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Smart-Plexer: a breakthrough workflow for hybrid
development of multiplex PCR assays
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Developing multiplex PCR assays requires extensive experimental testing, the number of

which exponentially increases by the number of multiplexed targets. Dedicated efforts must

be devoted to the design of optimal multiplex assays ensuring specific and sensitive identi-

fication of multiple analytes in a single well reaction. Inspired by data-driven approaches, we

reinvent the process of developing and designing multiplex assays using a hybrid, simple

workflow, named Smart-Plexer, which couples empirical testing of singleplex assays and

computer simulation to develop optimised multiplex combinations. The Smart-Plexer ana-

lyses kinetic inter-target distances between amplification curves to generate optimal multi-

plex PCR primer sets for accurate multi-pathogen identification. In this study, the Smart-

Plexer method is applied and evaluated for seven respiratory infection target detection using

an optimised multiplexed PCR assay. Single-channel multiplex assays, together with the

recently published data-driven methodology, Amplification Curve Analysis (ACA), were

demonstrated to be capable of classifying the presence of desired targets in a single test for

seven common respiratory infection pathogens.
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Quantitative Polymerase Chain Reaction (qPCR) enables
real-time monitoring of interactions between target-
specific oligonucleotides, such as primers and probes,

and their target during amplification1–3. The extraordinary ease
and reliability of this golden standard method for nucleic acid
amplification tests (NAATs) have improved routine diagnostics
in several fields and, more recently, played a crucial role during
the COVID-19 pandemic, one of the 10 deadliest infectious dis-
eases in history4–6. This epidemic has highlighted the need for
rapid, accurate, cost-effective, simple to use, and ideally Point-of-
Care (PoC) multiplex assays to support timely infection
management7–13.

Current screening strategies for multiple pathogens are
reported to be expensive, sample-consuming, and in some cases,
inaccurate14–16. As a result, multiplex PCR is emerging as an
inexpensive alternative for multi-target identification17–20. Many
efforts have been made in developing novel methods to increase
the number of targets detected by multiplex assays and to
enhance the accurate identification of multiple infectious sources
in a single test21,22. Advances in multi-pathogen detection include
the use of high-resolution melting analysis (HRMA), fluorescent
probe-based method, or restriction enzyme digestion23–25.
Recently, the emergence of machine learning approaches in
clinical diagnostics has highlighted the potential of data-driven
multiplexing, which, compared to conventional methods, unbars
limitations in terms of throughput, costs, time and reliability26–28.
Methods h using either melting curve analysis (intercalating dye-
based chemistries) or final fluorescence intensity (probe-based
assays) have been proposed as features for machine learning
algorithms29,30. Moreover, using cutting-edge signal processing
and tailored amplification chemistries, state-of-the-art identifi-
cation performance has been achieved by leveraging the kinetic
information encoded in the entire amplification curve from
multiplex PCR assays. A novel learning-based methodology called
amplification curve analysis (ACA) has been recently reported as
a digital tool to expand multiplex capabilities of real-time PCR-
based diagnostic platforms, increasing the number of detectable
targets per fluorescent channel in a single reaction without
hardware modification31–34.

However, the development of multiplex PCR assays is restric-
ted by the need for extensive experimental testing to evaluate
analytical performance, including cross-reactivity, specificity, and
sensitivity21,35–37. One of the biggest challenges in multiplexing is
the complexity of assay design, which dramatically increases with
the number of targets, making the development costly, lengthy
and resource-consuming in the wet laboratory14,38. This biolo-
gical problem can be mathematically described as following: for
N t multiplexed targets, if NPs candidate primer sets are designed
for each of them (which is trivial progress for well-designed
singleplex assays), the total number of possible multiplex assay
combinations is Nc ¼ NPs

N t (e.g. Nc ¼ 16,384 when NPs ¼ 4 and
N t ¼ 7). The Nc increases exponentially with N t making it
impractical to find the optimal combination for high-level mul-
tiplexing by wet-lab experiments. Therefore, in-silico simulation
methods could offer fast screening and optimised multiplex
design.

To address this problem, here we present the Smart-Plexer, a
mathematical algorithm capable of simulating thousands of
possible multiplex assay combinations based on singleplex real-
time digital PCR (qdPCR) data. We aim to demonstrate the use of
this new methodology by developing a TaqMan-based multiplex
assay, in a single fluorescent channel, for the specific and sensitive
detection of seven common respiratory tract infection (RTI)
pathogens. This work is two-folded: First, we validated the Smart-
Plexer by comparing the performance of all possible simulated
and empirical combinations in 3-plex, showing a strong

correlation between in-silico and lab-tested multiplexes; Second,
we assessed the proposed pipeline in high-level multiplex (7-plex)
by evaluating the ACA classification performance on synthetic
DNA and clinical samples. We demonstrated that, out of
4608 simulated combinations, an optimal multiplex assay could
be developed using this novel framework to detect seven common
respiratory pathogens accurately in qdPCR.

Results
Smart-Plexer design framework. We developed the Smart-
Plexer, a framework that uses singleplex PCR reactions as a ‘card
deck’ to generate a ‘winning combination’ multiplex assay. After
defining the number of targets and uploading datasets generated
from real-time PCR reactions with a single primer set (or sin-
gleplex assay) and a single target, the Smart-Plexer will combine
amplification curve data from each target, simulating multiplex
assays (Fig. 1). These simulations, representing different single-
plex assay combinations, are further validated through wet-lab
multiplex tests conducted for each target. This wet-lab multiplex
evaluation enables us to assess the changes in the curve shape of
the amplification reaction during the transition from a singleplex
to a multiplex environment. Therefore, empirical multiplex tests
involve running the actual multiplex assay in the laboratory using
the selected simulated multiplex primer sets. This allows us to
directly observe and analyse the real-time amplification curves
and evaluate the performance and accuracy of the multiplex assay
(empirical multiplex), providing empirical validation of our
approach when multiple primer sets are present.

To identify multiple targets with empirical multiplexes, the
Smart-Plexer framework was coupled and evaluated with the
ACA methodology. It is a methodology that utilises machine
learning techniques to analyses and classify the amplification
curves generated in PCR reactions. By capturing the kinetic
information encoded in the amplification curves, ACA can
effectively differentiate and identify different targets or analytes
present in the reaction. It involves extracting relevant features
from the amplification curves and employing machine learning
algorithms to train a classifier that can accurately classify and
distinguish between various targets based on their unique curve
characteristics. The ACA recognises clusters from different
amplification shapes which in our case represent different targets.
Therefore, by using this approach it is crucial to maintain
differences among sigmoidal trends in-silico. The difference
between the sigmoidal curve of each target is analysed by the
Smart-Plexer through distance measurements (such as Euclidian
distance). This novel framework is capable of distance calculation
from either the entire amplification curve or its sigmoidal
features. The average of computed distances among all the targets
is used to rank each combination of singleplex (or simulated
multiplex) from high to low inter-curve similarity values.
Moreover, the ranking system takes the minimum distance
between the two closest targets to ensure that the simulated
multiplex with high average values is not dependent on the high
difference of only a group of curves. When two amplification
curves have high similarity, hence a small distance value, the ACA
classifier will not work efficiently to identify either target.
Therefore, the rank of the combination depends on both average
and minimum distance scores. A set of singleplex assays from the
top ranks were selected as simulated multiplex for the empirical
validation in the laboratory, and the ACA performance was
assessed.

To compute distances between amplification curves, the Smart-
Plexer requires a filtering process where the amplification data
generated undergo the following steps: (i) subtraction of curve
background to remove the fluorescence signal noise at the starting
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cycles, (ii) removal of late amplification curves to exclude non-
plateau reactions, (iii) removal of noisy curves to exclude non-
sigmoidal shapes resulted by operator or instrumentation faults39.
The following step comprised a fitting equation using the five-
parameter model proposed by Spiess et al.40.

