
ARTICLE

Microbiomes and metabolomes of dominant coral
reef primary producers illustrate a potential role for
immunolipids in marine symbioses
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The dominant benthic primary producers in coral reef ecosystems are complex holobionts

with diverse microbiomes and metabolomes. In this study, we characterize the tissue

metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an

intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, Oʻahu,

Hawaii) and use these results to define associations between microbial taxa and metabolites

specific to different hosts. Our results quantify and constrain the degree of host specificity of

tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and

metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae.

Moreover, our multi-omics investigations highlight common lipid-based immune response

pathways across host organisms. In addition, we observed strong covariation among several

specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis

to further explore.
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Coral reef benthic communities in shallow tropical habitats
are dominated by three main types of primary producers:
hermatypic reef corals (Cnidaria in the order Scleractinia),

crustose coralline algae (CCA; Rhodophyta in the order Cor-
allinales), and various types of macroalgae. In addition to serving
as the sources for the majority of primary productivity on reefs1,2,
these primary producers together control reef accretion through
calcification and dissolution, determining habitat and reef
architecture crucial for biodiversity3–5. The chemical ecology of
benthic assemblages has been widely studied for decades, with
notable ongoing advances in areas such as allelopathic interac-
tions between corals and algae6,7, composition and bioavailability
of dissolved organic matter exudates8–13, chemical communica-
tions required for symbioses within the coral holobiont12,14,15,
and signaling compounds produced by CCA and/or their
microbial consortia that act as key larval settlement cues for
corals and other invertebrates16. Together, they act as hosts for a
diverse community of microbial taxa on coral reefs, which
includes both important primary producers like cyanobacteria
and consumers such as heterotrophic bacteria that are capable of
recycling dissolved organic matter.

Current methods in untargeted metabolomics17 have facilitated
the rapid analysis of thousands of known and unknown com-
pounds from hundreds to thousands of samples18, which allows
comparative metabolomics to investigate how the chemical
ecology of organisms vary among species19. Identifying com-
pound classes that are either shared or distinct among species is
the first step to understanding the evolution and function of these
compounds within and across ecosystems. Moreover, constrain-
ing and contextualizing the chemical milieu of a “healthy”
organism is important for developing a baseline against which to
chemically interrogate an organism for signs of stress or
disease20–22. Comparing the metabolomes of organisms that are
critical to ecosystem functioning (i.e., ecosystem engineers) is
poised to become a crucial component of Ecosystem- and
Resilience-Based Management23,24. Comparative metabolomics
will help define and characterize the chemical crosstalk that
controls the biogeochemistry and function of critical marine
habitats like coral reefs.

The greatest diversity of functional genes in macroorganisms is
found in their microbiomes: the collection of symbiotic uni-
cellular eukarya, bacteria, archaea, and viruses that inhabit the
tissues and surfaces of all plants and animals25. Linking micro-
biome structure to the metabolite composition of distinct inter-
acting organisms can reveal the sources and dynamics of
metabolites in ecosystems26. Whether a given compound or
metabolite is associated with a particular clade of microorganisms
or a particular host will help us understand symbioses in complex
systems where microbial processes are critical. In the case of
holobionts, metabolites are co-produced by the intertwined bio-
chemical processes of both host and microbes. As untargeted
metabolomics seeks to further annotate and understand the
diverse compounds that comprise biological metabolism, every
defined association of uncharacterized compounds within a
microbe or host advances our understanding of biochemical
ecology.

In many cases, the evolutionary history of host organisms can
predict microbiome composition27. However, on coral reefs, the
evolutionary relatedness of benthic primary producers is com-
plicated by multiple endosymbiosis events and convergent evo-
lution. In evolutionary terms, CCA is closely related to non-
crustose red algae (e.g., Jania sp.) and more distantly related to
green algae (e.g., Halimeda sp.). Corals, in contrast, are metazoan
mixotrophs harboring dinoflagellates (family: Symbiodiniaceae),
which are themselves eukaryotes with photosynthetic organelles
ultimately derived from brown algae. As a result, corals are able to

both consume particulate organic matter and produce fixed car-
bon through photosynthesis. Metazoans and dinoflagellates have
evolved distinct metabolic pathways relative to algae, though
some important and ancient lipid biosynthesis pathways are
shared28. Variation in how benthic primary producers have
evolved to receive carbon, synthesize metabolites, and interact
with microbes will all contribute to distinct microbiomes and
metabolomes.

In addition to the phylogenetic relatedness of host organisms, it
is important to consider the functional traits of benthic primary
producers that may structure their microbial communities. Traits
related to the physical structure, production of microbial food
sources, and host immune response are all potential determinants
of microbial community composition. Physical structure,
including anatomical microhabitats29,30, can influence the set-
tlement and persistence of both macro- and microorganisms.
Host exudates provide a microbial food source, selecting micro-
bial taxa that are capable of breaking down these compounds31.
Host immune response, and the corresponding release of anti-
microbial compounds, can be activated through multiple signal-
ing pathways. Analysis of tissue samples using untargeted
metabolomics can help coral reef biologists understand how host
organisms respond to microbial colonization.

In this study, we sought to synoptically sample specimens of
coral, macroalgae, and CCA from a representative tropical reef
ecosystem to analyze their metabolomes and microbiomes
(workflow in Fig. 1). Previous studies have documented meta-
bolites and microbes across benthic primary producers, but they
focused on particular benthic groups (e.g., algae32–35 and
coral36–38), zones of interaction6,37,39, or exuded metabolites31.
The goal of this study was to characterize the microbes and tissue
metabolites of all three types of dominant benthic primary pro-
ducers within a common framework. Tissues were sampled in a
broad sense, with each sample representing a homogenate of
multiple distinct physiological compartments. Homogenized
samples contained surface biofilms, mucus layers, subsurface
tissues, and skeletal components (e.g., calcium carbonate sub-
structures), representing a relatively holistic snapshot of the
holobiont. We hypothesized that the three types of primary
producers would have distinct microbiomes and metabolomes.
We predicted that corals would be enriched in known coral
bacterial symbionts, such as members of the class
Endozoicomonadaceae40 and the diazotrophic order
Rhizobiales6,41, while macroalgae would harbor known copio-
trophic microbes, such as Flavobacteriales and Rhodobacterales42.
We expected that geographic location and evolutionary related-
ness of the host would predict microbiome and metabolome
composition. Within each producer type, we predicted there
would be differentiation among host genera following patterns of
phylogenetic relatedness. We focused on collecting discrete host
individuals, which led us to exclude from our analysis interwoven
species assemblages such as turf algae. Finally, we expected to
identify groups of immune signaling compounds across all three
primary producer types that could potentially show response to
microbial colonization.

