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Plasma metabolomic profiling in two rabbit lines
divergently selected for intramuscular fat content
Agostina Zubiri-Gaitán 1✉, Agustín Blasco 1 & Pilar Hernández 1✉

This study provides a thorough comparison of the plasma metabolome of two rabbit lines

divergently selected for intramuscular fat content (IMF). The divergent selection led to a

correlated response in the overall adiposity, turning these lines into a valuable animal material

to study also the genetics of obesity. Over 900 metabolites were detected, and the adjust-

ment of multivariate models, both discriminant and linear, allowed to identify 322 with

differential abundances between lines, which also adjusted linearly to the IMF content. The

most affected pathways were those of lipids and amino acids, with differences between lines

ranging from 0.23 to 6.04 standard deviations, revealing a limited capacity of the low-IMF

line to obtain energy from lipids, and a greater branched-chain amino acids catabolism in the

high-IMF line related to its increased IMF content. Additionally, changes in metabolites

derived from microbial activity supported its relevant role in the lipid deposition. Future

research will focus on the analysis of the metabolomic profile of the cecum content, and on

the integration of the several -omics datasets available for these lines, to help disentangle the

host and microbiome biological mechanisms involved in the IMF deposition.
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The intramuscular fat content (IMF) is a key parameter of
meat quality1, influencing multiple characteristics like
tenderness, juiciness, water-holding capacity, etc.2. At the

Universitat Politècnica de València, a divergent selection experi-
ment for IMF in Longissimus Thoracis et Lumborum (LTL)
muscle was performed in rabbits3,4. As a result, two rabbit lines
were created, one with high-IMF content (H) and the other with
low-IMF content (L). The selection started from the same base
population, and both lines were contemporarily reared under the
same environmental conditions and were fed the same diet,
meaning that the differences found between them can be directly
attributed to their genetic composition. This selection led to a
correlated response in the overall adiposity, making these lines a
valuable animal material to study also the genetics of obesity.

In the last few years, several -omics techniques have been used
to obtain a better characterization of meat quality5, focusing on
several of the aforementioned characteristics, including IMF6–10.
Among those techniques, metabolomic has gained special atten-
tion and is considered a key factor in next-generation phenotyping
approaches11,12. Metabolites are the set of organic molecules of
small molecular mass found in a biological sample. They are the
last response of biological systems to genetic and environmental
effects before the expression of the phenotype, and are therefore
considered as an intermediate phenotype13. The analysis of the
metabolomic profile has given some valuable insights regarding
the biological mechanisms controlling different meat and carcass
quality traits14–17. For instance, urinary content of bile acids and
steroids was associated to marbling in cattle, although that asso-
ciation varied depending on the average daily gain of the animal,
the sampling time, and the diet17. Li et al.18 on the other hand,
found several plasma metabolites related to carcass merit traits in
beef cattle, with each one accounting only for 0.8–2.71% of the
phenotypic variance, reflecting the complex nature of the traits. In
pigs, higher plasma concentration of branched-chain amino
acids19 and serum concentration of L-carnitine15 were associated
to greater IMF content, and were even proposed as biomarkers.
The former studies evidenced the variety of metabolic pathways
affecting the IMF content and other meat and carcass quality
traits. A metabolomic analysis on these divergent lines will allow
us to take a closer look into the genetically determined mechan-
isms responsible for fat deposition, giving relevant insights that
could be extrapolated to the study of obesity.

Genomic and metagenomic studies have already been per-
formed on these lines evidencing, on one hand, several genes
related to the IMF content and its fatty acid composition20,21 and,
on the other hand, the importance of the microbiome activity in
the lipid deposition in muscle and other adipose tissues22. In this
study, an untargeted metabolomic approach was used to identify
the genetically induced changes in the plasma metabolomic
profile of the IMF divergent lines, disclosing the metabolic routes
involved in their differentiation. The results obtained revealed a
large and varied response to selection, affecting mainly the
metabolisms of lipids and amino acids, and to a lesser extent
those of carbohydrates and vitamins A and E. A general increase
of lipids was observed in the plasma of the L line, which suggested
an impaired β-oxidation of fatty acids. These results indicate a
limited capacity of the L line to obtain energy from lipids, con-
sequently reducing their uptake and re-esterification in muscle
and adipose tissue. The most relevant results among the amino
acids metabolism were related to the BCAA, which suggested a
lower degradation in the gut of the H line, followed by a greater
catabolism by the host. Additionally, these results supported the
importance of microbiome activity, relating several metabolites
derived from the gut microbiome metabolism to the lipid
deposition and, more importantly, validating some of the results
found in the metagenomic study previously performed22.