Selection of representative amplification curve. The ACA
method uses the entire amplification curve as a time series where
fluorescence values change as the number of cycles increases.
Firstly, we chose the entire raw amplification curve generated
from the real-time PCR reaction as the input of the Smart-Plexer.
Secondly, the framework was evaluated using curves normalised
with the final fluorescence intensity (FFI) as input to assess
performance changes by removing the absolute fluorescence
information. To further investigate changes related to different
curve representations and different levels of data abstractions
(feature dimensions) provided to the Smart-Plexer, sigmoidal
parameters generated from a fitting model were also used as input
to assess the influence on this framework.

To evaluate the best-fitting model, primary efforts have been
focused on the selection of an appropriate equation. Several
methods have been proposed to efficiently model the real-time
PCR sigmoid, such as four, five, and six-parametric
functions40–42. As a case study, we retrieved the amplification

curve data previously reported by Moniri et al. (2020)31. Using
raw curves as input, after sigmoidal fitting, we calculated the
mean square error (MSE) between the raw and the fitted curves
for the entire dataset. As shown in Supplementary Table 1, the
lowest MSE is achieved with the five-parametric model (MSE=
0.0036). The rising MSE in six-parameter sigmoid fitting is
caused by unsuccessful optimisation resulting from a larger
searching dimension. Based on the lowest MSE value, it is
determined to utilise the five-parameter sigmoid function to
extract features, and the equation is given below:

f tð Þ ¼ a

1þ exp�c t�dð Þ� �e þ b ð1Þ

where t is the amplification time (or PCR cycle), f tð Þ is the
fluorescence at time t, a is the maximum fluorescence, b is the
baseline of the sigmoid, c is related to the slope of the curve, d is
the fractional cycle of the inflection point, and e allows for an
asymmetric shape (Richard’s coefficient).

The three different curve representations (raw curves, FFI
normalised curves and fitted parameters) were further used to
evaluate the transferability from singleplex to multiplex reactions
in the Smart-Plexer.

a. c. e.

b. d. f.

Fig. 1 Smart-Plexer workflow. a Given a dataset of singleplex real-time PCR reactions (real-time amplification curves), a processing step is applied.
(a.i–a.iii) The processed curves are fitted following the equation depicted in step. a.iv An example is given in b, where each curve resulting from singleplex
reactions is used in a simulation of multiplex assays. Three targets are considered, and each of them has three unique singleplex assays (a total of
27 simulated combinations). c The simulated multiplex scores are calculated from the Smart-Plexer according to the Scoring Criteria. d Distances within
curves from different targets are calculated based on mathematical algorithms (such as Euclidean), and as shown in the confusion matrices, resulting
values are used to rank multiplex assays from high (high distances within targets) to low (low distances within targets). e High-rank multiplex assays are
chosen for empirical testing, and the ACA method is used to evaluate the classification performance on target identification of each selected multiplex.
f Cluster visualisation with 2-D t-SNE represents the difference in inter-target distances between a High-Rank and a Low-Rank multiplex, resulting in high
and low ACA classification accuracy, respectively.
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Average distance score (ADS) and minimum distance scores
(MDS) based on curve distances to rank multiplex assays. We
developed two distance metrics to measure transferability from
simulated to empirical multiplexes, since it is hypothesised that
distances between amplification curves should be maintained
during the transition from singleplex to multiplex.

It is possible to calculate distances between two distinct curves
by considering them as two data points in the multidimensional
space and quantify their distances using various metrics (i.e.,
Euclidian, Cosine, and Manhattan). In a single-channel multiplex
assay, the number of primer sets present in the reaction equals the
number of targets (N t), therefore the number of distances (Nd)
among curves of different targets is represented by the following
formula:

Nd ¼
N t

2

� �
¼ Nt Nt � 1

� �
2

ð2Þ

The average of all the distances is used to assign a score to the
multiplex assay called average distance score (ADS). The ADS
provides information on the overall distances across targets, and
the higher its values are, the more distant the curves are, and
better ACA performance is expected (as distances are related to
data point clusters). A high ADS does not guarantee a large
distance between every two targets of the multiplex. To overcome
this limitation, we considered a second metric called minimum
distance score (MDS), the distance value of the two closest curves
(minimum value of the given Nd distances).

The ADS and MDS narrow down the selection of empirical
testing for the highest-performing multiplexes using a ranking
system. Moreover, they are used to validate that inter-curve
distance information is maintained during the transition from
simulated to empirical multiplexes, and they can be used to
develop assays in silico more suitable for ACA, skipping costly
and timely laboratory testing.

Smart-Plexer validation using a 3-plex assay. To assess the
performance of the Smart-Plexer for both in-silico multiplex
development and ACA classification accuracy, we designed three
primer sets for three selected targets: Adenovirus (HAdV),
Human coronavirus HKU1 (HCoV-HKU1) and the Middle East
respiratory syndrome-related coronavirus (MERS-CoV). The
primers were evaluated using synthetic DNA and tested by real-
time digital PCR (qdPCR). As shown in Fig. 1, the number of
combinations to test using N t targets (N t ¼ 3) and NPs assays for
each target (NPs ¼ 3) is 27 (Nc ¼ NPs

N t ¼ 27 combinations,
listed in Supplementary Table 2). Three targets were chosen to
validate the Smart-Plexer because a complete comparison of all
the 27 simulated and empirical multiplex assays can be experi-
mentally conducted as the number of wet-lab experiments is
achievable (Nc ´N t ¼ 81 tests).

The wet-lab testing of each primer set (or singleplex assay) was
conducted, and the resulting raw data were combined in a total of
27 simulated multiplexes as explained before. Similarly, experi-
ments were carried out on combinations of primer sets (or
empirical multiplex assays) in a single-channel reaction. A group
of amplification curves, which can be considered as data points in
multidimensional spaces, were generated from a unique interac-
tion between each assay and its specific target. Supplementary
Fig. 1 illustrates the raw curve considered in this experiment and
Supplementary Table 3 shows the curve counts and the Ct
variation among them. The median of these data points was
calculated to represent each group of curves. Furthermore,
distances among all the curve medians were used to generate
the ADS and MDS of all the possible combinations Fig. 2a, b
visually represent the correlation between the in-silico and wet-

lab tested assays using ADS and MDS in simulated and empirical
multiplexes. Pearson coefficients were reported for both ADS as
0.301, 0.972 and 0.607, and MDS as 0.092, 0.761, and 0.686, for
raw curve, normalised curve, and fitted parameters, respectively
(visual representations of each curve type/parameters are depicted
in Fig. 2c, and ADS and MDS for all the curve types/
combinations are reported in Supplementary Table 4).

It can be observed that normalised curve correlations scored
higher than the rest in both ADS and MDS, showing that
simulated and empirical multiplex are correlated if FFI is
discarded. It is also important to note that the use of all the
five curve parameters worsens the correlation as the bimodal
distribution of parameter “e” negatively influences the correlation,
as discussed by Miglietta et al. (2022)39. Moreover, the correlation
from singleplex to multiplex might be affected by the fact that the
“d” parameter is related to the cycle threshold (Ct) of the
amplification curve. Target concentration can be influenced by
instrumentation, operator, and experimental errors; therefore,
variabilities of Ct can easily mislead the correlation of the five
parameters using “d”. Moreover, the scope of conducting this
correlation is to compare purely sigmoidal shapes, and concen-
trations of the nucleic acid targets should not affect the distance
values of the two curves. In addition, the use of parameters “a”
and “b” is redundant as: (i) “a” is related to the FFI, and as shown
in the middle plot of Fig. 2a, b, FFI is not relevant to the distance
correlation and (ii) all curves present in this dataset were
processed with a background removal (baseline correction) and
all “b” parameters were levelled to almost zero.