We further hypothesized that selected microbial taxa would
covary with some proportion of metabolites within and among
host taxa, allowing us to identify putative microbe-metabolite
interactions. Previous metabolomic investigations revealed that
lipids play an important role in holobionts and can act as sig-
naling chemicals in inflammatory responses37; therefore, we
expected to find microbial groups associated with host immune
response metabolite pathways. We sought to minimize bias and
standardize our analyses by rapidly sampling triplicate biological
specimens of multiple species within each category across a wide
area of reef over a 2-day period. Our sampling consisted of five
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Fig. 1 Metabolomic and microbiome workflows followed in this study. The samples were initially collected, prepared, and submitted for the metabolomics
and genomics workflow. a The metabolomics workflow consisted of data-dependent acquisition (DDA) mode in an LC-ESI-HR-MS/MS instrument in the
positive ionization mode, followed by data processing in MZmine2 (feature finding step). The resulting metabolomics feature table was submitted to
statistical analysis in R and to the following workflows in the GNPS environment, including Feature-Based Molecular Networking, library searches against
annotated spectral databases (available in GNPS) and against datasets in public repositories (MASST), and the Qemistree workflow (in silico annotations
and chemical hierarchy analysis). b The genomics workflow consisted of 16 S gene sequencing, in which the data were submitted to the Metaflowmics
pipeline. The genomic feature table generated was then subjected to statistical analysis in R. c Multi-omics analyses (mmvec and biclustering analysis)
were employed for data integration. Logos in the figure were obtained from the GNPS, R, Qiime2, and MZmine official websites.

Fig. 2 Sampling locations and taxa. a Map of sampling sites showing depth and elevation gradients within the study area. Bathymetry data courtesy of
Hawaiʻi Mapping Research Group, SOEST, UH Mānoa and elevation data courtesy of the U.S.G.S. National Elevation Dataset. Site locations were collected
by handheld GPS. The map was created using the R language for statistical programming (code available in the public GitHub repository associated with
this manuscript). b–j Representative photos of benthic primary producers collected fromWaimea Bay, Oʻahu. Scleractinian reef corals (b) Porites lobata, (c)
Pocillopora meandrina, and (d) Montipora capitata; erect rhodophytes (e) Jania and (f) Galaxaura, and a calcifying chlorophyte (g) Halimeda; and crustose
coralline algae (h) Hydrolithon, (i) Lithophyllum, and (j) Hydrolithon (PC: Keoki and Yuko Stender). For standardization in all of the analyses performed in this
work, coral, macroalgae, and CCA samples were defined as orange, green, and blue, respectively. Collection permit: Hawaiʻi State Department of Land and
Natural Resources Division of Aquatic Resources Special Activity Permit No. 2020-23. Representative photographs of benthic primary producers were
obtained from https://www.marinelifephotography.com with authorization from Keoki Stender.
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benthic sites (Fig. 2) roughly 100 m2 designed to span distinct
coral reef types flanking a shallow embayment (Waimea Bay,
Oʻahu) representative of the high wave-energy north-facing
shores of the Hawaiian Archipelago. We analyzed 112 tissue
samples from three types of primary producers (41, 45, and 26
samples for CCA, coral, and macroalgae, respectively) to resolve
the paired metabolomes (Fig. 1a) and microbiomes (Fig. 1b) of
each type, as well as the microbiomes and metabolomes of key
genera sampled within each type. We characterized differential
abundance of metabolites and microbes, showing clear associa-
tions between particular microbial taxa and the primary producer
host type. Finally, we uncovered a number of microbe-metabolite
covariation patterns (Fig. 1c) that may indicate the source or use
of key metabolites within these holobiont systems.

Results
Differentiating the metabolomes of dominant coral reef pri-
mary producers. Our untargeted metabolomic analysis yielded
11,215 ion features from 112 samples and 15 method blanks. Of
these 112 samples, 9 were judged to be poor quality, clustering
closely with method blanks in multivariate space (Supplementary
Fig. 1), and were removed from subsequent analysis. Of the
features in this reduced dataset, 268 were removed as background
features (detected only in method blanks), and 2893 were
removed as transient features (features detected in less than three
samples), leaving a total of 8054 ion features attributable as
holobiont tissue-associated metabolites of coral, macroalgae,
CCA, and microbial associates. The number of features does not
reflect the number of compounds detected in these samples as the
same compound can be detected as different adducts, and even
in-source fragments can occur. In addition, it should be men-
tioned that both the extraction protocol and the type of chro-
matography (liquid chromatography) used in this study highly
influence the compounds extracted and detected in these ana-
lyses. Therefore, the results that will be described represent only a
percentage of the metabolites present in the samples.

Of these 8054 features, 35% were unique to only one of the
three types of primary producers, while 37% were shared among
all three, and 27% were shared among two of the three (Fig. 3a).
Corals had the fewest unique ion features (389) while CCA had
the most unique ion features (1519). The most shared features
were between CCA and macroalgae (1285). We also analyzed the
degree of overlap among well-replicated genera within each type
of primary producer, showing that coral genera shared a high
proportion of metabolites (67%, Fig. 3b) while macroalgae had
fewer commonalities among genera (54%, Fig. 3c). Additionally,
31% of the macroalgae features were exclusively detected in
Halimeda spp., which was the sole green algae (Chlorophyta)
representative in the dataset.

We used multivariate approaches to further explore the degree
of metabolomic differentiation among benthic primary producers
and among genera within each type of primary producer
(Fig. 3d–f, Supplementary Fig. 2, Supplementary Data 1). An
ordination of tissue samples in multivariate space (Bray-Curtis
distance metric) clearly indicated that each primary producer
type presented a distinct metabolite profile (Fig. 3d, PERMA-
NOVA R2= 0.16; p < 0.001). There was roughly equal differ-
entiation between CCA and corals (pairwise PERMANOVA
R2= 0.112; p= 0.001), between CCA and macroalgae
(R2= 0.122; p= 0.001) and between macroalgae and corals
(R2= 0.130; p= 0.001). Differences among the three types of
primary producers were greater than the site-to-site variation
within each type (PERMANOVA Site R2= 0.10; p < 0.001) and
the interaction between site and type (R2= 0.09; p < 0.001). We
evaluated the degree of dispersion within each primary producer

type, which indicated that CCA had the most variable
metabolomes across all sites (average distance to median 0.5).
CCA dispersion was significantly greater (ANOVA p < 0.05) than
the dispersion of both coral and macroalgae (average distance to
median 0.42 and 0.45), which did not differ significantly from one
another (ANOVA p= 0.35). The variability in CCA metabolomes
was driven in part by higher site-to-site heterogeneity (Fig. 3d).
Evaluating the effect of site within each type of primary of
primary producer, (Supplementary Fig. 3, Supplementary Data 1),
CCA differed the most between sites (R2= 0.20, p= 0.001), while
corals differed the least (R2= 0.16, p= 0.001), and macroalgae
were intermediate (R2= 0.18, p= 0.002). Within corals, there was
clear separation among the genera Porites, Montipora, and
Pocillopora (PERMANOVA R2= 0.16, p= 0.001; Fig. 3e) while
macroalgae exhibited variable patterns of heterogeneity among
the three genera analyzed (Halimeda, Galaxaura, and Jania;
R2= 0.25, p= 0.001 Fig. 3f).

