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Leading basic modes of spontaneous activity drive
individual functional connectivity organization in
the resting human brain
Xi Chen1, Haoda Ren1, Zhonghua Tang1, Ke Zhou 2, Liqin Zhou2, Zhentao Zuo3, Xiaohua Cui1,

Xiaosong Chen 1, Zonghua Liu4, Yong He 5,6,7,8 & Xuhong Liao 1,6✉

Spontaneous activity of the human brain provides a window to explore intrinsic principles of

functional organization. However, most studies have focused on interregional functional

connectivity. The principles underlying rich repertoires of instantaneous activity remain lar-

gely unknown. We apply a recently proposed eigen-microstate analysis to three resting-state

functional MRI datasets to identify basic modes that represent fundamental activity patterns

that coexist over time. We identify five leading basic modes that dominate activity fluctua-

tions. Each mode exhibits a distinct functional system-dependent coactivation pattern and

corresponds to specific cognitive profiles. In particular, the spatial pattern of the first leading

basis mode shows the separation of activity between the default-mode and primary and

attention regions. Based on theoretical modelling, we further reconstruct individual functional

connectivity as the weighted superposition of coactivation patterns corresponding to these

leading basic modes. Moreover, these leading basic modes capture sleep deprivation-induced

changes in brain activity and interregional connectivity, primarily involving the default-mode

and task-positive regions. Our findings reveal a dominant set of basic modes of spontaneous

activity that reflect multiplexed interregional coordination and drive conventional functional

connectivity, furthering the understanding of the functional significance of spontaneous brain

activity.
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Spontaneous activity in the resting human brain exhibits
well-organized spatiotemporal patterns, providing a win-
dow into understanding the intrinsic functional

organization1,2. Using resting-state functional magnetic reso-
nance imaging (R-fMRI), numerous studies have revealed the
large-scale functional connectivity (FC) network by measuring
low-frequency spontaneous fluctuations of blood-oxygenation-
level-dependent (BOLD) signals3–5. The functional network
exhibits non-trivial properties, such as functionally specific but
interacting modules6–8, which facilitate efficient functional seg-
regation and integration across the brain9–11. Furthermore, the
functional network architecture varies across individuals12–15,
shapes functional activation patterns during tasks16–19, is related
to individual cognitive performance18,20,21, and is modulated by
the mental states22,23.

Despite the success of the functional network analyses, the
associated insights are limited to the connectivity patterns sum-
marized over time. Accumulating evidence suggests that the
interregional functional interaction is highly dynamic with time-
varying patterns24–26. An innovative approach is to examine
single frames of brain activity to reveal the transient coordination
at shorter time scales (e.g., seconds)27. The whole-brain activity
patterns have been classified into several recurrent brain states
with different coactivation patterns28–31. The temporal transition
between these brain states follows a hierarchical structure31 and
shows alterations across tasks30,32,33, consciousness states34,35,
and psychiatric disorders36,37. In addition to the group-level
analysis, a very recent study has identified individualized brain
coactivation states, the occurrence rates of which depend on task
states, handedness, and gender, and shows longitudinal changes
in post-stroke recovery38. Although these studies provide valuable
insights into the time-varying functional organization, they
typically assign the instantaneous activity pattern at each time
point to a single brain state; the commonality shared across time
points has been underestimated39. A more natural view holds that
multiple basic modes may coexist across the time-resolved
activity, which are selectively combined at each time point to
support potential cognitive responses26,40,41. Identifying these
basic modes can unravel the building blocks of intrinsic activity
and may provide an avenue to explore the multiplicity of the
interregional relationships at rest. However, the spatial patterns of
these basic activity modes and their potential functional sig-
nificance remain largely unknown.

Recent R-fMRI studies have attempted to bridge the gap
between instantaneous brain activity and FC patterns. For
example, the point process analysis shows that FC profiles for
regions of interest can be inferred from interregional coactivation
patterns at specific time points28,42. Similarly, the edge-centric
approach decomposes FC into framewise contributions43 and
reveals dominant contributions of high-amplitude coactivations
at critical time points44,45. A recent study further reports that
interregional FC relies on all time points, even those with low
amplitudes46. Thus, we hypothesize that the basic modes of time-
solved activity may make a substantial contribution to the FC
pattern.

To address these issues, we leveraged a recently proposed
statistical physics approach, i.e., the eigen-microstate analysis47,48,
to identify basic modes of spontaneous activity of the resting
human brain. The eigen-microstate analysis is useful for
extracting meaningful and fundamental spatial components (i.e.,
basic modes) underlying the temporal evolution of complex
systems by incorporating spatial information over time47,48.
Specifically, we applied this approach to R-fMRI data from
healthy young adults from three datasets: the S900 release of the
Human Connectome Project (HCP)49, the sleep-deprivation
dataset50, and the Beijing Zang dataset51. First, we identified

the leading basic modes that dominated the spontaneous fluc-
tuations of BOLD signals and unraveled their cognitive sig-
nificance. Second, we developed a theoretical model to elucidate
how these basic modes contribute to the whole-brain FC pattern
and verified this model by empirically reconstructing the FC
pattern. Finally, we investigated whether these basic modes are
affected by the modulation of mental states, e.g., by sleep
deprivation.

Results
A small number of basic modes dominated spontaneous
activity. We employed two runs (i.e., REST1 and REST2) of
R-fMRI data from 700 participants selected from the HCP dataset
and extracted regional time courses for 1000 cortical nodes based
on a prior functional parcellation52. Then, we identified the basic
modes at the population level for each run by applying the eigen-
microstate analysis47 to the concatenated time courses across
participants (Fig. 1). For both runs, the weights of the basic
modes decreased rapidly with increasing ranking and reached an
elbow point at the 6th basic mode (Fig. 1a). The first five basic
modes before the elbow point accounted for a large proportion of
the variance in activity (29% for REST1 and 28% for REST2)
(both ps < 0.001, 10,000 permutations) and hereafter are referred
to as the leading basic modes.