The observed correlation between simulated and empirical
multiplex distances promoted the identification of representative
features which would maintain the information of distances
during the translation from a singleplex to a multiplex
environment. As mentioned before, the parameter “a”, “b”, “d”
and “e” can negatively influence the correlation for both ADS and
MDS; therefore, we focus on the “c” parameter.

The key parameter for curve distances correlation in multiplex
assays: the “slope”. The previous section reported all the corre-
lation coefficients for ADS and MDS between simulated and
empirical multiplexes for different curve representations: raw
curves, normalised curves, and fitting parameters. Both ADS and
MDS showed the maximum correlation values when considering
normalised curves. Those results, along with our discussion on
the fitted parameters in the previous section, indicate that redu-
cing the information contained in the amplification curve is
beneficial. This section explores how the “c” parameter preserves
distance information from singleplex to multiple environments of
each primer set/target reaction.

In the 3-plex validation, each singleplex assay was tested
against its specific target (N= 9), resulting in 27 different
combinations of simulated multiplexes. Moreover, the “c”
parameters were fitted and extracted from 27 empirically tested
multiplex assays (81 tests). Supplementary Fig. 2 shows the
correlation between simulated and empirical ADS and MDS
calculated from “c” parameters with correlation coefficients of
0.973 and 0.774, respectively. To further evaluate whether “c”
parameter distributions were maintained in the translation to
empirical multiplexes, their three distributions (where three is
equal to the number of multiplexed targets) from the singleplex
reaction were compared with the corresponding distributions in
empirical multiplex reactions. As illustrated in Fig. 3a–c,
distributions of three different multiplex assays are visualised
with their relative mean values represented by the dashed/dotted
lines. The figures show the capabilities of the “c” parameter to
maintain distance information going from simulation to
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empirical test. It can be observed that in most cases, the location
of the parameter distribution for each target is maintained. In
other situations, the distribution may be shifted from the
singleplex events; however, the relative distance relationship of

“c” values is retained. Fig. 3a illustrates the “c” parameter
distribution of a low-rank ADS/MDS multiplex, showing overlaps
for all three singleplex assays in both simulated and empirical
multiplexes. As distances among amplification curve shapes can

Fig. 2 Representative features investigation based on the 3-plex assay. a The correlations of the Average distance score (ADS) between simulated and
empirical multiplexes for the three types of curves/parameters (Raw curve, normalised curve and fitted parameters) are presented (from left to right in the
same order). For each plot, each point with unique colour and shape corresponds to combination 1 to 27. The blue dashed lines are computed using linear
regression. The Pearson coefficients for all three plots are calculated. b Similarly, the correlations of Minimum distance score (MDS) are depicted for the
three curve representations. c Illustration of the three types of curve representations. Examples of raw amplification curve (after data processing),
normalised curve (computed based on the FFI) and fitted curve/parameters are presented from left to right. The fitted curve is computed with a five-
parameter Sigmoid function using raw curves. As a result of this, we can obtain both fitted parameters (“a”, “b”, “c”, “d”, “e”) and fitted curve (predicted
fluorescence values corresponding to each cycle from the 5-parameter Sigmoid model with fitted parameters).
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significantly affect the ACA classifier, reduced performance is
expected for multi-target identification. Another distribution
trend among multiplex assays is represented in Fig. 3b, where the
selected Primer Mix (PM3.01) has a high simulated ADS value
(0.117) but low MDS (0.003). Moreover, we reported that the
ADS value for distributions in Fig. 3c equals 0.138, which differs
only 0.21 from the combination PM3.01. However, PM3.12 has
an MDS value of 0.075, representing an increase of 0.072
compared to PM3.01. This highlights the importance of
considering minimum distances between “c” parameter distribu-
tions of the two closest targets: a small MDS value indicates a less
separable group of target clusters, resulting in low ACA
accuracies for multi-pathogen identification in a single fluor-
escent channel reaction. To numerically report how distributions
are related in the translation from simulated to empirical
multiplexes, we calculated the rooted mean squared error (RMSE)
as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds � Dm

� �TðDs � DmÞ
Nd

s
ð3Þ

where Ds and Dm are vectors for distances among targets in

singleplex and multiplex, respectively. The computed RMSE
values for all the 3-plex combinations ranged from 0.003 to 0.050,
which are negligible in comparison to the range of the “c”
parameters. Given that the “c” parameter distributions in our
study exhibit minimal noise and little variation in shape, and
considering that our primary focus was on assessing relative
distance rather than distribution similarity, RMSE proved to be a
reliable criterion for evaluating the differences between distribu-
tions. The ADS, MDS, and RMSE values for all the 3-plex
combinations are reported in Supplementary Table 5. These
results emphasise that distances between simulated and empirical
multiplex share high similarity across different ranks, ensuring
that our scoring system (based on ADS and MDS) is not affected
whether in singleplex or multiplex environments.

Accuracy of all the possible combinations in 3-plex assays. One
of the aims of the Smart-Plexer is to improve the classification of
multiplex assays, in our case, related to the ACA method. As
demonstrated in the previous section, distances among amplifi-
cation curves of empirical multiplex assays are similar to those
generated in simulated multiplexes. Therefore, leveraging ADS

Fig. 3 Relative “c” parameter distributions of three different multiplex assays. a Primer Mix 3.07 (PM3.07) illustrates the “c” parameter distribution of a
low-rank ADS/MDS multiplex. b PM3.01 as an example of high ADS but low MDS multiplexes. c Multiplex assay with high ADS and MDS with clearly
separated distributions. For each subplot, the left graph shows the distributions of “c” parameters for the Simulated Multiplex. The right plot represents the
corresponding distributions according to the empirical multiplex data. The vertical dashed lines correspond to the mean of the distribution computed for
different targets. To quantitatively verify that the distances are maintained in the transition from simulated to empirical multiplexes, the RMSE of distances
is calculated and displayed on the graph title. Additionally, to facilitate visualisation of this distribution plot, Supplementary Fig. 3 displays the distribution of
“c” of the simulated and empirical multiplex for each target.
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and MDS, simulated multiplexes can be used to rank each
combination and find the optimal assays with the largest inter-
target distances for the ACA classifier. To further demonstrate
that the ADS and MDS are crucial to improving multi-target
identification in single well PCR reactions, we assess the classi-
fication performance of the ACA method by using 10-fold cross-
validation and the k-Nearest Neighbours (k-NN) algorithm.
Fig. 4a shows a 3-D graph where both ADS and MDS of the “c”
parameters are correlated to the ACA accuracy. Accuracy per-
centages ranged from 98.63% to 100% for each multiplex. The
rainbow plane, which is fitted with linear regression on all the
visualised data points, represents the gradient of the classification

accuracy, showing an upward trend as ADS and MDS increase,
which is consistent with our hypothesis that the ACA classifica-
tion performs better with larger inter-target distances. Moreover,
the plane on the left of Fig. 4a has a grey highlight zone called
vacuumed area, where data points cannot fall inside as it is
mathematically impossible to have an average distance value
smaller than the minimum distance. We also defined another area
called forbidden area, as visualised in the rotated 3-D plot on the
right of Fig. 4a, where it is expected that no point will be founded,
provided high values for ADS and MDS.