We identified specific ion features differentially enriched in
corals, macroalgae, and CCA using two methods: random forest
(RF) and linear models with correction for multiple comparison
(LM) (Supplementary Data 2). Out of 8054 ion features, 128
exhibited strong predictive power (Supplementary Data 2) for
discriminating between primary producer types based on RF
(Mean Decrease Accuracy scores >2 standard deviations above
the mean). In addition, 1160 features differed significantly in
relative abundance among the three primary producer types
based on LM (FDR-adjusted p < 0.001 and mean centered log-
ratio in a sample type > 1). Based on our criteria, RF selected a
more conservative subset of features associated with the different
primary producer types compared to LM. However, almost all of
the RF selected features (124 out of 128) were also significantly
differentially abundant in sample types as tested by LM. Variable
importance in RF was used to identify a smaller set of ion features
that were predictive of primary producer type, while the LM
analysis highlighted a broader set of differentially abundant
features across primary producer types.

Molecular networking and spectral annotation. To better
understand the chemistry of the metabolites detected, we used
three informatic approaches to identify and categorize molecular
ion features: Feature-Based Molecular Networking43 combined
with library searches, Qemistree44, and MASST45, all of which
were implemented in the Global Natural Products Social Mole-
cular Networking (GNPS) platform46. First, molecular networks
were constructed to organize ion features into molecular families
and the MS/MS spectra were searched against the GNPS public
spectral reference libraries (speclibs). Each spectral match and
mass error was evaluated to confirm level 2 annotations according
to the Metabolomics Standard Initiative (MSI)47. Molecular
families containing features that exhibited both high organism
association in the statistical analyses (Supplementary Data 2) and
matched spectra in the (GNPS) libraries are shown in Fig. 4, while
the complete molecular network obtained is shown in Supple-
mentary Fig. 4. The structures shown in Fig. 4 represent the
spectral matches obtained from the GNPS libraries. It should be
noted that as untargeted mass spectrometry methods are not able
to differentiate regio- and stereo-isomers, the position of sub-
stitutions and double bounds was not determined.

The molecular families shown in Fig. 4 contained predomi-
nantly library matches to lipids, terpenoids, purine nucleosides,
and chlorophyll derivatives. Metabolites and molecular families
that were statistically associated with primary producer type and
differentially enriched in specific primary producer types are
described in detail in Supplementary Note 1. All the metabolites
with a significant primary producer type association shown in
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Fig. 4 were differentially abundant in coral and macroalgae
samples. Some networks, as in the glycerophospholipids, had
multiple features that differentiated between sample types based
on RF importance. In addition, matches to phthalates were also
retrieved, which could be natural products produced by
bacteria48,49, or accumulated from plastic contaminants50—
though contamination from sample collection cannot be
ruled out.

Metabolites detected in CCA samples proved to be particularly
cryptic. No library matches were observed within the molecular
families composed predominantly of features that were abundant
in CCA. Several of these metabolites were significantly associated
with primary producer type (based on RF and LM) and were
enriched in CCA, indicating that CCA may be a source of novel
chemical diversity (Supplementary Fig. 5).

Metabolite in silico annotations and repository-scale analysis.
Out of the 8054 ion features, 5271 fingerprints were obtained by
SIRIUS4, ZODIAC, and CSI:FingerID. Only 377 features were
direct matches to compounds in spectral libraries (4.6% of total).
The dendrogram depicted in Fig. 5a, created using Qemistree,
shows the hierarchical classification of a subset of ion features
that were classified at the subclass level. Subclasses that exhibited
a high correlation with specific benthic primary producers
(ANOVA p < 0.04) are highlighted and their relative abundance

in each type is shown in the violin plots (Fig. 5b). Dendrograms
highlighting the most abundant classifications obtained at
superclass, class, and subclass levels are shown in Supplementary
Fig. 6. Ion features that were predictive of primary producer type,
as identified by RF, were mostly unidentified at the subclass level
(87 unidentified out of 128 total). The subclasses containing the
highest number predictive features were glycerophosphocholines
(n= 7), fatty acids and conjugates (n= 5), and fatty acid esters
(n= 4).

More than a dozen metabolite subclasses were significantly
differentially abundant among the primary producer types (FDR
adjusted p < 0.05). Some compound subclasses were likely to
contain compounds that directly affected microbes. For example,
prenol lipids (e.g., terpene lactones, sesquiterpenoids, and
monoterpenoids) can have antimicrobial effects and were present
at a higher relative abundance in macroalgae and CCA. Some
subclasses were likely to contain signaling compounds that could
potentially be affected by symbiotic microbes, such as purine
derivatives, which had higher relative abundance in macroalgae,
and both estrane steroids and carbonyl compounds, which were
present at a higher relative abundance in both macroalgae and
CCA. Finally, several metabolite subclasses were likely to contain
immunolipids relevant to microbial symbiosis. These included
fatty acids and conjugates, linoleic acids and derivatives,
glycerophosphocholines, and eicosanoids37,51,52. Ion features
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Galaxaura (n= 4), and Jania (n= 4) macroalgae genera (“other” refers to the less sampled algae genera (n= 9)). Ordinations (nonmetric multidimensional
scaling of Bray-Curtis dissimilarity matrices from 8054 ion feature relative abundances) illustrate compositional differences among d metabolites from
each sample type (PERMANOVA R2= 0.16; p < 0.001) and metabolites from genera of coral (e) and macroalgae (f).
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classified as glycerophospholipids (glycerophosphocholines and
glycerophosphoethanolamines) and glycerolipids were associated
with both coral and macroalgae. The different subclasses of fatty
acyls presented variable association with primary producer type.
Linoleic acids derivatives and fatty alcohols were observed at a
higher relative abundance in CCA, while fatty acids were highly

associated with corals. Metabolites classified as eicosanoids were
similarly enriched in both macroalgae and CCA, while those
classified as fatty acid esters were associated with both macroalgae
and coral.