The effect of the metabolites on the development of the trait
was inferred based on functions extracted from the literature, and
from previous results found on these divergent lines. No func-
tional validation was performed, which can represent a limitation
of the present study. Future research will be focused on the ana-
lysis of the metabolomic profile of the cecum content, and on the
integration of the several -omics datasets available for these lines,
which will help disentangle the host and microbiome biological
mechanisms and their interplay involved in the IMF deposition.

Results and discussion
Metabolomics has proven to be a powerful tool, and the analysis
performed on these lines yielded many metabolites related to the
intramuscular fat deposition, which allowed us to make impor-
tant inferences over the biological mechanisms that led to a
greater or lower fat deposition. In this study, after the data pro-
cessing, 920 metabolites were kept for further analysis (242
positive-early, 168 positive-late, 399 negative, and 111 polar),
from which 789 were known entities. The reference metabolites
chosen for the alr transformation of each dataset, following the
methodology described by Greenacre et al.23, were: proline for the
positive-early dataset, sphingomyelin (d18:2/24:1, d18:1/24:2) for
the positive-late dataset, N-acetyl valine for the negative dataset,
and glucose for the polar dataset.

The adjustment parameters of the PLS-DA models adjusted
with true and permuted data are shown in Table 1 (supplemen-
tary data 1 and 2), while those of the PLS models are shown in
Fig. 1a (true data; supplementary data 3) and Fig. 1b (permuted
data; supplementary data 4). As it can be seen in the average
misclassification table, the PLS-DA models showed a good clas-
sification ability of around 95%, while that of the permutation test
was around 50%, evidencing the robustness of the PLS-DA
models adjusted with the original data (Table 1). Similarly, the Q2

parameter estimated for the PLS models showed a good predic-
tion accuracy (mean: 65%; Fig. 1a), and this was supported by the
prediction accuracy obtained from the permutation test (Fig. 1b).
These results showed that there was an important correlated
response to selection on the plasma metabolome of the lines.

Once the PLS-DA and PLS models were developed and their
performance was validated, the relevant metabolites were selected
according to the procedure previously described. However, 16 out
of the 160 PLS models that presented a bad prediction accuracy
(Q2 < 0.4) were not considered for the selection (Fig. 1a). Sup-
plementary data 5 shows the complete metabolomic profile
obtained, together with a summary of the results obtained from
the PLS-DA and PLS models. In a divergent selection experiment,
the lines are created from the same base population, are fed the
same diet, and are contemporarily reared under the same envir-
onmental conditions, which means that the differences found
between them are expected to be mainly due to their genetic
composition. However, those differences can also be due to
genetic drift occurred during the selection procedure. On the
other hand, even though the PLS analysis associates metabolites

Table 1 Adjustment parameters obtained from the
predictions of the PLS-DA model during the CMV procedure.

Misclassification table with
true data

Misclassification table with
permuted data

1H (%) 1L (%) 1H (%) 1L (%)
1H 96.7 3.3 1H 54.8 45.2
1L 5.4 94.6 1L 49.2 50.8

1H high-IMF line, L low-IMF line.
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to the IMF trait (independently of the line), extreme values of this
trait are likely due to environmental causes. Therefore, con-
sidering the metabolites that were selected in both PLS-DA and
PLS approaches corroborates that those differences are most
likely due to genetic causes. Finally, 322 metabolites that pre-
sented differences between the lines (selected with the PLS-DA)
and adjusted linearly to the IMF trait (selected with the PLS) were
considered as a correlated response to selection (Fig. 2a).

The 322 selected metabolites are shown in supplementary data 6,
together with the metabolic pathways in which they are involved.
Considering the number of metabolites found, the most affected
metabolisms were those of lipids (159) and amino acids (65). The
remaining metabolites were involved in the metabolism of xeno-
biotics (21), cofactors and vitamins (14), nucleotides (10), peptides
(9), carbohydrates (6), and energy (3) (Fig. 2b and supplementary
data 6). Finally, there were 33 metabolites that could not be iden-
tified and 2 that were partially characterized molecules. This large
and varied response to selection found in the plasma metabolome
agrees with the large polygenic component found in a genome-wide
association study (GWAS) previously performed on these lines20.