Both 3-D plots have circled points labelled as the top
combination (TOP), bottom combination with lowest ADS

Fig. 4 The influence of ADS/MDS on the ACA performance for all possible 3-plex combinations. a 3-D plot of ACA classification accuracy for each
combination versus simulated ADS and simulated MDS computed based on the “c” parameter. The rainbow plane is calculated using linear regression. In
the left 3-D figure, the grey highlighted area is called the vacuumed area, where simulated MDS is larger than simulated ADS (combinations in this area are
mathematically impossible to be found). The right 3-D figure is a rotation of the left one, where a red is highlighted named Forbidden Area. In this region,
high ADS/MDS combinations possess low ACA accuracies; however, no combinations were found. b–g For the combination circled (TOP, BOT MDS, BOT
ADS, and OUTLIER) in a, 2-D t-SNE was applied on raw curves. In addition, for quantitative verification, the mean Silhouette scores (MSS) of target clusters
were reported in the subplot title.
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(BOT ADS), bottom combination with lowest MDS (BOT MDS),
and outlier combination (OUTLIER), with ACA classification
accuracies of 99.9%, 99.89%, 98.06%, 99.01%, 99.82%, and
99.87%, respectively. Although the overall classification perfor-
mance for all 27 combinations shows a high average of
99.51% ± 0.41%, an increase of 1.84% is observed for the top
ADS/MDS data point compared to the bottom one. Furthermore,
as depicted in Fig. 4b–e, by applying 2-D t-distributed stochastic
neighbour embedding (t-SNE)43 visualisation on curves gener-
ated by the top and bottom-ranked primer combinations, more
condensed target clusters and better separated inter-target
boundaries can be seen for top-ranked assays. This results in
more distinguishable curve shapes and larger curve distances
among targets, which benefits the ACA classification. Numerical
analysis of the visualised clusters was assessed using the mean
silhouette scores (MSS). As reported by Kaufman et al. 2009,
Silhouette scores between 0.51 and 0.70 are considered more
effective in cluster separation than values below 0.5044. The
reported MMS scores show significantly larger inter-cluster
distances for the top combinations, with values >0.61 as opposed
to the bottom ones of <0.27 (in Supplementary Table 5, we also
report ADS, MDS, MSS, and ACA accuracies for each combina-
tion of the 3-plex experiment). This finding proves that the ADS
and MDS metrics are valid indicators for predicting optimal
primer set combinations for the ACA classifier. Relying on the
Smart-Plexer for selecting multiplex assays from singleplexes, the
likelihood of accurate multi-target identification in a single
fluorescent channel reaction is significantly increased using the
ACA methodology.

As mentioned above, Fig. 4a highlights the presence of outlier
combinations where small ADS/MDS with high ACA accuracy
are reported (instead, low accuracy for the ACA classifier is
expected). However, the existence of such data points does not
deny the effectiveness of the proposed method. It is important to
emphasise that the overall ACA accuracy for 3-plexes is
inherently high because of the low levels of multiplexing.
Classifying three different curve shapes does not represent a
major challenge for this Machine Learning method, and targets
with minor curve-shape differences can be easily separated in the
feature space. Considering this, along with the prevalent
randomness that exists in the ACA method for 3-plex, accuracies
higher and lower than expected may occur in the given dataset. In
fact, in the area with low ADS/MDS, we can observe a large
standard deviation for accuracies among data points that fall
beneath and above the fitted plane. Regardless of the accidentally
high accuracies and low ADS/MDS caused by randomness,
Fig. 4f, g evidence that these outlier combinations will face more
challenges when used for multi-target identification in larger scale
multiplexes (or high-level multiplexing). In the outliers, the
mapped target clusters are largely overlapped with unclear
boundaries and small MSS even in 3-plex assays. Therefore, we
will demonstrate in the next section that the higher the level of
multiplexing is, the more difficult the target separations are in the
feature space when using these outliers.

Although low ADS/MDS combinations may occasionally show
good performances, the proposed method ensures that all
predicted optimal multiplex assays with high ADS/MDS show
high accuracies in ACA and never the opposite. As illustrated in
the 3-D plots of Fig. 4a, the forbidden area (the red triangular
prism) has no data point falling in, which highlights the
effectiveness of the ADS/MDS ranking system. This is a first-
ever demonstration that multiplex assays tailored to the ACA
method can be in-silico developed starting from singleplex PCR
reactions. This not only increases the likelihood of accurate multi-
pathogen identification but also allows for a higher level of
multiplexing in a single fluorescent channel. To demonstrate the

capabilities of the Smart-Plexer in developing optimal high-level
multiplex assays for data-driven approaches, in the following
section, we assess its performance with seven different targets.

Smart-Plexer for development of 7-plex assays. In the previous
section, our focus was on using a small number of targets to
demonstrate that the developed ADS and MDS used to correlate
distances between curves in both simulated and empirical mul-
tiplex assays were maintained. Moreover, accuracies among all
the different combinations were evaluated using the ACA
methodology, where high ADS/MDS multiplex assays show the
highest likelihood of correct multi-target classification. These
previous results indicate that the Smart-Plexer is a promising
technique for optimal selection of primer set combinations in
data-driven multiplexing.

Next, we evaluated the Smart-Plexer to develop an optimal
7-plex assay, which through the ACA method, is able to
accurately identify the following Respiratory Tract Infection
(RTI) pathogens in a single fluorescent channel using qdPCR:
Human adenovirus (HAdV), Human coronavirus OC43 (HCoV-
OC43), Human coronavirus HKU1 (HCoV-HKU1), Human
coronavirus 229E (HCoV-229E), Human coronavirus NL63
(HCoV-NL63), Middle East respiratory syndrome-related cor-
onavirus (MERS-CoV), and Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). We designed at least two different
assays for each target, for a total of 24 singleplexes across the
seven pathogens, as shown in Supplementary Table 6. Each
primer set was tested using the synthetic DNA of its
correspondent pathogenic target. Following the previous 3-plex
experimental workflow, the resulting raw curves were processed,
fitted, and passed to the Smart-Plexer to calculate all possible
7-plex combinations (N= 4608) and compute their ADS/MDS.
Based on “c” parameter distances from fitted simulated multi-
plexes, Fig. 5a shows how the ADS and MDS can be visualised in
a two-dimensional space. By considering the mean and standard
deviation of the two scores, we set up boundaries to the ADS/
MDS distribution for all the combinations and divided the space
into four separate regions, with the purpose of showing how
empirical multiplexes would perform for the ACA method
depending on their ADS/MDS. The black horizontal segmented
line in Fig. 5a divides high and low MDS, and the vertical one
separates the two ADS regions, resulting in four distinct areas. By
testing different multiplexes from each of these regions, we are
aiming to further demonstrate that chance of developing a
reliable multiplex can vary based on the selected regions or
selection criteria. Therefore, we chose multiplex assays from
different areas and categorised them into five classes, which were
empirically tested with synthetic DNA in qdPCR: BOT (N= 6),
MID (N= 6), BEST (N= 6), TOP-ADS and TOP-MDS (N= 6)
values (detailed selection criteria are reported in the “Methods”
section).

After the empirical testing, the distances of the “c” parameters
of each selected multiplex were compared to the simulated one,
resulting in a correlation coefficient of 0.99, as shown in the
middle graph of Fig. 5b. Moreover, empirical multiplex
amplification events were visualised using 3-D t-SNE, and
distances across target clusters were calculated with the MSS.
As shown in the left plot of Fig. 5b, clusters of the selected BOT
combination have an MSS of 0.12, whereas for the BEST one, the
score is 0.67. It can be observed that there is a clear difference in
clustering between the two selected multiplex assays, where the
BEST one shows clear separation among different targets (in line
with the 3-plex results), and is expected to converge in better
ACA classification. The opposite scenario is shown in the BOT
combination.
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Higher level multiplexing, distance distributions of the “c”
parameters were still maintained from simulated to empirical
testing; therefore, we computed the RMSE of the chosen tested
combinations. Fig. 5c, d illustrates side-by-side “c” parameter
distributions for each target in both simulated (left) and empirical
(right) multiplexes, showing a small RMSE for both BOT and
BEST assays (0.012 and 0.031), and confirming the distance-

maintaining hypothesis validated in the 3-plex experiments. The
ACA accuracy was evaluated using training and testing datasets
obtained in different experimental settings (different days,
operators, and reagents) to assess the methods reproducibility.
As expected, the performance of the BEST combination was
significantly higher than the BOT one, with a 39.42% increase in
accuracy. Furthermore, in Supplementary Table 7, we reported
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the ADS, MDS, and accuracy values for the 24 selected multiplex
assays. In Supplementary Fig. 4, we also visualised the standard
curve for each target using the BEST 7-plex assay to evaluate
primer sensitivity and specificity. The chosen multiplex reached a
limit of quantification equal to 102 for all the respiratory
pathogens using synthetic DNA in real-time PCR.