Several molecular families associated with CCA did not result
in library matches (Supplementary Fig. 5) or in silico annotations.
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Fig. 4 Molecular families comprising features associated with coral reef benthic primary producers. Molecular families are networks of structurally
similar ion features: nodes represent tandem mass spectrometry (MS/MS) spectra of distinct ion features and edges represent the MS/MS fragmentation
spectral similarity (cosine >0.7). Nodes are labeled by the precursor mass of each feature. Pie charts in each node indicate the relative abundance of
metabolites in each benthic primary producer (CCA, coral, and macroalgae). Node sizes are relative to the summed peak areas of the precursor ion in
MS1 scans. Information regarding the significance of each feature in Random Forest (RF) and Linear Model (LM) algorithms are shown. Structures
represent level 2 annotations (according to the 2007 metabolomics standards initiative47) of the primary producer associated features based on the library
matches and molecular formula confirmation. a–e Molecular families are classified as (a) lipids, (b) terpenoids, (c) purine nucleosides, (d) phthalates, and
(e) chlorophyll. The structures show the spectral library matches, and the compounds present in the samples could be their isomers.
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Fig. 5 Chemical classification of diverse ion features and subclasses that are differentially associated with each coral reef primary producer. a A
chemical hierarchy of the predicted molecular fingerprints from the CCA, coral and macroalgae samples. The tree is pruned to keep only fingerprints
classified to a subclass level in the ChemOnt ontology using ClassyFire123 (total of 3,205 branches). Tree tips of the dendrogram show the annotation of
each chemical feature. The internal nodes with pie charts depict the distribution of subclasses with differential abundance among primary producers
(ANOVA, p < 0.04), and the bar plots at the outer ring indicate the relative abundance of a molecular fingerprint in each primary producer type. The
structures shown were retrieved from spectral library matches of the feature-based molecular networking workflow (level 2 or 3 annotations according to
the 2007 metabolomics standards initiative47), and the compounds present in the samples could be their isomers. b Violin plots display the distribution of
each subclass in coral (n= 42), macroalgal (n= 24), and CCA (n= 37) tissue samples.
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However, a search of their MS/MS spectra in a repository
containing thousands of datasets provided important information
about their distribution across various sample types. The
fragmentation spectra for all 158 features in these networks were
searched against public datasets45 (Supplementary Data 3). Only
three features from the largest CCA molecular family matched
with MS/MS spectra detected in public datasets, both of which
were associated with coral reef benthic habitats
(MSV000080572—Coral Reef ARMS: 11% of the samples; and
MSV000079146—Marine, coral, ARMS: 5% of the samples). In
contrast, features of another CCA network matched numerous
observed spectra across several public datasets, including
environmental samples from coral, including Porites sp., as well
as fish gut microbiomes, and stromatolites. In addition to
environmental samples, these spectra were observed in cultivated
bacteria, including cyanobacteria, Bacillus sp., and Streptomyces
sp. Features belonging to three molecular families associated with
CCA did not match any spectra published in publicly available
datasets.

Differentiating the microbiomes of dominant coral reef pri-
mary producers. Our amplicon sequencing pipeline yielded
36,009 amplicon sequence variants (ASVs) from the 112 samples
for which host tissue-associated Bacteria and Archaea were suc-
cessfully amplified. After filtering out rare ASVs and rarefying
samples to an even sequencing depth of 15,000 reads per sample,
4989 ASVs and 93 samples remained in the data set. We used
multivariate approaches to explore the degree of microbiome
differentiation among CCA, coral, and macroalgae, and the
genera associated with those primary producer types (Fig. 6).
Tissue samples included surface biofilms, living cells, and calcified
structural components. An ordination of tissue samples in mul-
tivariate microbiome space (Fig. 6a) indicated that, similar to the
metabolome, each primary producer type exhibited a distinct
microbial community (PERMANOVA R2= 0.16; p= 0.001). In
contrast to the metabolomes, we found no significant differences
in microbiomes composition within sample groups by the site
they were collected from (p= 0.197) or evidence of site-to-site
variation within corals or CCA (p= 0.67 and p= 0.22, respec-
tively)—Supplementary Fig. 7, Supplementary Data 1. Within the
macroalgae, we did see significant site-to-site microbiome varia-
tion (R2= 0.38; p= 0.001). In contrast to the metabolomes,
which exhibited roughly equal differentiation among the three
primary producer types, the microbiomes of macroalgae differed
more from corals (R2= 0.19) and from CCA (R2= 0.17) than
corals and CCA differed from each other (R2= 0.06; all pairwise
PERMANOVA p= 0.001).

As with the metabolomes, multivariate dispersion of micro-
biomes was highest in CCA (average distance to median 0.182).
CCA dispersion was significantly higher than macroalgae
(R2= 0.112; p= 0.024) with corals showing an intermediate level
of dispersion (0.168). Overall, dispersion among microbiomes was
less than half that of the metabolomes, suggesting significantly
greater homogeneity of microbial consortia relative to chemical
composition. Similarly to the metabolomes, there was an evident
separation of microbiomes among the three most sampled coral
genera (PERMANOVA R2= 0.34; p= 0.001) and macroalgae
genera (PERMANOVA R2= 0.38; p= 0.001) (Fig. 6b, c).

The enrichment patterns of abundant, widespread bacterial
families that were statistically associated with particular benthic
holobiont primary producers are summarized in Fig. 6d. Many
microbial families were differentially abundant in macroalgae
(n= 25), and showed consistent patterns in relative abundance
across the genera sampled. Macroalgae microbiomes were
compositionally similar to one another. This is evidenced by

the comparatively low dispersion of macroalgal samples observed
in the NMDS ordination compared to the dispersion coral and
CCA samples (Fig. 6a). Macroalgae were frequently associated
with marine copiotrophs, including Sapropsiraceae, Rhodobac-
teraceae, Flavobacteriaceae, Vibrionaceae, and unclassified Cyto-
phagales. Relatively few microbial families were associated
exclusively with coral or CCA (n= 7 and n= 5). Coral associates
included the families Endozoicomonadaceae, common members
of the coral ‘core microbiome’40, and Nitrosococccaceae, which
contains ammonia oxidizing taxa. The families Chitinophagaceae
and Burkholderiaceae were also present at a higher relative
abundance in coral and have been implicated in coral disease and
stress53,54, while associates of CCA tended to belong to poorly
described groups, including the family Tenderiaceae and Marine
Group UBA10353. Cyanobacteria, which are microbial primary
producers, were common in microbial communities across the
three primary producer types. Eight families of Cyanobacteria
were present in more than half of all samples. The majority of
these common cyanobacteria were more abundant in macroalgae
(Supplementary Fig. 8).