Lipid metabolism. The lipid metabolites found can be categor-
ized as shown in Fig. 3 (supplementary data 6). Most of these
metabolites were more abundant in the plasma of the L line (127
out of 159; see supplementary data 6) and the most relevant were

non-esterified fatty acids (NEFAs), including medium-chain,
branched-chain, long-chain (LC) saturated, LC monounsaturated,
and LC polyunsaturated fatty acids (0.51 to 1.27 SD, P0 ≥ 0.96),
monoacylglycerols (MAGs; 0.73 to 0.94 SD, P0 ≥ 0.99), dia-
cylglycerols (DAGs; 0.84 to 6.04 SD, P0= 1), acylcarnitines (0.29
to 1.56 SD, P0 ≥ 0.84), acylglycines (0.41 to 1.50 SD, P0 ≥ 0.92),
and dicarboxylic acids (0.27 to 1.44 SD, P0 ≥ 0.83). Other changes
in the lipid metabolism were reflected in the greater abundance in
the L line of cholesterol (1.11 SD, P0= 1), cholesterol sulfate
(0.89 SD, P0= 1), secondary bile acids (0.61 to 1.01 SD, P0 ≥ 0.98),
sphingomyelins (0.73 to 1.62 SD, P0 ≥ 0.91) and plasmalogens
(0.44 to 1.28 SD, P0 ≥ 0.94), and the lower abundance of lyso-
phospholipids (0.74 to 1.53 SD, P0 ≥ 0.99). The differences in
cholesterol and bile acids was also observed in the plasma of the L
line on the 10th generation of selection24. Additionally, previous
experiments also found greater amount of triglycerides in the
plasma of the L line24,25.

Bile acids are polar derivatives of cholesterol and play an
essential role in lipid digestion and absorption in the intestine26.
The greater amount of cholesterol and triglycerides previously
observed can be related to the greater amount of bile acids,
although further analyses are needed to confirm this theory.
Despite this greater amount of cholesterol and triglycerides, the
differences found in all the lipid metabolites mentioned above,
may suggest a limited capacity of the L line to obtain energy from
those lipids, causing their accumulation together with that of their

Fig. 1 Adjustment parameters of the PLS models. Distribution of all the Q2 values obtained from the PLS models adjusted during the cross-validation
procedure with (a) true data, and with (b) permuted data.

Fig. 2 Summary of the relevant metabolites obtained with the PLS and PLS-DA models. a Venn diagram of the metabolites selected using PLS-DA and
PLS approaches; b classification of the 322 metabolites selected.
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catabolic products, as will be discussed later. The NEFAs and
MAGs found in this experiment are products of the activity of the
lipoprotein lipase (LPL) on the triglycerides27. Greater circulating
NEFAs were also found in pigs with lower IMF content caused by
the CC and CT genotypes of the LEPR gene; however, the
difference was awarded to a greater fat mobilization in those
pigs28. Other products of the hydrolysis of triglycerides, like the
glycerol and glycerol-3-phosphate, were also relevant in the
discrimination, with 96% (glycerol) and 98% (glycerol-3-phos-
phate) probability of being more abundant in the L line
(supplementary data 6). Even though those metabolites did not
overcome the 80% threshold in both models (supplementary
data 5), the statistical evidence, together with their close
relationship to NEFAs and MAGs, suggest that they should be
also considered in the discussion.

The fatty acids obtained from the triglycerides’ hydrolysis
would then be taken up by the cells, where they would be oxidized
for energy, through β-oxidation, or reesterified for storage29. The
β-oxidation of fatty acids takes place inside the mitochondria,
where long-chain fatty acids cannot be passively transported
through the plasma membrane and must be attached to carnitine,
forming acylcarnitines, to be transported through the carnitine
shuttle29. In this experiment 14 out of the 16 acylcarnitines found
were more abundant in the L line. The only exceptions were the
short acylcarnitines butyrylcarnitine (0.82 SD, P0= 1) and
propionylcarnitine (0.74 SD, P0= 0.99), which are also related
to the branched-chain amino acids (BCAA) metabolism and will
be discussed later. Additionally, the carnitine was more abundant
in the plasma of the H line (0.74 SD, P0= 0.99), which has
already been proposed as a biomarker for higher meat quality and
IMF content in pigs15. The acylcarnitines can increase in the
plasma to avoid the accumulation of toxic acyl-COAs in the
mitochondria caused by disorders in the β-oxidation. This
detoxification mechanism, which has been observed in indivi-
duals with type 2 diabetes and insulin resistance, consists in the
cross back of the acylcarnitines to the bloodstream, which cause
an increased level of plasma acylcarnitines and a decreased level

of free carnitine30, as observed in these lines. The acylglycines,
which are minor metabolites of fatty acids, are also formed to
prevent the accumulation of toxic acyl-CoA and, in humans, this
detoxification mechanism has been observed in individuals with
disorders of short- and medium-chain fatty acid oxidation31.
Other results supporting this theory are the greater abundance of
dicarboxylic acids and DAGs. The dicarboxylic acids are formed
from the ω-oxidation of monocarboxylic acids when the β-
oxidation of NEFA is impaired32, while the increased synthesis of
DAGs has been observed when the uptake and oxidation of fatty
acids is impaired33. The lower β-oxidation in the L line can also
be supported by the lower activity of the β-hydroxyacyl-CoA
dehydrogenase, an enzyme of the β-oxidation pathway, found in
the LTL muscle of the L line in a previous experiment34.