Each leading basic mode showed a heterogeneous spatial
pattern, representing a typical activity mode underlying the rich
repertoire of spontaneous activity (Fig. 1b); in the figure, opposite
signs in the amplitude indicate opposite phases in the temporal
fluctuation. The spatial patterns of these modes were highly
similar between two runs (i.e., REST1 and REST2) (Supplemen-
tary Fig. 1). Based on a prior brain parcellation with seven
functional systems53, we found that the spatial patterns of the
leading basic modes were system-dependent (Fig. 1b, c). For basic
mode 1, positive amplitudes were mainly located in regions of the
default-mode and frontoparietal networks, whereas negative
amplitudes were mainly located in regions of the somatomotor
and visual networks, as well as those of the ventral and dorsal
attention networks. This pattern is similar to the previously
reported principal gradient of FC54, suggesting a hierarchical
separation of brain activity between transmodal regions and
primary and attentional regions. For basic mode 2, positive
amplitudes were mainly located in regions of the default-mode,
somatomotor, and visual networks, while negative amplitudes
were mainly located in the regions of the frontoparietal and
ventral/dorsal attention networks. For basic mode 3, positive
amplitudes were primarily located in regions of the somatomotor,
ventral attention, frontoparietal, and lateral default-mode net-
works, while negative amplitudes were primarily located in the
visual and dorsal attention networks. For basic mode 4, positive
amplitudes were mainly located in regions of the frontoparietal
and dorsal attention networks, whereas negative amplitudes were
mainly located in the ventral attention and medial visual
networks. Basic mode 5 showed a finer spatial structure, in
which heterogeneous amplitudes were observed within each
functional system, and positive and negative amplitudes were
mainly located in lateral and medial default-mode regions,
respectively. These results suggest that a small set of basic modes
govern the spontaneous fluctuations of brain activity, each of
which shows a distinct coactivation pattern between functional
systems.

We further identified the basic activity modes for each run at
the individual level. We observed a small number of leading basic
modes for most of the participants (number of leading basic
modes, range: 3–10; mean ± std= 5.40 ± 1.39 for REST1 and
mean ± std= 5.46 ± 1.39 for REST2) (Supplementary Fig. 2).
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Relationship between leading basic modes and cognitive
functions. We examined whether spatial patterns of five leading
basic modes were related to specific cognitive functions by
comparing them with brain activation maps and cognitive
components. First, we observed that these leading basic modes
corresponded to different profiles of cognitive terms (Fig. 2a)
based on the NeuroSynth meta-analytic database55. Basic
mode 1 was positively associated with the default-mode-related
functions and negatively associated with sensorimotor and
visual functions. Basic mode 2 was positively associated with the
internally oriented and social inference processes and negatively
associated with working memory and task-oriented processes.
Basic mode 3 was positively associated with sensorimotor,
auditory, and language terms and negatively associated with
vision-related functions. Basic mode 4 was positively associated
with cognitively demanding tasks (i.e., tasks, calculation, and
objects) and negatively associated with pain-related terms. Basic
mode 5 showed positive associations with the semantic-related
functions and negative associations with the default-mode-
related functions.

We also examined the spatial similarity between the five
leading basic modes and 12 cognitive components that represent
fundamental activation components during task performance56

(Fig. 2b). Statistical significance of these spatial similarities was
corrected for spatial autocorrelation (all ps < 0.05, 10,000
permutations)57. Basic mode 1 was associated with internal
mentation, emotion, interoception, and hand and face-related
sensorimotor functions. Basic mode 2 was associated with several
higher-order cognitive functions, including internal mentation,
working memory, inhibition, interoception, and dorsal attention.
Basic mode 3 was associated with both externally- and internally-
oriented perceptions. Basic mode 4 was involved in working
memory, dorsal attention, inhibition, reward, and interoception.
Basic mode 5 was associated with visual, auditory, and language
functions. Overall, the first three leading basic modes are relevant
to the internally oriented, executive-control, and primary
cognitive functions, whereas the latter two leading modes are
related to more sophisticated and abstract functions.

Leading basic modes captured individual-specific FC patterns.
Given that the leading basic modes served as the fundamental
spatial components for whole-brain activity, we hypothesized that
they would make a dominant contribution to the whole-brain FC
pattern and capture the individual-specific functional organiza-
tion. To test this hypothesis, we developed a theoretical model
based on the eigen-microstate analysis (Fig. 3a), which decom-
posed the whole-brain FC matrix into a weighted superposition of
the coactivation patterns in the basic modes. This model indicates
that each basic mode corresponds to a specific FC pattern
(Supplementary Fig. 3). We reconstructed the whole-brain FC
matrix based on this model by considering different numbers of
basic modes and then compared it with the original FC matrix
obtained as Pearson’s correlations between nodal time courses. At
the population level, the spatial similarity between the recon-
structed and original FC matrices slowly increased with the
number of basic modes considered and then reached a plateau
(Fig. 3a and Supplementary Fig. 4a). Specifically, we observed a
high spatial similarity between two FC matrices when including
the five leading basic modes (rs= 0.95 for both REST1 and
REST2, ps < 0.001) (Fig. 3b and Supplementary Fig. 4b). Similar
results were observed at the individual level. The spatial similarity
between the reconstructed and original FC matrices was high for
all participants when considering the five leading basic modes
(Fig. 3c, mean ± std= 0.94 ± 0.02 for REST1 and 0.93 ± 0.02 for
REST2).

We further evaluated whether the leading basic modes
captured individual-specific functional organization. First, we
examined the reliability of individual reconstructed FC matrices
between two runs. We found that the reconstructed FC matrix
showed significantly higher values in the intra-subject similarity
than inter-subject similarity, regardless of the number of basic
modes used (Fig. 3d, all ps < 0.05). Then, we performed the
individual identification analysis13 by comparing individual FC
matrices between two runs. We observed an identification
accuracy of 97% based on the original FC matrix. For
reconstructed individual FC matrices, the identification accuracy
increased rapidly with increasing number of basic modes and

Fig. 1 Leading basic modes of spontaneous brain activity. a Weights of basic modes for two runs (i.e., REST1 and REST2). The weights of the first thirty
basic modes are displayed. Similar decreasing trends were observed for both runs. The first five basic modes were defined as the leading basic modes
according to the criteria modified from a previous study95. b Spatial patterns of the first five basic modes (i.e., leading basic modes) for REST1. Black curves
denote the boundaries of seven functional systems defined in a prior brain template53. c System-level fluctuation amplitudes for the leading basic modes.
Seven functional systems53 were considered. DMN default-mode network, FPN frontoparietal network, LN limbic network, VAN ventral attention network,
DAN dorsal attention network, SMN somatomotor network, VN visual network. The cortical maps were visualized using the toolbox of the BrainNet
Viewer100.
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Fig. 2 Association with cognitive functions. a Cognitive term associated with each leading basic mode. These terms were obtained based on the
NeuroSynth meta-analytic database55. Font sizes of cognitive terms denote correlation values between the corresponding cognitive term maps and
the leading basic modes. b Associations with 12 cognitive components for each leading basic mode. The 12 cognitive components were derived from
Yeo et al. 56. In a, b, red, and blue colors denote positive and negative correlations, respectively.
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reached 92% when the five leading basic modes were included
(Fig. 3e). Similarly, the differential identifiability Idiff, which
quantifies the difference between the mean intra-subject similar-
ity and the mean inter-subject similarity58, also increased rapidly
with increasing numbers of basic modes. Its value reached 30.3%
when all the five leading basic modes were included, which
exceeded Idiff of the original FC matrix (Fig. 3e). These results
suggest that these leading basic modes make the dominant
contribution to the individualized functional organization.