Many families had a dual association with coral and CCA
(n= 26), underscoring the broad similarity between coral and
CCA microbiomes when compared to the microbiome of
macroalgae. There was little overlap between the microbial
families associated with coral and/or CCA and the families
associated with macroalgae. The summed relative abundance of
microbial families varied across coral genera. Pocillopora
harbored a distinct microbial community compared toMontipora
and Porites. Highly abundant microbial associates of both CCA
and coral included Kiloniellaceae, Chloroflexi, BD 2-11 Terres-
trial group (Gemmatimonadetes), unclassified Rhizobiales,
Nitrospiraceae, and Nitrospumilaceae.

Microbe-metabolite associations. We integrated microbiome
and metabolome datasets using the tool mmvec55 which imple-
ments a neural networking algorithm to predict co-occurrence
patterns between microbiome ASVs and ion features. A multi-
variate ordination of metabolite mmvec scores (Fig. 7) provided
a visual tool for understanding the processes that structured
microbe-metabolite co-occurrence in the different benthic pri-
mary producers. Microbe-metabolite associations proved to be
distinct across primary producer types. Metabolites that were
associated with each type occupied separate regions of the
ordination (colored 95% ellipses). This indicates that the asso-
ciation between a given metabolite and a primary producer type
could generally be inferred by looking at the suite of microbes
that the metabolite co-occurred with. The PC1 axis separated
metabolites enriched in macroalgae from those enriched in coral
and CCA, while the PC2 axis separated metabolites enriched in
coral from those enriched in CCA and macroalgae. Microbes
showed consistent trends in metabolite association at the family
level; ASVs in the same family tended to co-occur with similar
groups of metabolites. Two exemplary families are shown,
illustrating the co-occurrence of algal associated, copiotrophic
bacteria (family Saprospiraceae) with algal metabolites, and the
co-occurrence of coral associated bacteria (family Kiloniellaceae)
with both coral and CCA metabolites (Fig. 7, arrows). Additional
family level associations can be found in the Supplementary
Fig. 9.

To better visualize co-occurrence patterns across microbe/
metabolite pairs, a bicluster graphic was constructed using the R
package ComplexHeatmap56 (Fig. 8 and Supplementary Fig. 10).
This visual analysis links covariation of specific microbes and
metabolites with co-enrichment in the tissues of benthic primary
producer types. Colored cells in the bicluster indicate positively
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Fig. 6 Diversity and holobiont associations of microbial taxa demonstrate clear overlap between coral and CCA microbiomes and distinct macroalgal
holobiont communities. a Non-metric Multidimensional Scaling (NMDS) of coral (n= 35), CCA (n= 36), and macroalgae (n= 22) samples based on an
unweighted UniFrac distance matrix produced from 36,009 Amplicon Sequence Variants (ASVs) (PERMANOVA Sample Type R2= 0.16; p < 0.001).
b NMDS plot of coral genera Porites (n= 15), Monitipora (n= 15) and Pocillopora (n= 5). c NMDS plot of macroalgae genera Halimeda (n= 3), Galaxaura
(n= 5), and Jania (n= 5) (“other” refers to the less sampled algae genera (n= 9)). d Heatmap shows standardized (z-scored) summed relative abundance
for each Family of Bacteria (rows, organized by sample type association and Class) across samples (columns, organized by sample type). Included are all
abundant, widespread Bacteria families (found in at least 1/3 of samples with maximum relative abundance >2%) exhibiting significant differences in mean
relative abundance among coral, CCA and macroalgae tissue samples. At right is the distribution of relative abundance among the 93 samples for each
Family.
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co-occurring microbe/metabolite pairs that were most abundant
in the same primary producer type. Microbial taxa (columns)
were arranged by 16 S phylogenetic relatedness, highlighting
trends in co-occurrence and sample type abundance across
taxonomic groups. Metabolites (rows) were arranged by similarity
in chemical structure (annotated in silico using the Qemistree
workflow), showing variation in both primary producer enrich-
ment and microbial co-occurrence across closely related chemical
compounds. The resulting bicluster (with 1266 microbes and 438
metabolites features retained, Supplementary Fig. 10) highlighted
patterns in microbe/metabolite associations that occurred within
the different primary producer types. As expected, microbe/
metabolite pairs that were most abundant in the same type tended
to have high mmvec scores, indicating a high probability of co-
occurrence. It should be noted that low and negative mmvec
values indicate no relationship, not necessarily a negative
correlation.

The biclusters in Fig. 8 show microbe/metabolite associations
in two metabolite subclasses: glycerophosphocholines and long-
chain fatty acids. These chemical subclasses were differentially
abundant in the primary producer types (Figs. 4, 5) and
contained features that generated library matches to known
immune signaling compounds. To show how microbe/metabo-
lite associations shifted across primary producer types, we
selected a set of macroalgae associated families (Rhodobacter-
aceae, Flavobacteriaceae, and Saprospiraceae) and a set of CCA/

coral associated microbial families (Burkholderiaceae, Kill-
oniellaceae). A microbial family that was not associated with
any specific type (Woeseiaceae) was included for comparison.
The intersecting dendrograms of microbial phylogeny and
metabolite structure put co-occurrence patterns into a frame-
work of microbial and chemical relatedness (Fig. 1c). This
analysis showed structurally similar lipid based signaling
compounds in CCA, coral, and macroalgae associating with
different microbial families characteristic of those primary
producer types (Fig. 8). The underlying associations between the
relative abundance of microbial families and specific ion
features are shown as insets in the figure. The inset features
include spectral library matches to 20-hydroxyeicosatetraenoic
acid (20-HETE), an established immune signaling compound in
mammals; 17,18-Epoxy-5,8,11,14-eicosatetraenoic acid (17(18)-
epETE), a lipid, abundant in marine organisms, that is a
microbially dependent mediator of mammalian allergy,
immune, and inflammatory response57,58; Lyso-PAF, an
immune response compound that, together with PAF, is
involved in lipid stress response pathways in both mammals
and corals36,37,59; and 1-Stearoyl-2-hydroxy-sn-glycero-phos-
phocoline (Lyso-PC 18:0), a derivative of lysophosphatidylcho-
line that has been linked to lower cancer rates in humans and
has been reported in soft corals60,61. In each case, there is a
positive co-occurrence relationship between the microbial
family and the immune signaling compound.