The accumulation of triglycerides and their catabolic by-
products, together with the accumulation of acylcarnitines,
acylglycines and dicarboxylic acids, and the lower carnitine in
the plasma L line suggest a reduced uptake in their muscle and
other adipose tissues, followed by a lower, and possibly impaired,
β-oxidation of fatty acids, which could partially explain its lower
fat content.

Amino acids metabolism. The metabolites from the amino acids’
metabolism found were involved in several pathways, which can
be seen in Fig. 4 (supplementary data 6). Among those pathways,
the branched-chain amino acids (BCAA) metabolism stands out
(leucine, isoleucine, and valine). The BCAA are essential amino
acids that play numerous metabolic and regulatory roles, and
have been associated with increased lipolysis, but also with
increased lipogenesis35. Its blood concentration has been posi-
tively associated with IMF content in pigs19 and cattle16, and with
obesity and insulin resistance in humans36. In this experiment no
differences were found in valine, leucine, and isoleucine, but
greater abundances of the modified amino acids (N-acetyl leucine,
N-lactoyl leucine, N-lactoyl isoleucine, and N-lactoyl valine) were
found in the plasma of the H line (0.54–0.75 SD, P0 ≥ 0.96),

Fig. 3 Lipid sub-pathways. Number of differentially abundant metabolites found for each lipid sub-pathway.
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together with several metabolites from their catabolism, including
the BCAA-associated species butyrylcarnitine and propio-
nylcarnitine mentioned earlier (0.35–1.97 SD, P0 ≥ 0.88). Excep-
tionally, the isovalerylglycine and 3-methylcrotonylglycine were
more abundant in the plasma of the L line; however, these
metabolites are acylglycines, also formed as minor metabolites of
the fatty acids, as mentioned earlier. In the GWAS performed on
these lines, the BCAT1 gene, that codifies for the first enzyme in
the BCAA catabolic pathway expressed in the cytosol, was located
in one of the regions associated with the IMF content20. This gene
has also been associated to obesity in humans in an epigenome-
wide association study37, where it was found in an hypomethy-
lated state. Additionally, a study in mice showed that the dis-
ruption of the BCAT2 gene, expressed in the mitochondria, led to
lower BCAA catabolism, which consequently led to a lower fat
content38. The results found in this experiment suggest a greater
BCAA catabolism in the H line that could partially explain its
greater IMF content, as observed in humans39, although the
mechanisms are not entirely understood36.

Other changes in the plasma amino acids concentrations
included greater abundances in the L line of glycine (1.55 SD,
P0= 1) and serine (1.04 SD, P0= 1), together with metabolites
from the creatine metabolism (0.75–1.18 SD, P0= 1), lysine
metabolism (0.75–1.14 SD, P0= 1), the glutamate metabolism
(0.37–1.37 SD, P0 ≥ 0.9), the polyamine metabolism (0.23–1.77 SD,
P0 ≥ 0.8), and the urea cycle, arginine and proline metabolism
(0.66–1.38 SD, P0 ≥ 0.98). On the other hand, the H line had
greater plasma abundances of alanine (1.03 SD, P0= 1), aspartate
(0.81 SD, P0= 1), asparagine (0.52 SD, P0= 0.96), together with
metabolites from the methionine, cysteine, S-adenosyl methionine
(SAM) and taurine metabolism (0.54–0.75 SD, P0 ≥ 0.96). Among
those, the arginine metabolism stands out because of the close
relationship of arginine and adiposity. Arginine supplementation
has been negatively associated with adiposity in obese humans with
type-2 diabetes40, rats41, 42, pigs43, and broiler chickens44, and has
also been shown to retard the progression of atherosclerosis in
rabbits fed a high-cholesterol diet45. Potential mechanisms has
been proposed46, which included the enhanced synthesis of cell-
signaling molecules like the polyamines, which were also more
abundant in the plasma of the L line. Additionally, the study in pigs
previously mentioned showed that the arginine supplementation
had an effect on the intestinal microbial metabolism43. Even
though these lines are fed the same diet, the metagenomic analysis
performed on these lines found a greater abundance of the arcA

gene22, which codes for a positive regulator of the arginine
catabolic pathway47. These results could indicate that, despite the
same arginine intake, the microbiome composition of the L line
could lead to its increased utilization.

