
such as transposable elements.

In our experiments, Self-GenomeNet showed resilience to
changing architectural hyperparameters. Specifically, several
architectural hyperparameters differ in the experiments with
input length values of 150 nt and 1000 nt on the virus data, such
as kernel and stride values of the convolutional layer. Despite the
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different choices of hyperparameters, consistent improvements
over other SSL methods are observed in both experiments, indi-
cating the resilience of Self-GenomeNet to architectural changes.
Therefore, we expect the performance of Self-GenomeNet to be
superior to the other SSL methods for different model archi-
tectures. In addition, the performance of Self-GenomeNet can
potentially be further enhanced by using different architectural
modifications, such as deeper networks or alternative models for
the encoder and context network, which we will evaluate in the
next version.

In summary, our study shows that Self-GenomeNet can learn
powerful representations from genomic datasets and can poten-
tially be used to improve models trained on nucleotide-level data.
Due to the improved performance in label-scarce settings, this
method is of particular interest for the development of ML
models, where the generation of labeled data is costly and only a
limited number of labels are available. This could enable a new
class of ML methods for domains such as functional prediction of
genes, phenotypic or taxonomic prediction of genomes, or
detection of loci of interest, such as pathogenicity islands.

Methods
Self-supervised training and contrastive loss in Self-
GenomeNet. To create the representation, the sequence is first
divided into P overlapping patches SpðjÞ with the range pðjÞ ¼
ðj � aþ 1Þ : ðj � aþ lÞ indexing a subsequence, where l is the patch
length and a the patch stride value, and a < l for overlapping
patches. The patches are first encoded using a convolutional
neural network f θð�Þ. The resulting sequence of vectors
½f θðSp 0ð ÞÞ; f θðSp 1ð ÞÞ; ¼ ; f θðSp P�1ð ÞÞ� is fed into a recurrent context
network Cϕ �ð Þ, yielding embeddings zi ¼ Cϕðff θðSpðuÞÞgu≤ ði�ðl=aÞÞÞ
for ðl=aÞ≤ i<P þ ðl=aÞ. The patches of the RC �S�pðjÞ ¼
½�sj�aþl; ¼ ;�sj�aþ1� are also fed into f θ first and then Cϕ, giving rise
to zi is then a representation of S1:i�a likewise, �zi represents
�SN: i�aþ1ð Þ.

Training the encoder and context networks consists of
predicting �zi from zi contrastively against corresponding embed-
dings from other, negative example sequences S kð Þ�, i.e., against
�z kð Þ�
i . This is done using a linear prediction layer qη and the Noise
Contrastive Estimation or InfoNCE loss35, which maximizes the
mutual information shared between the forward sequence and its
matching RC sequence, is used:

Li ¼ � log
exp �zTi qη zi

� �� �

exp �zTi qη zi
� �� �

þ∑k exp �z kð Þ�
i

� �T
qη zi
� �� � ð1Þ

Negative samples �z kð Þ�
i are efficiently generated by comparing

against representations of other sequences loaded in the same
mini-batch. Each sequence in the minibatch produces two
negative samples for other sequences, the sequences themselves
and their RC, resulting in 2 B� 1ð Þ negative samples when using
the minibatch size B.

Embeddings are always contrasted only against embeddings of
sequences of the same length as the positive sample. More
specifically, zi S

þ� �
predicts �zi S

þ� �
against �zi S

kð Þ�� �
where S kð Þ�

contains 2 B� 1ð Þ negative samples (other samples in the batch
and their RCs) and not against �ziþn S�ð Þ where n≠0. This is done
to prevent the network from learning to encode the represented
length directly to gain an advantage, which would not be an
intrinsically interesting feature for downstream tasks.

A loss term is introduced for each index i, denoting the number
of patches represented by zi. Due to the symmetry of the setup,
the model both predicts �zi from zi, as well as zi from �zi. The

corresponding loss �Li, induced by predicting zi from �zi then uses
negative examples with the same length as zi. The final loss for
each individual sequence S is thus defined by L ¼ ∑iðLi þ �LiÞ.

Self-GenomeNet maximizes the mutual information between
varying-length targets and the representations, allowing the
representations to effectively learn both short- and long-term
information. Our theoretical analysis illustrates the advantages of
predicting sequences of different lengths. The mutual information
between the predicted subsequences and the learned representa-
tions is maximized during self-supervised training21. However,
optimizing the mutual information only for sequences that
should contain limited long-range information may reduce the
effectiveness of the learned representations because they may not
capture important long-range information. Therefore, we propose
a self-supervision method that maximizes the lower bound of the
mutual information between the embeddings zi and varying-
length RC targets �SN: i�aþ1ð Þ for
i 2 l=a