As described before, ACA performances were evaluated using
training and testing datasets from different experimental settings
with the same sample size. All the selected 24 multiplexes were
empirically tested, and their multi-target identification perfor-
mances were assessed. In Fig. 5e, accuracies and standard
deviations of each group of multiplexes were reported and
visualised as box plots. The best-combination group scored an
average (±standard deviation) classification performance of 95%
(±0.04%) using a k-NN classifier, which is the highest average and
the lowest standard deviation among all the groups. There is a
decreasing trend in the average accuracy, and an increasing trend
in the standard deviation as the ADS/MDS values become
smaller. Previously, the 3-plex validation showed the presence of
outliers in low ADS/MDS rank with high ACA classification
accuracy, which is also observed in these 7-plex tests. However,
the standard deviation indicates that the Smart-Plexer does
provide a robust and solid solution (even at high-level multi-
plexing) to significantly increase the likelihood of choosing an
optimal multiplex for data-driven multiplexing (i.e. ACA
methodology).

Validation with clinical isolates. The developed 7-plex was
evaluated on clinical isolates for multi-pathogen identification.
After testing six potential best combinations based on ADS/MDS,
the multiplex with the highest ACA classification accuracy on
synthetic DNA (PM7.2151) was selected. Inactivated clinical
samples were purchased from Randox Laboratories (UK) and
nucleic acid was extracted using the QIAGEN mini am kit,
according to the manufacturer’s instructions. The extracted
samples were used as the testing dataset (7638 positive amplifi-
cation reactions), while curves resulting from synthetic DNA
amplification reactions (5207 positive amplification reactions)
formed the training set. The classifier used was a k-NN with a
number of neighbours equal to 10. As shown in Table 1, a total of
14 positive samples were classified in qdPCR using the
ACA methodology. The predicated label of a sample is given by
selecting the most predictable label within all the in-sample
curves. The confidence level was given as the percentage of
the amplification curves with the most predicted label. All
pathogens using the Smart-Plexer selected candidate assay, all
pathogens were currently identified with high confidence
(median= 95.46%).

It is important to note that this study faced a seven-class
classification problem, where the accuracy of a “random guess”
(or a random classifier as convention) equals 14.3% under a
balanced dataset. All the confidence levels were much higher than
the random guess accuracy, indicating solid and robust

predictions with the selected optimal multiplex assay. Although
the number of clinical samples was limited by the number of
pathogens provided by the manufacturer, the proposed frame-
work, in combination with the ACA methodology, achieved a
highly accurate identification of multiple pathogens by using an
optimal multiplex assay in a single fluorescent channel reaction.
The Smart-Plexer can leverage the capability of data-driven
multiplexing to an easy-to-develop, robust, and cost-effective
molecular diagnostic solution.

Discussion
In this work, we developed the Smart-Plexer, an innovative fra-
mework that combines wet-lab experiments and computational
algorithms to generate optimal multiplex assays for data-driven
approaches using real-time PCR data. The method leverages
mathematical metrics to construct an advanced ranking system to
increase the throughput of conventional molecular tests by
optimising their chemical peculiarities. To reveal the potential of
this powerful approach, we demonstrated it with a recently
reported machine learning method, named Amplification Curve
Analysis (ACA), which is capable of identifying multiple nucleic
acid targets in a single fluorescent channel with conventional PCR
instruments. As the ACA leverages kinetic information encoded
in the amplification curve, multiple targets can be classified based
on the unique interaction with their assigned primer sets. How-
ever, constructing different amplification curve shapes for each
multiplexed target is one of the major challenges for the ACA
approach. The Smart-Plexer solves this problem by providing an
easy-to-use framework for multiplex assay development, enabling
high-level and highly accurate data-driven multiplexing.

This study describes the development of the Smart-Plexer. The
workflow was initially evaluated on the 3-plex panel. From the
wet-lab testing of three singleplex assays for each of the three
targets, a total of 27 combinations (in our case 3-plex assays) can
be generated in silico (simulated multiplex) and ranked based on
the mathematical curve-shape distances. Using synthetic DNA in
qdPCR and a single fluorescent channel, the assays were
empirically tested (empirical multiplex), and the ACA classifica-
tion accuracies were evaluated for all the possible combinations.
The distance scores computed from the Smart-Plexer for multi-
plex assay ranking were linearly correlated between simulated and
empirical multiplexes and between high-rank multiplexes. The
smart-plexer increased ACA accuracies, confirming that the
metrics used in this novel framework are theoretically connected
to the distance measurement of the machine learning classifier.

The design and utility of the Smart-Plexer were assessed for a
7-plex assay targeting common respiratory tract infection (RTI)
pathogens. Consistent with the 3-plex validation, the correlation
between simulated and empirical multiplex was maintained in
7-plex. Regarding the ACA classification, it was logical that higher
similarities among curves existed in a scenario with a higher
number of targets, making it harder to develop multiplex assays.
Nevertheless, the Smart-Plexer generated an optimal multiplex

Fig. 5 Validation of Smart-Plexer based on 7-plex assays. a 2-D ranking results for all 4608 combinations in 7-plex based on simulated ADS and
simulated MDS. The plot is divided into four regions to explore the relationship between ACA performance and ADS/MDS. Combinations from five
different classes (BOT, MID, BEST, TOP-ADS, TOP-MDS) were selected for multiplex empirical testing. b The 2-D plot in the middle depicts the
relationship between empirical and simulated scores based on “c” parameters. Enlarged data points for one of the BOT (PM7.1593) and BEST (PM7.2151)
combinations are visualised with 3-D t-SNE on raw curves, and the corresponding Silhouette scores are calculated. c and d Simulated and Empirical “c”
distributions of the selected combinations (PM7.1593 and PM7.2151) are plotted (RMSE values in subplot titles). The vertical dashed lines correspond to
the mean of the distribution computed for different targets. On the right, the confusion matrixes of ACA performance for both cases are presented, and
overall accuracy using k-NN is reported in the title. True labels are on the y-axis and ACA-predicted labels are on the x-axis (each target sensitivity is also
reported in percentage). e The box plot of ACA classification accuracy for each selected group. The mean and standard deviation of ACA accuracy on
empirical multiplexes are calculated and shown on each box bar.
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assay, which correctly identified pathogens presented in 14
commercial clinical samples. It was further demonstrated that,
since ACA is a clustering method, it required a large minimum
distance between the two closest clusters and a large average
distance among all clusters in the multiplex. Therefore, the
Smart-Plexer ranking system enabled the development of optimal
multiplex assays for data-driven multiplexing.

Apart from the scalability of multiplexing that the Smart-
Plexer can provide to the ACA method, we demonstrated for the
first time that machine learning approaches can be applied to
probe-based multiplexes, in our case, TaqMan. Probe-based
assays, together with the use of intercalating dyes and isothermal
chemistries, are expanding the boundaries of data-driven multi-
plexing and opening new windows for its application in com-
mercial, research and clinical fields. The Smart-Plexer eases the
development of any novel multiplex panel or molecular assays,
enabling the use of the ACA as an emerging diagnostic tool.
Through this hybrid method, it is possible to select the highest
rank combination in silico with wet-lab tested singleplex, avoid-
ing performing expensive and time-consuming multiplex assay
development phases.