Influence of sleep deprivation on the leading basic modes. To
assess whether the leading basic modes are affected by mental
states, we applied the eigen-microstate analysis to the sleep
deprivation dataset50. In this dataset, 19 participants underwent
R-fMRI scanning during rested wakefulness and after sleep
deprivation. Similar to the HCP dataset, the weights of the basic
modes at rested wakefulness decreased rapidly with increasing
ranking and reached the elbow point at the 7th basic mode
(Fig. 4a), indicating the presence of a small set (i.e., six) of leading
basic modes (Supplementary Fig. 5). These six leading basic
modes showed a spatial correspondence with the first six basic

modes of the HCP dataset, except for an inversion between basic
mode 2 and basic mode 3 (Fig. 4a, all rs > 0.78).

Next, we evaluated the influences of sleep deprivation by
comparing the leading basic modes between two mental states
(i.e., at rested wakefulness and post-sleep deprivation). After the
post-sleep deprivation, we identified seven leading basic modes
(Fig. 4b and Supplementary Fig. 6). The spatial patterns of these
seven basic modes showed a spatial correspondence between two
states, except for an inversion between basic mode 4 and basic
mode 5 (Fig. 4b). Notably, all these modes showed relatively low
similarity values between the two states, except for the first three
modes and the 6th mode.

We further examined the difference in spatial patterns for the
four basic modes (i.e., 1st, 2nd, 3rd, and 6th) that maintained
spatial correspondences between the two states. Significant
changes in amplitude were observed in basic mode 1 (Fig. 4c,
p < 0.05, false discovery rate (FDR) corrected, 10,000 permuta-
tions). Significant increases were primarily located in regions of
the frontoparietal, ventral, and dorsal attention and lateral visual
networks, while significant decreases were mainly located in
regions of the default-mode network. Interestingly, for most
(86%) of these regions, the directions of the amplitude changes

Fig. 3 Reconstructing functional connectivity based on the basic modes. a Spatial similarity between the reconstructed and original FC matrices at the
population level (REST1). The original FC matrix was estimated based on the concatenated time courses of all participants. The reconstructed FC matrix
was generated separately by using different numbers of basic modes based on the theoretical model. M denotes the number of time points, N denotes the
number of all possible basic modes, and Eik is the ith element of the kth basic mode. b Reconstructing the FC matrix with the first five basic modes (REST1).
Left, spatial patterns of the reconstructed and original FC matrices; right, spatial similarity between these two matrices. c Spatial similarity between the
reconstructed and original FC matrices at the individual level for both runs. The reconstructed FC matrix was generated by using different numbers of basic
modes. Mean spatial similarity across participants and the corresponding standard deviation are displayed (n= 700 participants). The distributions of
individual spatial similarity obtained from the five leading basic modes are shown in the subplot in the form of the violin plots and the box plots. d Intra- and
inter-subject similarity of the reconstructed FC matrices between two runs. Mean similarity across participants and the corresponding standard deviation
are displayed (n= 700 participants). *, significant differences (paired t-tests, ps < 0.05). e Individual identification accuracy and differential identifiability
Idiff based on the reconstructed FC matrix. Individual FC matrices were reconstructed with different numbers of basic modes. The dashed lines denote the
identification accuracy and Idiff based on the original FC matrix (n= 700 participants). FC functional connectivity, DMN default-mode network, FPN
frontoparietal network, LN limbic network, VAN ventral attention network, DAN dorsal attention network, SMN somatomotor network, VN visual network.
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were opposite to the signs of the original amplitudes (Supple-
mentary Fig. 7), suggesting that the spatial inhomogeneity of
brain activity was reduced after sleep deprivation. At the
connectivity level, we also observed significant changes in the
coactivation pattern of basic mode 1. The significant increase was
mainly located between the default-mode network and the
primary and attention networks, while the significant decrease
was mainly located between the attention and the primary
networks as well as within the default-mode network (Fig. 4d,
p < 0.05, FDR corrected, 10,000 permutations), further supporting
the reduction of cross-system inhomogeneity. Unlike basic mode
1, no significant changes were observed for basic modes 2, 3, and
6 after sleep deprivation (all ps > 0.05, 10,000 permutations).

Validation results. We further assessed the reliability of the
presence and spatial patterns of the leading basic modes (Sup-
plementary Figs. 8–13). Five additional analysis strategies were
considered, including (i) using different numbers of participants;
(ii) using stricter head motion exclusion criteria; (iii) performing
nuisance regression without global signal regression; (iv) defining
brain nodes based on two functional parcellations with different
spatial resolutions; and (v) using another independent dataset of
197 participants, i.e., the Beijing Zang dataset51. The number of
the leading basic modes reached five without variation when the
participant number considered was equal to or greater than 250
(Supplementary Fig. 8). Meanwhile, spatial patterns of these

leading basic modes were highly similar to those obtained from
the whole population (i.e., 700 participants) with one-to-one
correspondence (all mean rs > 0.96, Supplementary Fig. 8). The
presence of five leading basic modes was replicated with high
spatial similarity in most of the other cases (all rs > 0.85, Sup-
plementary Figs. 9, 11, and 12), except for the case of without
global signal regression (Supplementary Fig. 10). Notably, the
total weight explained by the leading basic modes increased with
the decreasing spatial resolution (Supplementary Fig. 13), with
weights of 37% and 44% for the 400-node and 200-node par-
cellations, respectively. For the strategy without global signal
regression, the number of leading basic modes was reduced to
three (Supplementary Fig. 10). The reduced number might be
biased by the presence of an additional basic mode, which ranked
ahead of the five typical basic modes. This additional basic mode
showed all positive amplitudes across the brain and accounted for
a large portion of activity variance (i.e., 23%). All these results
suggest that the five leading basic modes were robust and
reproducible.