Fig. 7 Microbe-metabolite co-occurrence analysis (mmvec) demonstrates holobiont-specific associations between bacterial taxa and ion features. In
the biplot, spheres represent metabolites. The axes are the first two principal coordinates learned from the conditional probabilities of microbe-metabolite
co-occurrence. Filled ellipses represent the 95% confidence intervals for metabolites that were differentially abundant in a primary producer type based on
LM. Arrows represent microbial ASVs belonging to two families, Kiloniellaceae (white, n= 28) and Saprospiraceae (black, n= 30), which were strongly
associated with coral and macroalgae, respectively. Arrows pointing in the direction of metabolites indicate microbe-metabolite co-occurrence. Small
angles between arrows indicate microbes co-occurring with each other. The names of the ion features were retrieved from spectral library matches of the
feature-based molecular networking workflow, and the compounds present in the samples could be their isomers.
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Discussion
Coral reef benthic primary producers represent chemically and
microbially distinct holobionts. The composition of these
organisms in a reef ecosystem affects the chemical compounds

and microbial communities that occur on that reef. As benthic
communities change, there are corresponding shifts in the bio-
chemical processes occurring on the reef, which are a product of
both the host genomes and bacterial metagenomes62.

Fig. 8 Associations between microbial taxonomic groups and metabolites from two chemical subclasses are associated with specific dominant coral
reef benthic producers. Binary biclusters indicate the presence/absence of microbe-metabolite co-occurrence (mmvec) for (a) long chain fatty acids and
(b) glycerophosphocholines (see Fig. 1c). A filled tile indicates that the microbe and metabolite co-occurred. The color of the tile indicates the primary
producer type in which the microbe and metabolite co-occurred. Metabolites (rows) are arranged by structural relatedness (Qemistree). Microbes
(columns) are arranged by phylogenetic relatedness (16 S FastTree). Metabolites that matched known spectra are annotated with their putative molecular
names. Metabolites that were significantly associated with primary producer type are indicated with “*”. Several associations between specific metabolites
and microbial families are highlighted. Dot plots show the log relative abundance of microbial families against the log relative abundance of ion features
across all samples. The names of the ion features were retrieved from spectral library matches of the feature-based molecular networking workflow, and
the compounds present in the samples could be their isomers.
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Understanding these microbially mediated chemical processes
may help to explain the persistence of coral dominated reefs and
global trends in coral reef degradation and shifts towards algal
dominated systems. A necessary first step is to compare microbes
and metabolites that are associated with dominant reef primary
producers, including corals, CCA, and macroalgae.

Our multi-omics analyses identified patterns in microbe-
metabolite co-occurrence, which pointed towards potential
microbe-host interactions in benthic holobionts. Our results lar-
gely corroborate our hypothesis that the three dominant benthic
primary producers in coral reefs (corals, CCA, and macroalgae)
harbor statistically distinct microbiomes and metabolomes. High-
throughput chemical and microbial annotations allowed us to
compare known immune signaling compounds across benthic
holobionts. Correlations between microbial families and
organism-associated immune signaling compounds may provide
key insights into how host-microbe associations are either
maintained or perturbed in reef ecosystems. This approach could
be used to characterize multifaceted shifts in coral reef health, for
example monitoring levels of copiotrophic microbes associated
with macroalgae along with changes in the immune response
pathways of both algae and coral. While targeted experiments are
necessary to elucidate specific mechanisms of host-microbe
interaction, untargeted metabolomic and metagenomic approa-
ches can provide a snapshot of the chemical and microbial
landscape of an ecosystem.

The metabolomic analyses revealed that the chemical com-
pounds produced by corals, CCA, and macroalgae were statisti-
cally different (Fig. 3, Supplementary Data 1). CCA presented the
most diverse chemical profile, emphasized by the high percentage
of metabolites detected solely in this sample type. In natural
systems, CCA colonizes and binds together coral reef substrates.
In turn, CCA and its microbial biofilms provide a living and
chemically-attractive habitat63, that recruits16 other reef inverte-
brates, potentially making their metabolomes and microbiomes
complex composites derived from multiple organisms. As
expected, the greatest overlap in ion features was between the two
algal functional groups we analyzed: CCA and macroalgae.
Within coral and macroalgae, chemical profiles varied at the
genus level (Fig. 3b, c, e, f), in accordance with previous reports in
the literature37.

Our results emphasize the potential for metabolomics to be
used as a tool for profiling the health of benthic organisms in
coral reefs, a priority for the management of these sensitive
ecosystems. Concepts that are already familiar to ecologists, like
species richness and community dissimilarity, can be helpful
when comparing metabolomic profiles across host organisms and
geographic locations. Straightforward comparisons of feature
richness and sample dissimilarity can reveal broad trends (Fig. 3).
In our dataset, it was clear that chemical profiles varied spatially,
varying significantly more than the microbiomes did among the
same samples. Coral and CCA samples collected immediately
adjacent to the Bay (sample code Waimea Bay, Fig. 2) grouped
separately from samples collected elsewhere (Supplementary
Fig. 3). It is important to note that samples from this site were
extracted on a separate 96-well plate, so batch effects may explain
some of the observed variation (Supplemental Methods). In terms
of habitat, however, the Waimea Bay site was distinct from the
other collection sites and we believe this pattern likely represents
real biological variation. This site is located near the mouth of the
Waimea River, which substantially alters environmental condi-
tions. Within the bay, marine organisms are exposed to periodic
runoff, freshwater, and sediment. Corals exposed to these con-
ditions must expend energy to clear colony surfaces, which alters
many metabolic processes64. In the future, metabolomics may be

a sensitive tool for detecting environmental impacts on benthic
communities before stressors lead to tissue loss or death.

Of the ion features that were annotated based on spectral
matches, most belonged to lipid classes. Lipids are ubiquitous
metabolites that perform a variety of cellular functions and are
present in both corals and algae65,66. In corals, they are an
important energy reserve that can represent up to 40% of the
coral’s dry mass and are important in supporting physiological
resilience and post-bleaching recovery66. In algae, lipids play
numerous roles in energy storage, membrane formation, and
stress response, for which they are considered biomarkers67.
While lipids are perhaps best known for storing chemical energy
and forming bilayer membranes, their emerging role in complex
intercellular signaling has become a focus of host-microbe
interactions. In heavily studied mammalian systems, short-
chain fatty acids are thought to be a key component of cross-
talk between the gut microbiome and host organisms68. A sepa-
rate interaction pathway proceeds through the oxidation of
membrane phospholipids, which can tip off a host organism to
the presence of pathogenic microbes, igniting a signaling cascade
of damage control through a process known as ‘innate
immunity69. Given the importance of oxylipins, in host immune
response, it is perhaps unsurprising that microbial symbionts and
pathogens are capable of upregulating, modifying, and mimicking
them. In corals, it has been established that oxylipins produced by
the metazoan host can be modulated by their dinoflagellate
endosymbionts, with endosymbionts effectively dampening host
immune response70. Numerous fungal and bacterial pathogens
are capable of dampening host immune response through mod-
ification of host oxylipins or through the production of bioactive
oxylipins52.