� �
; l=aþ 1
� ��

; ¼ ; N � lð Þ=a� �� 	
, where l is the length of

each patch that is fed into the convolutional encoder network and
a the patch stride length, and a<l for overlapping patches. Using
the theoretical proof of CPC21, we derive the theoretical deriva-
tion of the lower bound for maximizing the mutual information
as follows: Ið�SN:ði�aþ1Þ; ziÞ≥ logðnÞ � Li, where Ið�SN: i�aþ1ð Þ; ziÞ is the
mutual information between the learned representation zi and the
RC of the consecutive subsequence �SN: i�aþ1ð Þ:n is the number of
samples in the contrastive pre-training and is therefore
2ðB� 1Þ þ 1 ¼ 2B� 1. The length of the predicted subsequence
�SN: i�aþ1ð Þ changes as the value of i changes, thereby allowing us to
maximize the mutual information between targets of varying of
length and the learned representations by optimizing the loss Li
for different values of i simultaneously. Moreover, this approach
captures both short- and long-range semantics, and avoids the
potential loss of long-range information that can occur when
maximizing mutual information between learned representations
and short patches that lack long-range information.

The theoretical derivation of the lower bound for maximizing
the mutual information between targets of different lengths and
the learned representations can be shown by adapting the
equations in CPC21 as follows:

Given that �SN: i�aþ1ð Þ is predicted from the representation zi, our
loss is given by Eq. (2).

Li ¼ �ES log
f �SN: i�aþ1ð Þ; zi
� �

∑Sm2Sf Sm; zi
� �

2

4

3

5 ð2Þ

where S includes S kð Þ�(the set containing all negative samples of
the contrastive loss) and �SN: i�aþ1ð Þ. f is the modeled density ratio
and is given by Eq. (3).

f �SN: i�aþ1ð Þ; zi
� �

¼ exp �ziqη zi
� �� �

/
p �SN: i�aþ1ð Þ; j; zi
� �

p �SN: i�aþ1ð Þ
� � ð3Þ

The optimal loss and a lower bound for this loss are then given
by Eqs. (4) and (7) respectively.

Lopti ¼ �ES log

p �SN: i�aþ1ð Þjzið Þ
p �SN: i�aþ1ð Þð Þ

p �SN: i�aþ1ð Þjzið Þ
p �SN: i�aþ1ð Þð Þ þ∑Sm2S kð Þ�

p Smjzið Þ
p Smð Þ

2

64

3

75 ð4Þ

¼ ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � ∑

Sm2S kð Þ�

p Smjzi
� �

p Sm
� �

2

4

3

5 ð5Þ
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� ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n� 1ð ÞESm

p Smjzi
� �

p Sm
� �

2

4

3

5 ð6Þ

¼ ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n� 1ð Þ

2

4

3

5≥ES log
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n

2

4

3

5

ð7Þ
This is equal to �Ið�SN: i�aþ1ð Þ; ziÞ þ logðnÞ. Finally, we show that

Ið�SN: i�aþ1ð Þ; ziÞ≥ logðnÞ � Li, where Ið�SN: i�aþ1ð Þ; ziÞ is the mutual
information between the learned representation zi and the RC of
the consecutive subsequence �SN: i�aþ1ð Þ: n is the number of samples
in the contrastive pre-training and is therefore
2ðB� 1Þ þ 1 ¼ 2B� 1. As the value of i changes, the length of
the predicted subsequence �SN: i�aþ1ð Þ changes. We therefore
maximize the mutual information between varying-length targets
and the learned representations by optimizing the loss Li for
different values of i and simultaneously. Thus, the representations
learn both short and long-range semantics. The higher perfor-
mance of Self-GenomeNet compared to the baselines indicates
that our strategy of maximizing the mutual information between
varying-length subsequences and the learned representations is
effective.

Network architecture design. The particular architectures of the
encoder network f Θ and the context network Cϕ are hyperpara-
meters of the method and can be chosen according to the task at
hand. We choose f Θ to be a convolutional layer with 1024 filters
and Cϕ to be an LSTM layer with 512 units. The kernel size of the
convolutional layer is set equal to the patch size, which is the
number of nucleotides given to the encoder network (Fig. 1a),
and the stride value of the convolutional layer is equal to the
distance between the starting points of the patches. For experi-
ments trained on 150 nt sequences, the patch size is set to 24, and
the stride is set to 6, resulting in 75% overlapping patches. For
experiments trained on 1000 nt sequences, the patch size is set to
40 and the stride to 20, resulting in 50% overlapping patches.

Model training process. We use the Adam optimizer36 with
β1 ¼ 0:9, β2 ¼ 0:999 and a learning rate of 0.0001 for all
experiments, except for the T6SS dataset fixed base network
under transfer learning protocol, where the learning rate is set to
0.001 because we observe that 0.0001 is too low for this experi-
ment. For weight initialization, Glorot uniform initialization37 is
chosen, which is the default Keras weight initialization. The size
of the minibatch is chosen to be the largest possible for the used
GPU, GeForce RTX 2080 Ti. Therefore, it is set to 128 for the self-
supervised pre-training and 2048 for the supervised downstream
tasks (only powers of 2 are considered). The hyperparameters,
such as the hyperparameters of Adam36 or learning rate, are set to
the same values as our method for all baseline experiments. When
some hyperparameters are unique to a baseline method, we follow
the recommended values as in their papers.