Discussion
Using the recently proposed eigen-microstate analysis from sta-
tistical physics theory, this study reveals the presence of a few
leading basic modes that dominate the temporal fluctuations of
spontaneous activity. The leading basic modes exhibited distinct
and cognitive function-specific spatial patterns, suggesting the

Fig. 4 Influence of sleep deprivation on the basic modes in the sleep deprivation dataset. a Weights of basic modes for R-fMRI data at rested
wakefulness and spatial similarity of basic modes with REST1 in the HCP dataset. b Weights of basic modes for R-fMRI data after sleep deprivation and
spatial similarity of basic modes with R-fMRI data at rested wakefulness. In a, b, the spatial similarity was estimated for every pair of basic modes between
two conditions to examine the spatial correspondence. c Spatial patterns of basic mode 1 at rested wakefulness and after sleep deprivation and their
differences. Regions showing significant changes were detected with a permutation test (p < 0.05, FDR corrected, n= 19 participants). d System-level
coactivation pattern of basic mode 1 at rested wakefulness and after sleep deprivation and between-state differences. Significant changes were detected at
the system level with a permutation test (p < 0.05, FDR corrected, n= 19 participants). RW rested wakefulness, SD after sleep deprivation, HCP Human
Connectome Project.
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coexistence of multiplexed coactivation relationships between
regions. Furthermore, these leading basic modes dominantly
contributed to individual whole-brain FC patterns and were
modulated by sleep deprivation. Taken together, our findings
highlight a small set of leading basic modes that dominate
spontaneous activity and demonstrate their functional sig-
nificance, opening an avenue to explore multiplexed interregional
relationships in the healthy and diseased brain.

We note that the eigen-microstate analysis shares similarities
with serval existing methods that are used to decode the spatio-
temporal organization of spontaneous brain activity. For example,
several component analysis methods, such as the principal
component analysis (PCA)59, independent component analysis
(ICA)60, and temporal functional mode analysis61, have been
applied to fMRI time series to identify dominant interregional
interaction patterns. The specified spatial components are often
regarded as functional networks59,62,63, while their spatial pat-
terns reflect the relative weights of brain regions. Some other
relevant approaches have detected brain states or modes by
considering dynamic FC patterns30,45,64–66. Each connectivity
state differs from the other in terms of the overall connectivity
pattern64 or dominant connectivity modes quantified by leading
eigenvectors65,67. Different from these previous approaches, the
eigen-microstate analysis focuses primarily on spatial patterns of
instantaneous activity per se and further establishes a bridge
between instantaneous brain activity and FC patterns. Moreover,
the eigen-microstate analysis assumes that multiple basic modes
may coexist over time rather than a dominant brain state at each
time, which allows for capturing delicate changes in brain activity
over time.

In this study, we identified a small set of fundamental brain
activity patterns (i.e., leading basic modes) that dominate rich
repertoires of spontaneous activity, regardless of datasets or
mental states. These results suggest a reliable low-dimensional
representation of seemingly complicated spontaneous activity. A
low-dimensional representation of spontaneous activity has also
been reported for rat cortical activity68 and human brain activity
across multiple task states69. We also found that each leading
basic mode was associated with different cognitive functions. The
first three leading basic modes were associated with fundamental
functions that are necessary for daily life, such as sensorimotor,
visual, internally-oriented, and executive-control functions. The
next two leading basic modes were associated with more
sophisticated and abstract cognitive functions, such as calculation,
reward, and language-related items. These findings are consistent
with previous hypotheses aimed at interpreting the biological
significance of time-resolved activity patterns24,41. These
hypotheses argue that spontaneous brain activity may transit
between a number of general priors, which are low-dimensional
representations of typical behavioral states in past experience41

and are selected at different moments for an efficient and flexible
cognitive response24,41. In this sense, the leading basic modes
observed here might serve as the general priors, and their weights
may reflect the frequencies of the corresponding behaviors in past
experiences.

Within the framework of the eigen-microstate analysis, distinct
spatial patterns of these leading basic modes indicate the coex-
istence of distinct coactivation (i.e., coordination) patterns
between regions. Interestingly, the first and second leading basic
modes showed distinct relationships between the default-mode
network, two cognitive control networks (i.e., frontoparietal and
attention networks), and the primary networks. The first leading
basic mode shows an anti-correlation primarily between the
default-mode network and the primary and attention networks,
which is highly similar to the previously reported spatial pattern
of the principal gradient of the whole-brain FC pattern54. This

finding suggests that the separation of brain activity follows the
hierarchical organization of information processing70. The sec-
ond leading basic mode shows a separation of activity between
the default-mode and cognitive control networks, which would
explain the commonly observed alternative activities or anti-
correlations between the default-mode and task-positive regions
over time71,72. Compared to the previous assumption of one state
per time point31,64, the coexistence of multiple leading basic
modes here suggests a parallel information processing between
regions at each time point, offering fresh insights into time-
varying connectivity patterns26.

The presence of the leading basic modes in intrinsic activity
might be shaped by anatomical substrates of the brain, given the
tight structure-function coupling of the brain73,74. Previous stu-
dies have demonstrated that spatial arrangements of cortical
microstructures show a dominant gradient spanning between
sensorimotor-to-transmodal areas75. For example, the myelina-
tion map of the brain76 shows spatial similarities with the first
three leading basic modes observed here, indicating a potential
link between the macroscale brain activity and the local micro-
structure. However, how these leading basic modes emerge from
the anatomical properties, such as myelination, cortical thickness,
and white-matter connectivity, requires further investigation.

Recent studies have reported that resting-state FC is driven by
instantaneous brain activity at several critical time points28,44,
implicitly ignoring interregional coordination at other time
points. Here, we used the leading basic modes, which were
identified from full repertoires of spontaneous activity, to bridge
the gap between instantaneous activity and the FC pattern. A
theoretical model was developed to recover the FC pattern as a
weighted superposition of the coactivation patterns of these
leading basic modes. This model suggests that each basic mode
corresponds to a specific FC pattern and that multiplexed rela-
tionships (i.e., parallel communication) exist simultaneously
between regions. Our idea is consistent with a recent study
showing that the individual FC pattern can be attributed to the
contribution of multiple factors (e.g., group, individual, and
task)77, but it further clarifies the origins of FC patterns by
providing detailed patterns of the candidate components. Inter-
estingly, the five leading basic modes, which account for 29% of
the total weight, can be used to reconstruct the original FC pat-
tern with a high spatial similarity (r= 0.95). This seemingly
contradictory finding suggests that these leading basic modes may
capture the intrinsic coordination behavior of spontaneous
activity, while the remaining basic modes may be vulnerable to
unconstrained cognitive activity, head motion, or other pertur-
bations and thus make small contributions to interregional
coordination.