Within our dataset, a number of potentially relevant immune
signaling compounds were recovered. Glycerophospholipids,
including lysophosphatidylcholines (LysoPCs), derivatives such
as platelet-activating factor (PAF) C:16, and phosphatidylcholines
(PCs) with varied chain extension, were among the most com-
monly detected lipids in our samples. LysoPCs are widespread in
many organisms, including mammals, where they act as proin-
flammatory signals during immune response. Previous studies
have proposed that corals may have an immune system with
properties analogous to mammals37,71. PAF concentration in
Porites sp. was observed to increase under stress and inflamma-
tory conditions37,59 and has been suggested as a molecular
indicator of coral bleaching36. In algae, LysoPCs were previously
reported in lipidomic analyses of brown algae72, and PCs, in
general, are common metabolites found in eukaryotic algae and
plants. Other lipid classes were also widely detected in our
dataset. Fatty acids, which were recovered in abundance, are
precursors for the biosynthesis of other lipids73, present anti-
bacterial activity against specific pathogenic microorganisms74,
and are implicated in microbe-host signaling68. Several glycer-
olipids of marine origin have been reported75, and acyl carnitines
are widely found in corals31, being involved in transport across
cell membranes76 and considered biomarkers of cell toxicity77.
More specifically, eicosanoids and linoleic acids are reportedly
related to immune response in animals, and their biosynthesis
was previously related to bacterial infection in corals37,78 and
insects79. Lastly, linoleic acids and their epoxyoctadecamonoenoic
acid (EpOMEs) derivatives have been implicated in mouse and
lepidopteran immune response to bacteria80,81. The potential
avenues for lipid mediated host-microbe are both broad and
numerous. Through the application of untargeted metabolomics,
we were able to identify positive co-occurrence between these
putative signaling compounds and microbial taxa with established
roles in coral reef ecosystems.
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In addition to lipids, our untargeted approach to metabolomics
recovered a number of non-lipid compounds. Pigments, such as
loliolide and fucoxanthin, were annotated. Fucoxanthin plays an
essential role in harvesting light for photosynthesis and
photoprotection82, while loliolide is an apocarotenoid considered
as a photo-oxidative or thermal degradation product of
carotenoids83. Pheophorbide A, a product of the chlorophyll
catabolism, was also observed in macroalgae and CCA samples.
Lastly, we recovered a number of purine nucleosides, which are
universal molecules with a wide variety of vital biological func-
tions in many organisms, forming building blocks for DNA and
RNA. Both macro- and microorganisms in marine environments
can produce structurally unusual nucleosides with unique biolo-
gical properties84. There are abundant opportunities to apply
untargeted metabolomics to investigate other types of compounds
that may be enriched in particular organisms or involved in host-
microbe interactions.

A vast majority of molecular features that were statistically
associated with different sample types could not be annotated. In
fact, the annotation of metabolites in the metabolomics workflow
remains a bottleneck in the field. The in silico tools that were
employed unquestionably boosted the annotation rates in this
dataset, but the annotation of certain metabolites remained
intractable. While close to 18% of the metabolites detected in this
dataset originated from CCA samples, many features that were
primarily detected in CCA, comprising several molecular net-
works, did not result in any in silico annotations (Supplementary
Fig. 5) or library matches. This is consistent with the low anno-
tation rates of exuded metabolites of CCA recently reported31.
Therefore, CCA represents a source of potentially new com-
pounds to be investigated in future studies. A repository-scale
analysis allowed us to determine whether the major networks
composed of unannotated CCA MS/MS spectra had been pre-
viously reported in other public datasets. Despite comparison to
numerous datasets, several CCA associated networks remained
unmatched, indicating that CCA might produce distinct mole-
cular families compared to the other reef primary producers, and
further emphasizing how little chemical information related to
CCA is publicly available. A handful of features from the major
CCA molecular family matched with public datasets related to
coral reefs, indicating that these compounds are, indeed, found in
this environment and are not artifacts. Intriguingly, a molecular
family with features matching datasets derived from both coral
reefs and cultivated bacteria suggests that some of these com-
pounds may be produced by the microbes associated with CCA.
The enigmatic chemical diversity of CCA is noteworthy because
of its role in the recruitment of coral larvae. CCA is known to
foster coral settlement16,85 and suppress the growth of
macroalgae86, a necessary step for coral reef regeneration. How-
ever, the chemical mechanisms by which CCA signals to coral
larvae and promotes their growth have not been characterized
definitively. There remains much to be discovered about the
chemical landscape of these organisms.

Mirroring the metabolomic results, microbial amplicon
sequencing revealed that different reef primary producers harbor
distinct microbial communities (Fig. 6, Supplementary Data 1).
Among coral genera, Monitipora and Porites presented more
similar microbiomes compared with Pocillopora, which is in
accordance with their closer phylogenetic relatedness87. Similarly,
the red algae genera Galaxaura and Jania (Rhodophyta) harbored
more similar microbial communities compared to the green alga
Halimeda (Chlorophyta), further demonstrating that microbial
communities tracked the phylogenetic relatedness of the host
organisms88. Meanwhile, CCA (Rhodophyta, Corallinales) had
strikingly different microbiomes compared to the other algal taxa.
The microbiomes of CCA were much more similar to those of

coral than they were to erect macroalgae, suggesting that the
encrusting and calcifying lifestyle of CCA and coral may be an
important determinant of microbiome structure. Unlike the
metabolomes, which differed by site, the microbial communities
were not predictably site-specific (Supplementary Fig. 7). Sam-
pling was conducted during the dry summer months, during
which the river mouth was blocked by a sand berm, making it
unlikely that substantial inputs of microbes from freshwater were
occurring.

A number of microbial taxa were significantly enriched in a
particular host (or hosts) and matched previous reports of host-
microbe associations89. Coral associated microbes included taxa
that are thought to be involved in nitrogen recycling in and
around the host, which may help corals to persist in oligotrophic
waters90. Our data indicated several bacterial families associated
with nitrogen cycling (Nitrosopumilaceae, Rhizobiales, Nitroso-
coccaceae, Nitrospiraceae) were associated with coral samples.
CCA was associated with many of the same families as corals,
including several families involved in nitrogen cycling. Nitros-
piraceae are notable for their functional role as nitrite oxidizers
while Nitrosopumilaceae are known for their role as ammonia
oxidizers53,54. Both are thought to contribute to nitrogen cycling
in coral holobionts91. A prior study reported that Rhizobiales
were a core member of CCA microbiomes and that Nitrospir-
aceae were associated with both CCA and a calcium carbonate
substrate control92. While Rhizobiales include diazotrophic taxa,
their role in nitrogen cycling within the coral microbiome is still
unclear93,94. Both nitrogen cycling and the presence of calcium
carbonate substrates may be key to understanding these host-
microbe associations. The family Kiloniellaceae was also highly
associated with both CCA and corals; these microbes are putative
denitrifiers95 and have been reported in association with healthy
corals96.