Metabolic pathways related to the microbiome metabolism. It
has been shown that the gut microbiota has a large effect on the
blood metabolome48,49, which in turn is independent from the
host genetic effect50. In this experiment, several metabolites found
were related to the gut microbiome metabolism, and their dif-
ferences indicate changes in the microbial activity of the lines. As
mentioned earlier, the secondary bile acids, which included
lithocholate, glycolithocolate, and deoxycholic acid glucuronide,
were more abundant in the plasma of the L line. Bile acids are
polar derivatives of cholesterol and play an essential role in lipid
digestion and absorption in the intestine26. The secondary bile
acids are synthesized from the primary bile acids by the gut
bacteria, highlighting the importance of the interactions between
the microbiota and the bile acids in energy homeostasis. A
metagenomic analysis of the cecum content performed on the
10th generation of selection confirmed the importance of the gut
microbiota’s functionality in the IMF deposition; however, no
clear association between microbial genes involved in the sec-
ondary bile acids formation and the IMF content was found22.
Further studies are needed to elucidate the role of secondary bile
acids in the energy homeostasis of these lines.

The levels of BCAA in plasma discussed above have also been
shown to depend on the microbiome composition51. In line with
the findings of Ridaura et al.51, the metagenomic analysis
performed on the 10th generation showed an increased
abundance of genes involved in the BCAA degradation in the L
line, contributing to the decreased circulating BCAA seen in this
line and the lower IMF content in the mentioned line22.
Furthermore, the metabolism of the aromatic amino acids
(AAA) tryptophan, tyrosine, and phenylalanine is also related
to the microbiome metabolism and was also affected by selection.
Greater abundances of the modified amino acid N-lactoyl
phenylalanine (0.49 SD, P0= 0.95), and of metabolites from the
tryptophan (0.25–0.78 SD, P0 ≥ 0.81) and tyrosine (0.56–0.71 SD,
P0 ≥ 0.97) metabolisms were found in the H line. Together with
the BCAA, the AAA can be metabolized either by the host or by
the gut microbiota52, and they have been shown to be increased
in obesity53. In this experiment, most of the metabolites from the

Fig. 4 Amino acid sub-pathways. Number of differentially abundant metabolites found for each amino acid sub-pathway.
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AAA metabolism found were directly or indirectly gut-derived,
except the kynurenine, which is a product of the tryptophan
catabolism through the host’s kynurenine pathway. This pathway
is also used for the biosynthesis of the cofactor NAD, and its
precursor, the nicotinamide, was also more abundant in the
plasma of the H line (0.57 SD, P0= 0.98). Finally, metabolites
from the histidine metabolism were also more abundant in the
plasma of the H line (0.30–0.74 SD, P0 ≥ 0.85). Among those
metabolites, the imidazole propionate was found, which is
produced by gut-microbiota. The imidazole propionate can
modulate host inflammation and metabolism, it has been
positively related to obesity and diabetes54,55, and it has even
been proposed as a predictor of α diversity49.

These results highlight the importance of the microbiome
activity in the metabolism of the host and its direct relationship
with the determination of the trait. A metabolomic analysis of the
gut content of these lines would give a further insight into the
microbiome activity and would allow to confirm the results
obtained so far.

Other metabolic pathways affected by selection. Other inter-
esting changes were detected in vitamins A and E metabolisms.
Greater abundances of retinol (vitamin A; 0.76 SD, P0= 0.99), α-
tocopherol (vitamin E; 0.82 SD, P0= 1) and β/γ-tocopherol
(vitamin E; 0.84 SD, P0= 1) were found in the plasma of the H
line, together with metabolites from the vitamin E catabolism (α-
CEHC and α-CEHC glucuronide; 0.52 to 0.67 SD, P0 ≥ 0.96).
Dietary supplementation of vitamin A has contradictory effects
on intramuscular adipose tissue development, promoting the pre-
adipocyte hyperplasia and inhibiting the adipocyte final
maturation56. Since these lines are fed the same diet, the differ-
ence found between them must be due to its metabolism, as it was
observed in cattle with different feed efficiency57. On the other
hand, the vitamin E metabolites have important antioxidant
activity, and can also act as signaling and gene regulation mole-
cules in pathways related to lipid metabolism58. Despite the great
number of studies on vitamins A and E, and since they influence
many metabolic reactions, it is not clear how their metabolism is
affecting the intramuscular fat deposition of these lines. However,
these results indicate an interesting association that could be
further investigated.