The leading basic modes identified here show intriguing spatial
similarities with dominant connectivity patterns or modes
reported in previous studies54,65,67. Specifically, the first three
leading basic modes exhibit consistent patterns with the first three
gradients of the cortical FC pattern previously identified54.
Similarly, the Leading Eigenvector Dynamics Analysis (LEiDA)
approach identified typical connectivity modes in healthy older
adults65, such as one mode with global coherence across the brain
and one mode with high coherence within the default-mode
network. These two modes align with the leading basic modes in
our study when the global signal is retained. Moreover, the
dynamic mode decomposition identified typical FC modes with
different temporal features (e.g., damping time and oscillatory
periods)67. The first dynamic mode, characterized by an anti-
correlation between the default mode and task-positive networks,
partially overlaps with the second leading basic mode in our
study. Similar patterns between different types of maps further
support the notion that leading basic modes play a dominant role
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in shaping the FC pattern. The discrepancies observed in other
modes across studies may be attributed to differences in brain
coverage, node definitions, and specific populations and features
of interest examined in each study. These methodological varia-
tions should be considered when interpreting and comparing
results across studies.

Moreover, we found that the reconstructed FC patterns based
on the five leading basic modes captured individual uniqueness in
functional organization, providing additional clues for under-
standing individual differences in functional organization. Nota-
bly, the FC pattern reconstructed by only the first leading basic
mode was highly similar to the original pattern but showed a
moderate performance in individual identification and a relatively
low differential identifiability value. These results suggest that the
first leading basic mode may serve as a backbone or a group
factor of brain activity shared across individuals, as suggested by
Gratton et al.77. Identification accuracy and differential iden-
tifiability increased rapidly when subsequent basic modes were
included, indicating that more individual-specific information is
captured by subtly modulating the backbone of the FC pattern.

Sleep deprivation was used as a modulating factor to assess the
influence of the mental state on the leading basic modes. A small
number of leading basic modes were also identified after sleep
deprivation, indicating the reliability of low-dimensional repre-
sentations of spontaneous brain activity regardless of mental
state. The spatial patterns of the first three and the sixth leading
basic modes remained similar after sleep deprivation, whereas the
other leading basic modes remarkably changed. This finding is
consistent with a recent study showing that the first three FC
gradients remain largely unchanged after sleep deprivation78. Our
results suggest that the activity representations relevant to fun-
damental cognitive functions might be reliable across mental
states, while those related to more sophisticated and abstract
functions may be more vulnerable. The different sensitivities of
the leading basic modes of mental state may be valuable for future
studies investigating functional organization across states.

In addition, a regional comparison revealed that the spatial
heterogeneity of the first leading basic mode was reduced after
sleep deprivation, manifested as a weakened separation of activity
between the default-mode and task-positive areas (e.g., attention
and somatomotor networks). This observation is confirmed by
comparing the coactivation patterns corresponding to the first
leading basic mode between two states. These results are con-
sistent with previous findings that sleep deprivation is associated
with the failure of the default-mode network to remain func-
tionally distinct from its anti-correlated networks, i.e., task-
positive networks79–81. This impairment in the decoupling
between the default-mode network and task-positive networks
may be further related to participants’ cognitive vulnerability to
sleep deprivation80, but more evidence is needed to support this
idea. Notably, the 4th and 5th leading basic modes showed
remarkable reconfiguration after sleep deprivation. Given that
these two modes are associated with sophisticated and abstract
cognitive functions, the reconfiguration of these modes indicates
the sensitivity of these functions to sleep deprivation.

Several issues should be further considered. First, we identified
an additional basic mode with all positive amplitudes when
identifying leading basic modes without global signal regression
in the data preprocessing. This suggests that preserving the global
signal may enhance coactivations between regions, providing a
clear explanation for the usually observed rightward shift in the
distribution of FC strength compared to the case with global
signal regression82. Second, we explored the potential cognitive
significance of leading basic modes through association analysis.
In future studies, it is suggested to investigate the changes in the
leading basic modes across task states to provide more direct

clues. Third, additional leading basic modes were identified in the
sleep-deprivation dataset, which may be influenced by several
factors, such as the small sample size or mental states. A larger
dataset is needed to further confirm the potential effects of sleep
deprivation. Fourth, the biological origins of the leading basic
modes remain unclear. Recent computational models of large-
scale brain circuits have found that both interregional white
matter connections and local circuit properties can shape resting-
state FC and its itinerant dynamics83,84. In the future, the com-
putational modeling approach can be used to explore the rela-
tionship between the leading basic modes and the underlying
structural network and local morphological properties of the
human brain. Finally, the eigen-microstate analysis used here is
essentially a linear decomposition, which implicitly assumes that
the rich repertoire of brain activity can be embedded in a low-
dimensional linear subspace spanned by the leading basic modes.
However, the biological plausibility of the low-dimensional
nonlinear representation of spontaneous brain activity deserves
further investigation.

Methods
Participants and study design. We employed three datasets of
R-fMRI data from healthy young adults. The first dataset con-
sisted of multiband R-fMRI data from 970 participants from the
publicly available S900 data release of the Human Connectome
Project (HCP)49. The scanning protocol of the HCP dataset was
approved by the Institutional Review Board at Washington
University. These subjects underwent repeated R-fMRI runs in
two sessions. The second dataset, named the sleep deprivation
dataset, included repeated R-fMRI data from 20 participants
scanned separately during rested wakefulness and after sleep
deprivation50. The research was approved by the Institutional
Review Board of the Institute of Biophysics (Chinese Academy of
Sciences). The third dataset, named the Beijing Zang dataset,
included R-fMRI data from 198 participants selected from the
1000 Functional Connectomes Project51. The research was
approved by the Institutional Review Board of the State Key
Laboratory of Cognitive Neuroscience and Learning at Beijing
Normal University. Informed consent was obtained from all
participants of the three datasets. All ethical regulations relevant
to human research participants were followed. The first two
datasets were used for the main analysis, and the third dataset was
used for the replication analysis.