While this novel framework is validated with high-level
multiplexing (7-plex), it is essential to highlight that distances
between amplification curves can be a limiting factor in single
fluorescent channel multiplexing. This affects the Smart-Plexer
since the inter-target differences of fitting parameters con-
sidered for the distance measurement become smaller as the
target number increases. In this work, we use linear distance
measurements, but more advanced metrics (e.g. Minkowski,
Chebyshev or Cosine) can be adopted to improve the ranking
performance. Moreover, when a higher level of multiplexing is
required, the use of probe-based chemistries such as TaqMan is
ideal as it reduces the number of non-specific detection and
enables the use of multiple fluorescent channels. By leveraging
the optical capability of real-time PCR instruments, a multiplex
assay using multiple-channel detection can double or triple the
number of targets in a single reaction45–47. All these strategies
aim to improve the ACA classification through a more inno-
vative development from the chemistry perspective, while from
the machine learning view, the current classifiers rely on state-
of-the-art algorithms which shine for their robustness but are
limited for tailoring to specific datasets. We previously
demonstrated that more advanced classifiers, such as convolu-
tional neural networks (CNN), have the potential to enhance
the ACA’s capability for classifying targets in higher-level
multiplex assays. Additionally, efforts have been made to

improve target classification using advanced frameworks like
the Transformer-based Conditional Domain Adversarial Net-
work (T-CDAN), as described by Mao et al. in 2023, to address
the issue of domain discrepancy in amplification curve
analysis48. However, as a novel technique, data-driven multi-
plexing requires further optimisation and algorithm develop-
ment to maximise its potential.

The Smart-Plexer provides a solution to develop multiplex
assays using empirical testing and in-silico computation. The
requirement for some wet-lab experiments can limit its appli-
cation in terms of staff training and time requirements. To
further validate the practical application of the Smart-Plexer
method, future work using different platform (such as qPCR)
and larger clinical samples cohort is currently in progress to
ensure that the Smart-Plexer meets the requirements of high-
throughput multiplexing, and sensitive detection methods in
clinical diagnostics. By continuously refining and optimising
the methodology, we aim to establish a practical platform
that offers cost-effective, rapid, and accurate detection of
pathogenic microbial infections and other nucleic acid multiple
detection needs.

Moreover, our future work will focus on the full automation of
developing such assays. Novel methodologies to predict amplifi-
cation curve behaviours will be developed. One example is the
brand-new algorithm for designing multiplex PCR primers using
dimer likelihood estimation by Xie et al.21 Another future aspect
of this research is to increase inter-target curve shape differences
further. An example would be in probe-based chemistries, where
modifying amplification curve shapes can be achieved by chan-
ging the concentration levels of the fluorescent probe. In this way,
we can expand inter-target distances of amplification curves to
ease the ACA classification with better clustering performance.
This work will broaden the application of the ACA method/and
significantly increase its flexibility and scalability.

In this work, we present for the first time a complete pipeline,
Smart-Plexer, for developing optimal multiplex assays and
opening the use of the ACA method to the broad scientific
community. Smart-Plexer will support optimal multiplex design
to improve the accuracy and cost of molecular diagnostics.

Methods
Synthetic double-stranded DNA templates. Double-stranded
synthetic DNA was used in this study to develop and assess the
performance of all singleplex assays. In particular, we used the
entire coding sequence of the hexon protein gene (HEX gene) for

Table 1 Validation with clinical isolates.

Sample index Panel ID (Randox,
UK)

Expected pathogen (true
label)

ACA classified pathogen
(predicted label)

AC count Confidence level
(%)

Outcome

1 QAV164189 HAdV HAdV 14 100.0 Detected
2 QAV164189 HCoV-NL63 HCoV-NL63 770 100.0 Detected
3 QAV164189 HCoV-NL63 HCoV-NL63 545 96.15 Detected
4 QAV164189 HCoV-OC43 HCoV-OC43 94 78.72 Detected
5 SCV2QC SARS-COV-2 SARS-COV-2 769 69.96 Detected
6 SCV2QC SARS-COV-2 SARS-COV-2 631 94.77 Detected
7 SCV2QC SARS-COV-2 SARS-COV-2 766 100.0 Detected
8 SCV2QC SARS-COV-2 SARS-COV-2 756 99.34 Detected
9 SCV2QC SARS-COV-2 SARS-COV-2 748 99.20 Detected
10 QAV154181 MERS MERS 287 60.98 Detected
11 QAV154181 MERS MERS 770 96.49 Detected
12 QAV154181 MERS MERS 770 79.09 Detected
13 QAV154181 MERS MERS 698 91.69 Detected
14 QAV154181 MERS MERS 20 70.00 Detected
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human adenovirus (HAdV), and the nucleocapsid protein gene
(N gene) of human coronavirus OC43 (HCoV-OC43), HKU1
(HCoV-HKU1), 229E (HCoV-229E), NL63 (HCoV-NL63),
Middle East respiratory syndrome-related coronavirus (MERS-
CoV) and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The following NCBI accession numbers were
used as references for the gBlock synthesis: NC_001405,
NC_006213, NC_006577, NC_002645, NC_005831, NC_019843
and NC_045512, respectively. The synthetic constructs were used
for qPCR experiments when determining the limit-of-
quantification of each PCR assay and in qdPCR experiments
for generating the dataset used in the simulation of the multi-
plexes and their empirical testing. The gene fragments (ranging
from 1134 to 1558 bp) were purchased from Integrated DNA
Technologies Ltd. (IDT) and resuspended in Tris−EDTA buffer
to 10 ng/μl stock solutions (stored at −80 °C until further use).
The concentrations of all DNA stock solutions were determined
using a Qubit 3.0 fluorimeter (Life Technologies).

Clinical isolates. Whole pathogen control panels were pur-
chased from Randox Laboratories Ltd, including MERS-CoV
(catalogue no. QAV154181), CoV-OC43, NL63 (catalogue no.
QAV164189), and SARS-CoV-2 (catalogue no. SCV2QC).
Samples were extracted using the QIAamp Viral RNA Mini Kits
(catalogue no. 52906). Viral nucleic acid was extracted using the
manufacturer-recommended protocol49. Viral RNA was reverse
transcribed to cDNA using Fluidigm reverse transcription
master mix (catalogue no. SKU 100–6299). Viral cDNA was
further pre-amplified using Fluidigm Preamp master mix (cat-
alogue no. PN 100-5744). Reverse transcription and pre-
amplification were conducted according to the Fluidigm man-
ufacturer’s protocol (Fluidigm document number: 101-7571 A2
and 100-5876 C2).

PCR assay design. The sequences of each gene were down-
loaded from the GenBank website50. Based on the compre-
hensive analyses and alignments of each type using the
MUSCLE algorithm51, primers were specifically designed to
amplify all sequence variations within each gene belonging to
their specific target (inclusivity) and to exclude closely related
but not inclusive sequences (exclusivity). Design and in-silico
analysis were conducted using GENEious Prime 2022.0.152.
Primer characteristics were analysed through IDT OligoAna-
lyzer software53 using the J. SantaLucia thermodynamic table
for melting temperature (Tm) evaluation, hairpin, self-dimer,
and cross-primer formation54. To confirm the specificity of the
real-time digital PCR assays, the primers were first evaluated in
a singleplex PCR environment to address their specificity and
sensitivity for both singleplex and multiplex assays. All primers
were synthesised by IDT (Coralville, IA, United States). Details
on primer sequences, along with multiplex assay combinations,
are provided in Supplementary Tables 8, 9 (for both 3-plex
assays), and Supplementary Tables 10, 11 (for both 7-plex
assays).