The glycolytic and energy metabolism was also affected by
selection. No differences were found between the lines in the
plasma glucose concentration neither in previous24,25 nor in this
experiment. However, greater abundances of metabolites involved
in the amino sugar metabolism (0.68 to 1.30 SD, P0 ≥ 0.99), the
fructose, mannose, and galactose metabolism (0.54–1.77 SD,
P0 ≥ 0.97), and the pentose metabolism (0.53 SD, P0= 0.96) were
found in the plasma of the L line. These results agree with another
study performed, in which a greater abundance of lactose was
found in the milk of the L line, suggesting an increased
metabolism of carbohydrates in the mentioned line (results not
published yet). It is not entirely clear the relationship with the
intramuscular fat deposition; nonetheless, these results could
suggest differences in glucose utilization between the lines.

Conclusions
The experimental design and the analysis performed in this study
allowed us to obtain the genetically determined metabolomic
profile of the divergent lines, which is directly related to their
intramuscular fat content. The results obtained showed that there
was a large and varied response to selection in the plasma
metabolome, agreeing with the large polygenic component found
in the GWAS previously performed.

The most affected pathways found were those of lipids and
amino acids. There was a general increase of lipids in the plasma
of the L line, which suggested an impaired β-oxidation in the
mentioned line. These results indicated a limited capacity of the L
line to obtain energy from lipids, consequently reducing their
uptake and re-esterification in muscle and adipose tissue. The
most relevant results among the amino acids metabolism were
related to the BCAA, which suggested a lower degradation in the
gut of the H line, followed by a greater catabolism by the host.
Finally, the changes found in the secondary bile acids, in both the
branched-chain and aromatic amino acids, and also in the
metabolites from the arginine and histidine metabolisms, sup-
ported the relevant role of the microbiome activity in the devel-
opment of the trait, reinforcing the results of the metagenomic
analysis previously performed.

Methods
Animals. The Research Ethical Committee approved all experi-
mental procedures according to Council Directives 98/58/EC and
2010/63/EU (reference number 2017/VSC/PEA/00212). The
rabbits used for this experiment came from two lines divergently
selected for intramuscular fat (IMF) content in Longissimus
thoracis et lumborum (LTL) muscle. The complete selection
procedure is described in Martínez-Álvaro et al.4. Briefly, the
divergent selection started from a base population of 13 sires and
83 does, originating one line with high-IMF content (H) and
another with low-IMF content (L). The lines were contemporarily
reared under the same environmental conditions, and they were
fed the same diet. The litters were weaned at 28 days, then housed
collectively and fed ad libitum until slaughter with a standard
commercial diet containing 16% of crude protein, 16.5% of crude
fiber and 2.4% of fat, 7.6% of ashes, 0.8% of calcium, 0.6% of
phosphorous, 0.26% of sodium; and supplemented with vitamin
A (10,000 UI/kg), vitamin D3 (900 UI/kg), vitamin E (25 mg/kg),
iron (78 mg/kg), cobalt carbonate (0.30 mg/kg), manganese
(20 mg/kg), zinc (50 mg/kg), selenium (0.05 mg/kg), potassium
iodide (1.0 mg/kg), copper (8 mg/kg), and bacitracin zinc anti-
biotic (100 ppm). The fatty acid composition of the diet,
expressed as a percentage of total fatty acids was: 54.8% of
C18:2n6, 19.7% of C18:1n9, 16.6% of C16:0, 5.7% of C18:3n3,
1.8% of C18:0, 0.5% of C16:1, and 0.9% of fatty acids with more
than 20 carbon atoms.

To perform the selection, two full sibs (one male and one
female) of the first parity of each doe were slaughtered at 9 weeks
of age and the LTL muscle was excised, minced, and freeze dried.
The IMF content was then quantified using near-infrared
spectroscopy (NIRS) applying the equations developed by
Zomeño et al. (2011)59, and expressed as g IMF/100 g of fresh
muscle. The does were ranked according to the average IMF value
obtained from their offspring, and the top 20% of does provided
all females for the next generation. Each sire was mated with six
does, the mates were ranked, and only one male progeny from the
highest-rated mate of each sire was selected for the next
generation to reduce inbreeding.

The rabbit meat is characterized by its low-fat content. The
LTL muscle has the lowest fat content60, and in these lines it had
a mean of 1.06 g IMF/100 g of fresh muscle. The divergent
selection performed was successful, achieving a difference in the
9th generation of 0.45 g IMF/100 g of fresh muscle, equivalent to
3.1 standard deviations of the trait20.