Data acquisition. In the HCP dataset, all participants underwent
multimodal MRI scanning with a customized 32-channel SIE-
MENS 3 T Connectome Skyra scanner at Washington University,
USA. Four multiband R-fMRI runs were acquired in two sessions
for each participant. Briefly, each session consisted of two runs
that were separate phases encoded in the left-to-right and right-
to-left directions. The R-fMRI scans were obtained using a
multiband gradient-echo-planar imaging sequence (repetition
time [TR]= 720 ms and 1200 volumes per run, i.e., 14.4 min),
with participants’ eyes fixated on a bright projected crosshair.
Here, we used only the left-to-right-encoded scans to reduce the
potential influence of the phase-encoding directions15,85. In the
original S900 data release, 837 participants completed the left-to-
right-encoded R-fMRI scans in both sessions, denoted as REST1
and REST2 separately. Of these, 137 participants were excluded
due to missing time points (N= 10), excessive head motion
(N= 105) (see “Data Preprocessing”), and arachnoid cysts
(N= 22). Data from the remaining 700 participants (aged 21–35
years, M/F: 304/396) were used for the main analyses.

In the sleep deprivation dataset, 20 participants underwent
repeated R-fMRI scans separately during rested wakefulness and

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05262-7

8 COMMUNICATIONS BIOLOGY |           (2023) 6:892 | https://doi.org/10.1038/s42003-023-05262-7 | www.nature.com/commsbio

www.nature.com/commsbio


after sleep deprivation (for design details, see Zhou et al.50). All
the participants were right-handed and had no history of
neuropsychiatric disorders. The MRI data were acquired using
a 64-channel 3 T Siemens Prisma scanner at the Beijing MRI
Center for Brain Research of the Chinese Academy of Sciences.
R-fMRI data were acquired using a T2*-weighted gradient-echo-
planar imaging sequence (TR= 1000 ms and 480 volumes per
run), with participants’ eyes fixated on a crosshair. Structural
images were acquired using a 3D T1-weighted, magnetization-
prepared rapid acquisition gradient-echo sequence. One partici-
pant was excluded due to excessive head motion (see “Data
Preprocessing”). Data from the remaining 19 participants (aged
18–26 years, M/F: 7/12) were used for the main analysis.

For the Beijing Zang dataset, 198 participants underwent MRI
scanning using a 12-channel Siemens Trio Tim 3.0 T scanner in
the Imaging Center for Brain Research, Beijing Normal
University. R-fMRI data were acquired with participants’ eyes
closed (TR= 2000 ms and 235 volumes). One participant was
excluded due to differences in scanning orientation, leaving 197
participants (aged 18–26 years, M/F: 75/122) used for the cross-
validation analysis.

Data preprocessing. For the HCP dataset, we employed the
minimally preprocessed R-fMRI data86, followed by ICA-Fix
denoising87. Four additional steps were performed using the
GRETNA package88, including the removal of the first 10-second
volumes (i.e., 15 volumes), linear detrending, nuisance regression,
and temporal filtering (0.01–0.08 Hz). During the nuisance
regression, white matter, cerebrospinal fluid, and global signals
were included as regressors to further remove the influence of
head motion and physiological noise89.

The sleep-deprivation dataset and the Beijing Zang dataset
were preprocessed with the same pipeline using the GRETNA
package88. Specifically, the preprocessing included the removal of
the first 10-s volumes, realignment, spatial normalization to the
Montreal Neurological Institute (MNI) space with the T1-unified
segmentation algorithm90, linear detrending, nuisance regression,
and temporal filtering (0.01–0.08 Hz). During the nuisance
regression, we included Friston’s 24 head-motion parameters91,
white matter, cerebrospinal fluid, and global signals as regressors
to reduce the influence of head motion and physiological noise89.

For these three datasets, we excluded participants with
excessive head motion in any scan, including a translation/
rotation greater than 3 mm or 3° and a mean framewise
displacement (FD) over time92 greater than 0.5 mm. After
applying these criteria, 105 participants were excluded from the
HCP dataset, and 1 participant was excluded from the sleep-
deprivation data.

Eigen-microstate analysis of spontaneous brain activity. We
applied a recently proposed eigen-microstate analysis47,48 from
the statistical physics theory to the HCP dataset to identify basic
modes underlying the rich repertoire of brain activity. The eigen-
microstate analysis is an approach specifically designed to extract
basic activity modes (i.e., eigen-microstates) of the temporal
evolution of a system. This approach has been applied to several
complex systems (e.g., the Earth system and stock markets) and
reveals meaningful activity modes that show well-defined spatial
patterns47. In this study, the eigen-microstate analysis was applied
to the time courses of each R-fMRI run (i.e., REST1 and REST2)
separately. The brain microstates were defined at the nodal level
to reduce computational burden.

Definition of the ensemble matrix and microstates. First, we
defined 1000 cortical nodes based on a prior functional

parcellation52, which would enhance functional homogeneity
within each nodal region. Then, we extracted the time courses of
these nodes for each participant. The time course for each node
was further transformed into z-score values with zero mean and
unit variance over time. Finally, the normalized nodal time
courses were concatenated across participants, resulting in an
N ×M time course matrix A, where N denotes the number of
nodes (i.e., 1000 here) and M denotes the number of time points
in the concatenated time courses (i.e., 1185 × 700). Matrix A was
considered as an ensemble matrix representing a rich repertoire
of brain activity, and each column, At, represents a microstate of
brain activity at a specific time point from a statistical physics
perspective.

Theoretical derivation of eigen-microstates. The eigen-microstate
analysis assumes that microstates may exhibit commonalities over
time, with instantaneous brain activity arising from the combi-
nation of multiple basic modes. It aims to identify the basic
modes (i.e., eigen-microstates) that represent fundamental
building blocks of rich microstates and are independent of each
other47,48. Specifically, we first calculated the covariance matrix
between microstates as C=ATA47, which reflects the spatial
similarity between all microstates. Next, we computed the
eigenvectors of the matrix C,

Cvi ¼ λivi; ð1Þ
wherein vi is the ith eigenvector of the matrix C, and λi is the
corresponding eigenvalue. The representativeness of spatial pat-
terns of the microstates at different time points is captured by the
eigenvectors93, which take into account the entire spatial simi-
larity pattern between all microstates. Finally, we obtained each
eigen-microstate as the weighted sum of the origin
microstates:47,48