In the transfer-learning experiments on the T6SS dataset and
in the experiments with data-scarce settings, where 0.1% of the
dataset is available, only the last linear layer of the model is
trained with the labels as the first round of supervised training on
downstream tasks. This means that the pre-trained layers are
frozen at this stage, which is done to avoid rapid overfitting to the
small labeled datasets, which results in low performance on the
validation set. Then, in the second round of supervised training,
the frozen layers are also fine-tuned, typically with considerably

fewer iterations than in the first round due to quick overfitting. In
other transfer-learning and data-scarce experiments, the initial
training with frozen layers is skipped for a faster evaluation
process, as the preliminary experiments showed that it did not
contribute to the final performance. Thus, the entire network is
fine-tuned directly.

In the experiments in which the raw input data are fasta files
(all datasets except DeepSEA), as long as the existing unlabeled
data files are long enough, we generate sequences up to a certain
number from the same fasta file for both supervised and self-
supervised training. Thus, not only one data sample is generated
when the fasta file is opened, as it would be if generated samples
were completely random, in order to ensure much faster
preprocessing. Specifically, up to 512 samples are created for
fungi-protozoa dataset due to very long fasta files (and thus
longer processing time) and 64 for other experiments. Addition-
ally, this may help to create harder negative samples in the
contrastive self-supervised training, which is shown to be helpful
for learning better representations. However, hard-negative
mining is not explicitly enforced in our experiments, such as by
modifying the loss function38. While incorporating such
measures can further improve the performance of Self-
GenomeNet, the fact that we achieved robust results without
relying on these underscores the robustness and success of our
approach.

Datasets. The DeepSEA dataset25 is an open benchmark dataset
that has been evaluated by many other DL models25,29,39. It
contains approximately 5 million subsequences of the human
genome, with each sample containing 1000 nucleotides as input
and a label vector for 919 binary chromatin features such as
transcription factor binding affinities, histone marks, and DNase I
sensitivity.

The Virus dataset is used as a representative of taxonomic
classification tasks often encountered in metagenomics, where
DNA found in environmental samples is analyzed by next
generation sequencing40. We downloaded all publicly available
viral genomes from GenBank22 and RefSeq23, and divided the
dataset into two taxonomic classes of bacteriophages vs. viruses
that are not bacteriophages, based on the annotations provided.
Unlike DeepSEA, which identifies properties of genomic regions,
this task tries to differentiate an aspect of an entire given genome
sequence. We divided the downloaded FASTA files into training,
validation, and test sets in approximate proportions of 70%, 20%,
and 10%, respectively. The bacteriophage class contained approxi-
mately 1.0 billion nucleotides, the non-phage virus dataset ~0.5
billion nucleotides. Samples were created from FASTA files by
partitioning them into equal-length non-intersecting sequences.

The bacterial dataset contains bacterial genomes from
GenBank22 and RefSeq23, comprising approximately 83 billion
nucleotides. It is used only for self-supervised pre-training. To
create this dataset, we downloaded all publicly available bacteria
genomes from GenBank, comprising approximately 83 billion
nucleotides, and processed them similarly to how we processed
the Virus dataset.

The T6SS effector protein dataset is provided to demonstrate
that our method works well on a dataset with real label scarcity,
where the training set contains only 75 FASTA entries. It is based
on publicly available bacteria data (SecReT624) where we defined
the task as the identification of effector proteins. T6SS effector
proteins serve as the positive samples to identify, whereas T6SS
immunity proteins, T6SS regulators, and T6SS accessory proteins
are negative samples. We divided the training, validation, and test
sets into approximate proportions of 60%, 20%, and 20%,
respectively.
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For the fungi-protozoa classification task, we downloaded
nucleotide data of fungi and protozoa that may be pathogenic to
humans from RefSeq23 using the genome_updater.sh script from
https://github.com/pirovc/genome_updater with the parameters
-g “fungi” -d “RefSeq” -c “representative genome” -A species:1 -a
-p -T ‘4930,74721,4753,4827,5052,5475,5206,33183,5042,5151,
34487,4859’ -k. For protozoa, we downloaded nucleotide
information with the same script with the parameters -g
“protozoa” -d “RefSeq” -c “representative genome” -m -A
species:1 -a -p -T ‘554915,255975,5878,5794’. We divided the
downloaded FASTA files into training, validation, and test sets in
approximate proportions of 70%, 20%, and 10%, respectively.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data we used are publicly available and information about the data used is explained
in the Datasets subsection. In addition, the training, validation and test sets can be found
separately either as FASTA or RDS files, or as accession IDs on self.genomenet.de. Source
data for figures can be found in Supplementary Data 1.

Code availability
Code to reproduce and apply the models and pre-trained models are available via
interactive notebooks under self.genomenet.de.
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