Plasma metabolome. The plasma metabolome was quantified in
24 rabbits from the H line (12 males and 12 females) and 24 from
the L line (12 males and 12 females) from the 9th generation of
selection (see supplementary Data 7). The animals were
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slaughtered at 9 weeks of age after 4 h of fasting and blood
samples from the jugular vein were collected in tubes containing
K2 EDTA as anticoagulant (Deltalab, Rubí, Spain). The samples
were immediately centrifuged at 3000 rpm for 10 min at room
temperature to separate the plasma, which was finally stored at
−80 °C. The plasma samples were sent to Metabolon, Inc.
laboratory (Morrisville, North Carolina, USA) for their analysis
using UPLC-MS/MS: ultra-performance liquid chromatography
(ACQUITY UPLC System, Waters) coupled to tandem mass
spectrometry (Q-Exactive Orbitrap high resolution/accurate
mass, Thermo Scientific) interfaced with a heated electrospray
ionization source (HESI-II). The Orbitrap mass analyzer operated
at 35,000 mass resolution.

The samples were prepared using the automated MicroLab
STAR® system (Hamilton Company, Reno, Nevada, USA). The
proteins were precipitated with methanol under vigorous shaking
for 2 min (Glen Mills GenoGrinder 2000) followed by centrifuga-
tion. The samples were then briefly placed on a TurboVap®
(Zymark) to remove the organic solvent and finally stored
overnight under nitrogen. Then, four aliquots of each sample
extract were taken and reconstituted in solvents compatible to
different methodologies: two separate reverse phase (RP)/UPLC-
MS/MS with positive ion mode electrospray ionization (ESI), one
RP/UPLC-MS/MS with negative ion mode ESI, and one
hydrophilic interaction liquid chromatography (HILIC)/UPLC-
MS/MS with negative ion mode ESI. These four methodologies
will be called positive early, positive late, negative, and polar.

The first aliquot was gradient eluted from a C18 column
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and
methanol, containing 0.05% perfluoropentanoic acid and 0.1%
formic acid. It was analyzed under acidic positive conditions and
chromatographically optimized for more hydrophilic compounds
(positive early). The second aliquot was gradient eluted from the
same aforementioned C18 column using methanol, acetonitrile,
water, 0.05% perfluoropentanoic acid, and 0.01% formic acid. It
was analyzed using acidic positive conditions, but chromatogra-
phically optimized for more hydrophobic compounds (positive
late). The third aliquot was gradient eluted from a separate C18
column using methanol and water, with 6.5 mM Ammonium
Bicarbonate at pH 8, and then analyzed using basic negative
conditions (negative). The last aliquot was eluted from a HILIC
column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using
a gradient consisting of water and acetonitrile with 10 mM
Ammonium Formate at pH 10.8. Finally, it was analyzed by
negative ionization (polar). The MS analysis alternated between
MS and data-dependent MSn scans using dynamic exclusion. The
scan range varied between methods but covered 70–1000m/z.

Several types of controls were analyzed together with the
experimental samples: a pooled matrix sample generated by
taking a small volume of each experimental sample served as a
technical replicate throughout the data set; extracted water
samples served as process blanks; and a pool of QC standards
carefully chosen not to interfere with the measurement of
endogenous compounds were spiked into every analyzed sample,
to monitor instrument performance and help with the chromato-
graphic alignment.

Raw data were extracted from the four methodologies,
obtaining four datasets: positive early, positive late, negative,
and polar. The peaks were identified, QC processed, and the
compounds were identified by comparison to library entries of
purified standards or recurrent unknown entities. The identifica-
tions were based on three criteria: retention index, accurate mass
match to the library (+/− 10 ppm), and the MS/MS forward and
reverse scores between the experimental data and authentic
standards. Peaks were quantified using area-under-the-curve. The
information regarding function and metabolic pathways of each

metabolite identified came from the Human Metabolome
Database and the Kyoto Encyclopedia of Genes and Genomes
database.

Data processing. A total of 997 compounds were detected in the
plasma of the two rabbit lines with the four methodologies (252
positive-early, 181 positive-late, 448 negative, and 116 polar),
from which 852 were known entities. The data processing was
performed separately for each dataset.