Ei ¼ Avi ¼ ∑
M

t¼1
Atvti; ð2Þ

wherein vti denotes the tth element of eigenvector vi and quan-
tifies the contribution of tth microstate to the ith eigenvector. In
other words, the basic modes (i.e., eigen-microstates) were
identified by incorporating brain activity patterns over time and
thus can be intuitively interpreted as typical activity patterns. The
weight factor of a given eigen-microstate Ei is defined as
wi= EiTEi= λi.
Calculation of eigen-microstates. In practical analysis, it is difficult
to derive the eigenvectors of the covariance matrix C one by one
due to the large number of time points M. Therefore, we obtained
the eigen-microstates with the aid of the singular value
decomposition (SVD)47. Based on the SVD, the ensemble matrix
AN ×M was factorized as the product of three matrices:

AN ´M ¼ UN ´NΣN ´MV
T
M ´M ; ð3Þ

wherein U= [u1, u2, …, uN] and V= [v1, v2, …, vM] contain
eigenvectors for two matrices of AAT and ATA, respectively, and
ΣN×M is a diagonal matrix of singular values (σi). By substituting
this decomposition into Eq. (2), the definition of the eigen-
microstate can be reformulated as:

Ei ¼ Avi ¼ σ iui; ð4Þ
wherein ui is the eigenvector of the matrix AAT. The weight of
each eigen-microstate can be obtained as wi= EiTEi= σi2. The
matrix A was normalized by dividing the root-sum-square of all
its elements (i.e., a dataset-dependent constant S) before SVD to
ensure Σσi2= 1.

Of note, the estimation for eigen-microstates in Eq. (4) is
similar to the PCA94. However, the eigen-microstate analysis and
PCA are used in different contexts. The former is specific to the
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temporal evolution of a system and is used to identify the typical
spatial patterns of microstates by analyzing the spatial relation-
ship between time points (see Eq. (2)). The latter, however, is a
technique commonly used to reduce the dimensionality of a
dataset by finding the principal components that capture the
main variance in the multivariate data. In this sense, PCA focuses
on the relationship between data variables (here, brain regions)
rather than the relationship between time points. Moreover,
compared to PCA, which only captures the relative weights of
variables, eigen-microstate analysis can provide an intuitive
biological interpretation of the eigen-microstates as typical
activity states (see Eq. (2)).

To determine whether the brain is dominated by a small
number of basic modes (i.e., low-dimensional representations),
we identified leading basic modes, whose weights should be95: (i)
substantially greater than the weight of the subsequent basic
mode, known as Cattell’s scree test96; (ii) greater than the average
weight across all N possible basic modes, i.e., 1/N; (iii) statistically
significant according to a permutation test. In each permutation
instance, the labels of nodal regions at each time point were
randomly shuffled to disrupt the spatial organization. The
statistical significance level of each leading basic mode was
determined by comparing its original weight (i.e., σi2) to the null
distribution of the corresponding weights obtained from the
10,000 permutation instances. In our analysis, Cattell’s scree test
was performed by identifying the elbow point on the weight curve
according to the Kneedle algorithm97 (https://github.com/
arvkevi/kneed).

We further investigated the spatial patterns of the leading basic
modes based on a prior functional system definition53. Seven
systems were considered, including the default-mode network,
frontoparietal network, limbic network, ventral attention net-
work, dorsal attention network, somatomotor network, and visual
network. For each leading basic mode, we estimated the mean
fluctuation amplitude for each system by averaging the nodal
values within this system.

We also performed the eigen-microstate analysis for each
participant to investigate the presence of the leading basic modes
at the individual level. In this condition, matrix A in the above
analysis was replaced as the normalized time course within each
participant for each R-fMRI run.

Cognitive function associations of the leading basic modes. We
investigated the potential functional roles of the leading basic
modes from two perspectives. First, we examined the association
between these leading basic modes and cognitive functions based
on the NeuroSynth meta-analytic database (www.neurosynth.
org)55. For each leading basic mode, we calculated its spatial
similarity with all available meta-analytic activation maps using
Pearson’s correlation across voxels. The associated cognitive
terms are illustrated using word cloud plots.

Second, we compared each of the leading basic modes with 12
cognitive components56. Each cognitive component represents a
basic activation probability map that is involved in various
cognitive tasks56. For each cognitive component, we estimated the
corresponding node-level version by averaging the activation
probabilities of all voxels within each node. We then calculated
the spatial similarity between each of the leading basic modes and
the 12 cognitive components by using Pearson’s correlation
across nodes. To correct for the potential influence of spatial
autocorrelation, the statistical significance of each spatial
similarity was tested using a permutation test (n= 10,000).
The significance level was determined by comparing the
original similarity to the null distribution of the corresponding
similarity obtained from 10,000 permutation instances. For each

permutation instance, we generated a surrogate basic mode map
that preserved the spatial autocorrelation of the original basic
mode57.

Relationship between leading basic modes and FC. Since the
leading basic modes dominated the spontaneous fluctuations of
brain activity, we further investigated how they contribute to the
FC between regions.

The original FC between two nodal regions is defined as Pearson’s
correlation between their time courses4. As each regional time course
(Ait, t= 1, … M) was normalized over time (i.e., mean= 0 and
SD= 1), the FC between nodes i and j can be estimated as:13,43

FCij ¼
1

M � 1
∑
M

t¼1
AitAjt ; ð5Þ

where M denotes the number of time points in the time course.
By substituting Eq. (3) and Eq. (4) into Eq. (5) and considering

the time independence between basic modes, we found FCij

between nodes i and j can be rewritten as:

FCij ¼
1

M � 1
∑
N

k¼1
σ2kuikujk ¼

1
M � 1

∑
N

k¼1
EikEjk; ð6Þ

where N is the number of all possible basic modes, and Eik is the
ith element of the kth basic mode. Thus, the FC between the two
nodes can be attributed to the joint contribution of their
coactivation patterns in each basic mode. Notably, the FCij

estimated from Eq. (6) should be further multiplied by a constant
S2 to correct for the normalization effect of matrix A prior to the
SVD analysis.

To validate the effectiveness of the above theoretical model (i.e.,
Eq. (6)), we reconstructed the FC matrix according to Eq. (6) by
gradually increasing the number of basic modes of interest. We
then compared the spatial similarity between the reconstructed and
original FC matrices. The spatial similarity was quantified with
Pearson’s correlation across the lower triangular elements in the
matrices. Specifically, we reconstructed the FC matrix at both the
population and individual levels. At the population level, the
leading basic modes were obtained from the concatenated
normalized time course across all participants. At the individual
level, the leading basic modes were identified from the time courses
of each participant. We then calculated the similarity between the
reconstructed and the original FC matrices for each individual.