Real-time digital PCR. For real-time amplification experiments,
we used the BioMark HD (Fluidigm) and the QIAquant 96 5plex
(catalogue no. 9003011). The master mix used was the Prime-
Time Gene Expression Master Mix from Integrated DNA Tech-
nologies (IDT, catalogue no. 1055772) supplemented with ROX
passive reference dye and pre-mixed following manufacturer
guidelines. The qdPCR was performed with Fluidigm qdPCR 37k
integrated fluidic circuits (IFC) (catalogue no. SKU100-6152) and
was supplemented with Fluidigm 20X GE loading buffer (PN
85000746). The priming and loading steps of the IFC were

followed as per the supplier’s protocol (Fluidigm document
number: 100-6896 Rev 03). Each amplification mix for the
qdPCR experiment contained 3 μl 2X IDT PrimeTime Gene
Expression Master Mix (with passive ROX), 0.6 μl 20X GE, 0.6 μl
10X Primer mixture, 1.8 μl DNA templates from synthetic DNA,
pre-amplified cDNA, or controls, and to bring the final volume to
6 μl. A total of 4.5 μl of reaction mix was transferred to each inlet
(or panel) of a Fluidigm 37k IFC for the thermal cycling step.
Thermal-cycle conditions consisted of a hot start step for 3 min at
95 °C, followed by 45 cycles at 95 °C for 15 sec and 60 °C for 45 s.
Real-time data of the amplification events were exported as a text
file for each bulk by Fluidigm Digital PCR Analysis software
(version 4.1.2).

Limit-of-quantification. We used real-time PCR from QIAGEN
(QIAquanta96) to evaluate the Limit-of-quantification (LoQ) of
the selected 7-plex assay. Standard curves were generated with
synthetic DNA ranging from 107 to 101, apart from SARS-CoV-2
whose concentration was from 105 to 101 because of limitations
due to pandemic suppliers (IDT). PCR data were extracted and
processed according to the data processing step. Standard curve
plots and statistical values are reported in Supplementary Fig. 4.
The Absence of amplification signals was detected in negative
template control (NTC).

Data processing. The processing of raw amplification curves is
comprised of three parts. Firstly, to ensure all curves start from
approximately zero fluorescence value and to normalise the
starting cycles of the curve across the entire time series, the
background information was removed, which can be expressed as

Flbr tð Þ ¼ Fl tð Þ � avgback ð4Þ
where Flbr tð Þ represents a curve with the background removed
and Fl tð Þ is the raw fluorescence values for each cycle t ¼
1; 2; � � � ;T: Here T indicates the total number of cycles for each
amplification curve (45 in our case), and avgback is the average
background value. In order to avoid instrumental noise com-
monly found at the beginning of the PCR reaction, the avgback
value was estimated as the average value of the first several cycles’
fluorescence, excluding the initial ones. In our case, five cycles
were considered for the flat phase and the first three cycles were
skipped. Secondly, late amplification filtering was applied to select
curves that reached the plateau phase. The basic idea is to esti-
mate the cycle threshold value (EstCt) for each curve, which can
be represented as

EstCt ¼ min t ð5Þ

s:t:
Flbr tð Þ � Fmin

Fmax � Fmin
≥ Fth ð6Þ

where t 2 1; 2; � � � ;Tf g, and Fmax and Fmin represent maximum
and minimum fluorescence values of the entire reaction respec-
tively for each curve. Fth is the fluorescence threshold and curves
whose EstCt are above the cycle threshold (Ct= 30 as suggested by
the manufacturer) were removed. Lastly, a filter was applied to
remove non-sigmoidal curves with excessive noisy signals. The
sigmoidal trend of a noisy curve may contain certain notches.
Based on this feature, we estimated the first derivative of each
curve using:

Flbr
0 tð Þ ¼ Flbr tð Þ � Flbr t � 1ð Þ; t ¼ 2; � � � ;T ð7Þ

The number of zero-crossing points in Flbr
0 tð Þ is related to the

number of notches in the curve. Therefore, noisy curves should
have significantly more zero-crossing points in their first
derivatives compared with smooth sigmoidal curves. The curves
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that satisfied the following condition were regarded as noisy and
removed:

∑
t

�sgn Flbr
0 tð Þ� �þ 1

2
>Nzc ð8Þ

where sgn �½ � is the sign function and Nzc is the given threshold
value (Nzc ¼ 9 in our research, following the concept depicted in
Miglietta et al. 2022)39.

Five-parametric sigmoidal fitting. Since amplification curves
contain information such as background, plateau phase, and
slope, we derived the most representative features of it using the
sigmoidal equation. The chosen model in this study for curve
fitting is the five-parametric sigmoid function, whose equation is
given below:

f t; pð Þ ¼ a

1þ exp�c t�dð Þ� �e þ b ð9Þ

p ¼ a; b; c; d; e½ �T ð10Þ
where t is the amplification cycle, p is the parameter vector, f t; pð Þ
is the fluorescence at cycle t. The mathematical function of these
parameters and their corresponding representations in amplifi-
cation curves are shown in Table 2:

To reduce optimisation iterations and unsuccessful fitting, we
applied a pivot fitting on a subset of data (Ds) to evaluate the
optimal initial parameters popt0 for the equation before searching
on the entire dataset (D). First, we defined a non-linear Least
Square function LS pð Þ, whose equation is shown below:

LS pð Þ ¼ ∑
T

t¼1
f t; pð Þ � Flbr tð Þ

� �2 ð11Þ

To apply the pivot fitting, we first initialised
p0 ¼ 0; 0; 0; 0; 0½ �T. Then, for the ith curve Flibr within the dataset
Ds, the following optimisation problem was solved to find the
fitted parameter vector:

pi ¼ argmin
Blow<p<Bup

LS pð Þ ð12Þ

where the lower bound Blow and the upper bound Bup for all the
parameters are −100 and 100, respectively. After all the curves
were fitted, the mean vector of all the pi was used as the optimal
popt0 .

With the outcome from the pivot fitting, we fitted all curves in
D starting from popt0 . In addition, to get better fitting performance,
we increased the maximum number of fitting iterations (maxfev)
to a sufficiently large value (1,000,000 in our case). The same Blow
and Bup were used for the pivot fitting.

Calculating average distance score (ADS) and minimum dis-
tance score (MDS) for multiplex assays. There are four curve
representations for calculating ADS and MDS, which are: raw
curves (45-D), normalised curves (45-D), fitted parameters (5-D)
and c parameter (1-D). Two steps were taken before the score
calculation: (i) Extract the median feature vectors of each target

for 45-D, 5-D and 1-D feature arrays. The median value was
taken on each dimension, and the median feature vector with the
same dimension was generated. It is assumed that the distribution
of each target is Gaussian. However, outliers can affect the dis-
tribution unexpectedly. Therefore, the median value is a more
robust representative compared to the average value, and N t
median vectors corresponding to N t targets were constructed. (ii)
Calculate Euclidean distance between each pair of targets, where
given N t targets, the total number of distances Nd is

pi ¼ argmin
Blow<p<Bup

LS pð Þ ð13Þ

Nd ¼
N t

2

� �
¼ Nt Nt � 1

� �
2

ð14Þ

The vector of distances for each pair of targets is defined as:

SD ¼ dijjfor each i ¼ 2; ¼ ;N t ; j ¼ 1; 2; ::i� 1
h i

ð15Þ
where dij represents the Euclidean distance between extracted
median vectors of target i and target j. With the constructed
distance set, the ADS and MDS were calculated as the average
and the minimum value of all elements in SD, respectively:

ADS ¼ mean SD
� � ð16Þ

MDS ¼ min SD
� � ð17Þ

ACA methodology. The Amplification Curve Analysis (ACA)
methodology was developed by Moniri et al. in 202031. For the
first time, shapes of amplification curves from real-time PCR data
were used for multiple target identification in a single fluorescent
channel reaction, utilising data-driven algorithms. The ACA takes
the entire amplification time series as input and uses machine
learning to classify curves into different categories of targets. This
approach highlights the significance of the kinetic information
embedded in amplification curves. As previously reported, several
classical machine learning methods (e.g. k-NN, Random Forest,
Support Vector Machine) as well as deep-learning based
approaches (e.g. Convolutional Neural Networks) can be applied
to the time series32. In this article, a k-NN classifier with 10
neighbours was used for the ACA performance evaluation. To
establish the ground truth, synthetic DNA targets with known
identities and clinical samples with confirmed pathogen infor-
mation were utilised, providing reliable references for evaluating
the ACA classifier and validating the effectiveness of the Smart-
Plexer framework.