The metabolites that were undetected (i.e. intensity = 0) in a
large number of samples were removed from the datasets. After
some exploratory analyses, only metabolites that had less than
10% of zeros in at least one line were kept, and the remaining
zeros were imputed using random forest61. The quantification of
the metabolites in untargeted metabolomics studies refers to
relative changes62,63, meaning that, as happens with composi-
tional data, the relevant information is contained in the ratios
between the parts64. Thus, an additive log-ratio transformation65

(alr) was applied, which is defined as follows:

ln
xj
xref

 !
¼ ln xj

� �
� lnðxref Þ; j ¼ 1; ¼ ; J � 1; j≠ ref ð1Þ

where xj is the abundance of the j-th metabolite, xref is the
abundance of a reference metabolite and J is the total number of
metabolites in the dataset. The reference metabolite was chosen
following the methodology proposed by Greenacre et al. (2021)23.
Briefly, this methodology consisted in choosing the metabolite
that (1) reproduced the geometry of the full set of log-ratios in a
Procrustes analysis (measured by the Procrustes correlation), and
(2) had low variance, ensuring that the main variation is due to
the numerator. After the data processing, the four datasets,
corresponding to the four methodologies described earlier, were
joined and analyzed as described below.

Statistics and reproducibility. The metabolic differences between
lines were identified by two separate analyses. The first one was a
partial least square-discriminant analysis (PLS-DA), for which the
dependent variable was a categorical vector coding the H or L
line. The second one was a linear partial least square (PLS), for
which the dependent variable was a vector containing the IMF
content. Both were performed using the R package mdatools66

after standardization of the dataset (i.e. subtract the mean and
divide by the standard deviation).

A cross model validation (CMV) was performed to avoid
overfitting the PLS-DA and PLS models67, and to select the
relevant metabolites68. The CMV consists of an inner cross-
validation (CV) performed to develop and optimize the models,
and an outer CV to test the models’ performance67. After some
exploratory analysis, a 7-fold inner CV and an 8-fold outer CV
were used. First, the samples were divided into 8 groups of
6 samples each (8-fold outer CV) and one group was set aside as a
test set. The remaining samples (training set) were subjected to a
7-fold inner CV procedure to develop and optimize the model.
Then, once the model was developed, a variable selection step was
performed using the variable importance in projection (VIP)
value and the confidence interval of their regression coefficients
(CI). Only those metabolites that had a VIP value ≥ 0.8 and which
95% CI did not contain the 0 were kept. Finally, a new model was
adjusted with the selected metabolites, and it was used to predict
the line (in the case of PLS-DA) or the IMF content (in the case of
PLS) of the samples previously set aside as the test set. This
procedure was repeated 8 times, until all the groups of the outer
CV were set aside once. Additionally, 20 iterations of CMV were
performed, changing the composition of the mentioned groups
(Fig. 5).
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After the CMV, a total of 160 PLS-DA and 160 PLS models
were adjusted to predict each test set (20 rounds of 8-fold outer
CV). The predictions obtained from the PLS-DA models were
used to build an average misclassification table to evaluate the
classification ability of the models, while the Q2 parameter was
used to evaluate the prediction ability of the PLS models.
Additionally, a permutation test was performed to analyze if the
models’ performance was better than what would be obtained by
chance. To perform the test, the values of the dependent variable
(H and L classes for the PLS-DA or IMF content for the PLS)
were permuted and new models were adjusted, performing the
same CMV process mentioned above. The average misclassifica-
tion table was calculated for the PLS-DA models, while the Q2

parameter was obtained for the PLS models67.
Once all the models were adjusted and validated, the

metabolites considered as relevant were those that were selected
in more than 80% of the models (i.e., in more than 128 PLS-DA
or PLS models, independently). Finally, only those metabolites
selected in both approaches (PLS-DA and PLS) were considered
for further analysis.

The sign and magnitude of the differences in metabolite
abundances were estimated as the phenotypic difference between
lines. The linear model applied was

y ¼ Xbþ e ð2Þ
where y is the vector of phenotypes, b is the vector of fixed effects
including the line and sex effects, e is the vector of residual
variances, and X is the incidence matrix. Bayesian inference was
applied69,70 using the program Rabbit (Institute for Animal
Science and Technology, UPV, Valencia, Spain). Bounded flat
priors were assumed for all fixed effects and variances. The
residual random effects were assumed to be uncorrelated and a
priori multinormally distributed as: e ~ N (0, Iσ2e).

The marginal posterior distributions of the phenotypic
differences between H and L lines were obtained by Gibbs
sampling. The parameters of the posterior distributions taken into
consideration were the median of the difference (DH-L), the

highest posterior density interval at 95% (HPD95%), and the
probability of the difference being greater than zero when
DH-L > 0, or lower than zero when DH-L < 0 (P0)70. Additionally,
the differences between lines of each metabolite were expressed as
units of their standard deviation (SD).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Source data underlying Fig. 1 and Table 1 are provided in Supplementary Data 1–4.
Source data underlying Figs. 2b, 3, and 4 are provided in Supplementary Data 6. Other
datasets analyzed during the current study are available from the corresponding author
on reasonable request.
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