We further explored whether the basic modes, especially these
leading basic modes, could capture the individual functional
organization. First, we estimated the reliability of the recon-
structed FC matrix between two runs at the individual level.
Given a participant of interest, we evaluated the intra-subject
similarity of the reconstructed FC matrices between two runs. We
also estimated the inter-subject similarity of this subject as the
averaged spatial similarity of this participant in the first run (i.e.,
REST1) with all the other participants in the second run (i.e.,
REST2). Next, we examined the individual uniqueness in the
reconstructed FC matrices by performing an FC-based individual
identification analysis between two runs (i.e., REST1 and
REST2)13. For each participant, we compared the reconstructed
FC matrix of this participant in REST1 with those of all the
participants in REST2. If the participant with the highest
similarity in REST2 was the same participant given in REST1,
the identification was correct; otherwise, it was incorrect.
Identification accuracy was defined as the proportion of
participants that were correctly identified. A higher accuracy
indicates a higher capability of the FC matrix in distinguishing
individuals. We also evaluated the differential identifiability58 to
quantify the individual uniqueness of the reconstructed FC
matrices. The differential identifiability, Idiff, was defined as
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Idiff= (Iself− Iothers) × 100, wherein Iself and Iothers denoted the
mean intra-subject similarity and mean inter-subject similarity
between two runs, respectively. A larger Idiff value indicates more
individual-specific information is captured. For comparison,
individual identification analysis was also performed based on
the original FC matrix.

Influence of sleep deprivation on the leading basic modes. To
assess whether the leading basic modes are affected by mental states,
we applied the eigen-microstate analysis to the sleep deprivation
dataset50. We identified the leading basic modes (see “Eigen-
microstate analysis”) separately from the R-fMRI data obtained in
the two states represented in the dataset (i.e., rested wakefulness vs.
post-sleep deprivation). First, we examined the spatial correspon-
dence of the leading basic modes determined at rested wakefulness
with those obtained from REST1 of the HCP dataset to investigate
the reproducibility of the leading basic modes. Next, we compared
the basic modes obtained at the different states (i.e., rested wake-
fulness vs. post-sleep deprivation) to examine the potential influence
of sleep deprivation.

For each leading basic mode that maintained spatial correspon-
dence between two states, we tested differences in regional
fluctuation amplitudes between the two states by using a permuta-
tion test (n= 10,000). In each permutation instance, the state labels
of the R-fMRI data were shuffled for each participant. Multiple
comparisons across nodal regions were corrected using the FDR
approach (corrected p < 0.05)98. Given that the basic mode showed
significant changes, we further investigated how interregional
coactivation patterns differed between the two states. Briefly, we
obtained the system-level coactivation pattern for the rested
wakefulness and post-sleep deprivation separately. The within-
system and between-system coactivation values were obtained by
averaging the interregional coactivation values within the same
system and between different systems, respectively. Significance
levels of differences in the coactivation pattern were also estimated
using a permutation test (n= 10,000) and corrected for multiple
comparisons (FDR corrected p < 0.05).

Validation analysis. The reliability of the leading basic modes
was validated by considering five analysis strategies that may
affect the identification of the leading basic modes. In each case,
the leading basic modes were re-estimated and compared with
those obtained in the main analyses (i.e., REST1 in HCP). (i)
Number of participants. We re-identified the leading basic modes
by including R-fMRI data from different numbers of participants
from the HCP dataset, with the number of participants varying
from 50 to 650 with a step of 50. Given a participant number, we
randomly sampled participants from all the 700 participants, and
this process was repeated 100 times. For each sampling instance,
we counted the number of the leading basic modes and compared
the spatial patterns of the first five basic modes with those
obtained from the whole population. (ii) Head motion. Head
motion during R-fMRI scanning can affect the fluctuation
amplitudes of BOLD signals99. Different from the main analysis,
we used stricter head motion exclusion criteria for R-fMRI data in
the HCP dataset (i.e., >2 mm or 2° in any direction or mean
FD > 0.2 mm) to further reduce the influence of head motion. (iii)
Global signal regression. In the main analysis, the global signal
was regressed to better reduce the influence of head motion and
non-neural signals89,99. To assess the potential influence of the
global signal, we re-preprocessed the R-fMRI data in the HCP
dataset without global signal regression. (iv) Brain parcellation.
To assess the influence of spatial resolution, we extracted regional
time courses from the HCP dataset by using the same type
of functional parcellations with different spatial resolutions (i.e.,

comprising 200 and 400 cortical regions)52. The leading basic
modes obtained from different spatial resolutions were compared
at the functional system level53 and the voxel-wise level. In the
latter case, the voxels within the same nodal regions were assigned
the same amplitude values for each basic mode, regardless of the
spatial resolution. In cases (i)–(iv), the validation analysis was
performed based on REST1 of the HCP dataset. (v) Reproduci-
bility across datasets. We identified the leading basic modes from
another independent dataset, i.e., the Beijing Zang dataset51, and
compared them with those in the HCP dataset.

Statistics and reproducibility. Permutation tests were performed
to obtain the statistical significance of the following analyses,
including the number of the leading basic modes (Fig. 1a), spatial
similarities between the leading basic modes and cognitive com-
ponents (Fig. 2b), and the influence of sleep deprivation on the
fluctuation amplitudes and coactivation patterns of the leading
basic modes (Fig. 4c, d). For each analysis, 10,000 permutation
instances were generated during the permutation test. Paired
t-tests were performed to test the statistical differences between
intra- and inter-subject similarity of the reconstructed FC
matrices between two runs (n= 700) (Fig. 3d). Five analysis
strategies were considered to verify the reproducibility, including
(i) varying the number of participants (n ranged from 50 to 650
with a step of 50); (ii) using stricter head motion exclusion criteria
(n= 415); (iii) performing nuisance regression without global
signal regression (n= 700); (iv) defining brain nodes based on
two functional parcellations with different spatial resolutions
(n= 700); and (v) using another independent dataset, i.e., the
Beijing Zang dataset (n= 197). The number and spatial patterns
of the leading basis modes were examined in these cases.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The S900 release of the HCP dataset is publicly available at https://www.
humanconnectome.org/study/hcp-young-adult/data-releases. The Beijing Zang dataset
used for the replication analysis is publicly available at https://www.nitrc.org/projects/
fcon_1000. The sleep deprivation dataset is available upon reasonable request. Maps of
leading basic modes and some other data supporting our results are available at https://
github.com/liaolab-bnu/LeadingModes_rfMRI.

Code availability
Codes used for data analysis are available at https://github.com/liaolab-bnu/
LeadingModes_rfMRI.
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