Ranking system. The inputs of the ranking system are simulated
ADS and MDS. To increase the likelihood of choosing an
optimal assay for data-driven multiplexing approaches, we
considered assays with the highest ADS and MDS (SBEST)
selected from the entire combination set (SALL). Provided the
number of the best combinations to be selected as NBEST and
the number of total combinations as Nc, the steps applied are
described in Table 3 (Algorithm 1). The proposed Algorithm 1

Table 2 Five sigmoidal fitted parameters.

Parameter Mathematical meaning Representation in amplification curves

a Amplitude of the function in the y-axis Affect the maximum fluorescence that the amplification curves can reach
b Vertical shift of the function along the y-axis Affect the maximum fluorescence together with parameter a
c Maximum slope of the sigmoid function Related to the efficiency of PCR reactions
d Horizontal shift of the function x-axis Fractional cycle of the inflection point (related to Ct values)
e Richard’s coefficient Asymmetry of the sigmoidal trend
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is used to pick the best-simulated multiplexes based on the
developed metrics ADS and MDS, and these assays are further
tested empirically to select the optimal one for diagnostic use.
Moreover, to verify the correlation of the Smart-Plexer ranking
with the ACA performance, the algorithm was used to select the
bottom multiplexes with the lowest ADS and MDS, by mod-
ifying steps 3 and 4, so that the smallest instead of the largest
ADS and MDS are applied.

The Smart-Plexer Workflow. The complete workflow of utilis-
ing the Smart-Plexer in a real laboratory setting is illustrated in
Fig. 1 and depicted as follows: given a number of target genes to
be identified, several candidate primer sets are first in-silico
designed and tested in singleplex format for each target,
resulting in real-time PCR amplification curves for all the
assays. The obtained data are further processed using the
background, late curve, and noisy curve removal techniques
mentioned in the “Data processing” section. The processed
curves are then fitted with the sigmoidal function from which
the “c” parameters are extracted. For each potential combina-
tion of primer sets, inter-target distances of “c” parameters from
singleplex curves are calculated and function as simulated
alternatives for empirical multiplex curve distances. In this way,
the best candidates for multiplex assays can be selected by
choosing the combinations with the most distant target clusters
(represented by “c”) in the simulation. This progress is achieved
by calculating the “c” parameter-based ADS and MDS of each
combination and finding the best ones using the ranking system
mentioned above. The best candidate assays shortlisted from
simulated multiplexes further go through wet-lab tests on
synthetic DNA templates, and the ACA-based target identifi-
cation is applied to the empirical multiplex data. The final
winner assay with the highest ACA classification performance
on synthetic DNA is labelled as the optimal assay, which is the
final output of the entire Smart-Plexer workflow.

3-plex validation. Synthetic DNA of Adenovirus (HAdV),
Human coronavirus HKU1 (HCoV-HKU1), and Middle East
respiratory syndrome-related coronavirus (MERS-CoV) targets
were selected for a 3-plex validation, and all the data were
generated in real-time digital PCR (qdPCR). Three primer sets
were designed as candidates for each target, resulting in 27
potential combinations of multiplex assays in total. Because of
the relatively small number of candidate assays, it is possible to
perform wet-lab experiments for all combinations and analyse
the relationship between simulated and empirical multiplex
curve distances. Simulated ADS and MDS were calculated on
different levels of curve representations (raw curves, FFI-
normalised curves, and fitted parameters), and their correla-
tions with the same metrics derived from empirical multiplex
data were analysed. Furthermore, the ADS and MDS of “c”

parameters, which are more concise indicators for inter-target
curve distances, were generated and compared between simu-
lated and empirical multiplexes. ACA performance against
simulated ADS and MDS was depicted, and the t-SNE of the
selected assays’ results were illustrated.

7-plex validation. Following the 3-plex validation, seven targets
were used to further validate the Smart-Plexer performance,
where each target had at least two different assays, resulting in a
total of 24 singleplexes and 4608 candidate combinations. Unlike
for 3-plex, the mass number of combinations makes it impossible
to empirically test all the assays in multiplex settings. Instead,
representative groups of assays were chosen for the laboratory
validation. Following the aforementioned Smart-Plexer workflow,
after calculating simulated ADS and MDS on “c” parameters, six
highest ranked (BEST) and six lowest ranked (BOT) combina-
tions were picked out using the Ranking System. In addition, six
middle-distant combinations (MID) were selected following the
steps described in Table 4 (Algorithm 2).

TOP-ADS and TOP-MDS (N= 6) assays were selected
empirically with large ADS but small MDS, and large MDS but
small ADS, respectively. Similarly to the 3-plex validation, the
relationship between simulated and empirical scores of the
selected assays was explored by correlations of simulated and
empirical metrics and comparisons of “c” parameter distributions.
ACA was also applied to different groups of combinations. The
complete pipeline of the 7-plex validation is illustrated in
Supplementary Fig. 5.

Clinical isolates classification. To verify the feasibility of Smart-
Plexer in real clinical settings, we chose the optimal multiplex assay
(PM7.2151) that achieved the highest ACA accuracy in synthetic
DNA testing and conducted experiments on clinical samples. The
multiplex was tested on the clinical samples using qdPCR, with 770
unprocessed raw amplification data (including flat curves) as the
output for each sample. After the data processing step, the curves
were input into an ACA classifier pre-trained with synthetic DNA
data, and curve-level predictions were assigned to every positive
curve. The target category of a sample was then decided by finding
the mostly shown label among all the sample’s curve predictions.
The confidence level of prediction is defined as the percentage of
curves with this most shown label. Correctly predicted samples are
marked as “detected”, otherwise “undetected”.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The source data to generate Figs. 2–5 plots can be found in Supplementary Data.
Additional data entire rank of combinations generated from singleplex assay are available

Table 3 Algorithm 1.

Algorithm 1

1: InitialiseNBEST as required, SBEST  +
2: for ne ¼ NBEST;NBEST þ 1; ¼ ;Nc do

3: SMDS
BEST ≜ {x | x are the top ne combinations in SALL with largest MDS}

4: SADSBEST ≜ {x | x are the top ne combinations in SALL with largest ADS}
5: SBEST  ðSMDS

BEST \ SADSBESTÞ∪ SBEST
6: if SBEST

		 		 � NBEST

7: return SBEST
8: end if
9: end for

Table 4 Algorithm 2.

Algorithm 2

1: Initialise NMID as required, SMID  +, MDSmax and ADSmax the
maximum MDS and ADS among all combinations,
ADSbias ¼ MDSbias  0:001

2: RMDS ≜
MDSmax

2 �MDSbias;
MDSmax

2 þMDSbias

 �

3: RADS ≜
ADSmax

2 � ADSbias;
ADSmax

2 þ ADSbias

 �

4: Stmp
MID ≜ {x | MDSx 2 RMDS and ADSx 2 RADS, 8x 2 SALL}

5: SMID ← apply Algorithm 1 on Stmp
MID with NMID

6: return SMID
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at https://github.com/LMigliet/SmartPlexer. Any remaining information can be obtained
from the corresponding author upon reasonable request.

Code availability
Code used to generate intermediate or final data and figures is available for download
from the following archived code repository: https://github.com/LMigliet/SmartPlexer.
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