There is growing evidence that the association between nitro-
gen cycling microbes and coral hosts is potentially an important
mutualism mediated by chemical exchange of both organic and
inorganic forms of nitrogen. Microbial nitrogen transformation,
in particular dissimilatory nitrate reduction to ammonium, is
thought to be common, though highly variable, in tropical
scleractinian corals97. Prior work on coral reef exometabolites31

showed that coral exudates were enriched in organic nitrogen
containing compounds, which were distinct from those exuded by
macroalgae, and could potentially drive shifts in water column
microbial communities. Many Cyanobacteria are capable of
nitrogen fixation and have been identified as important con-
stituents of both coral and macroalgae microbiomes98,99. The
presence of intercellular cyanobacteria in some coral species
indicates that at least some nitrogen-fixing Cyanobacteria are
capable of eluding or dampening coral host immune response99.
In our analysis, macroalgae were associated with several families
of Cyanobacteria (Supplementary Fig. 8). Of the prevalent Cya-
nobacteria in our dataset, most occurred at a higher relative
abundance on macroalgae compared to coral and CCA. This
trend towards an increased relative abundance of Cyanobacteria
on macroalgae merits further investigation.

Macroalgae-associated microbes included copiotrophic taxa
(Rhodobacteraceae, Flavobacteriaceae, Vibrionaceae, and Alter-
monadaceae), which specialize in breaking down large organic
molecules and have been reported to increase in response to algal
exudates8. Previous work has shown that macroalgal exudates are
carbon rich, while coral exudates contain higher concentrations
of nitrogen and phosphorus31. Experimental removal of erect
macroalgae from coral in French Polynesia altered the relative
abundance of these bacterial families in coral tissues. Both Fla-
vobacteriaceae and Rhodobacteraceae decreased in relative
abundance following removal of epiphytic algae from coral100.
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These reports point to a compelling link between increased
macroalgae abundance, the release of carbon rich exudates, and
increased an abundance of copiotrophic bacteria on both the
surface of reef organisms and in the water column. It remains
untested whether macroalgae in some way benefit from this
association with copiotrophic bacteria, perhaps through increased
resource acquisition or competitive advantage.

The observed difference between microbial communities
associated with CCA and macroalgae has several possible expla-
nations. CCA harbored a large number of exclusive compounds,
any of which could be shaping microbial community structure.
Microbiomes could also be responding to the structural differ-
ences in surface topology between upright macroalgae and the
crustose carbonate substrates characteristic of CCA. Studies
testing the effects of surface topology on bacterial settlement have
yielded inconsistent findings, but there is evidence that differ-
ences in the physical structure of a substrate can impact microbial
colonization101. The overlap in taxa may have been influenced by
our collection method. For CCA and coral, whole cuttings were
homogenized and included both surfaces and calcified skeletal
components. Skeletal compartments of coral can harbor high
microbial diversity and it is possible these microbes contributed
to the similarities between these primary producer types102. It
should be noted that CCA typically harbors a rich community of
boring invertebrates, which could have contributed to the meta-
bolic and microbial diversity that we observed in these
samples103. The large overlap in microbial taxa between CCA and
coral is not easily explained, but is notable given the putative role
of CCA in coral larval recruitment; both metabolites and
microbes derived from CCA are thought to induce the settlement
of coral larvae63. Microbial families associated with macroalgae
were consistent across genera, while microbial families associated
with coral varied between the genera Pocillopora and
Montipora/Porites. CCA was not identified to the genus level, but
the individual samples did not display any clear patterns in
microbial associations.

Paired microbe-metabolite datasets are well suited to machine
learning techniques, which can identify co-occurrence patterns
across a large number of variables. We applied the neural net-
working tool mmvec55 to calculate conditional probabilities of co-
occurrence for microbes and metabolites104–106. With this multi-
omic tool, it was possible to infer possible positive correlations
between specific metabolites and microbes, in which a particular
microbe was perhaps producing a metabolite, or, vice versa, the
presence of a metabolite was inducing the proliferation of a
microbe. Beyond these putative direct relationships, co-
occurrence patterns could indicate a variety of indirect associa-
tion between various microbes and metabolites.

Microbes associated with algae co-occurred with a variety of
long-chain fatty acids (Fig. 8a). The algal associated microbial
families Flavobacteriaceae (Bacteroidia), Saprospiraceae (Bacter-
oidia), and Rhodobacteraceae (Alphaproteobacteria) all co-
occurred with oxidized fatty acid 8-HETE, a compound
involved in algal immune response. In contrast to terrestrial
plants, which have developed additional advanced anti-microbial
response pathways, algae rely heavily on lipid signaling cascades
and reactive oxygen species107. In two separate studies, 8-HETE
was shown to be upregulated after wounding in the red algal
species Gracilaria vermiculophylla34. In a related species, Graci-
laria chilensis, 8-HETE was upregulated following wounding and,
when added directly to G. chilensis, decreased settlement by a
competing algal epiphyte108. In addition to driving microbial
community composition through chemical exudates functioning
as a food source31, perhaps macroalgae are selecting for microbial
associates that are tolerant of the oxylipins and reactive oxygen
species that are produced during algal immune response.

In the subclass glycerophosphocholines (Fig. 8b) microbe-
metabolite co-occurrence was broadly divided between coral
associated derivatives of Lyso-PAF and algal associated deriva-
tives of Lyso-PC. Of the 14 compounds, 8 were differentially
abundant in one or more primary producer types based on LM
analysis. Previous metabolomics studies have identified lyso-PAF
as an important compound in coral stress response that can be
used to indicate coral health36,37. Both coral and algal associated
microbes co-occurred with various Lyso-PCs, though algae
appeared to harbor a greater number of Lyso-PC related com-
pounds. These compounds are part of lipid synthesis pathways
that have multiple connections with symbiosis. Lyso-PC itself has
been implicated as a bioactive compound in plants. In plants that
form arbuscular mycorrhizal symbioses, the addition of lyso-PC
caused rapid alkalinization of plant roots and upregulated
transporter genes characteristic of mycorrhizal symbiosis109. The
base substrate of lyso-PC, phosphatidylcholine (PC), is a common
membrane protein in both plants and animals. However, it is
uncommon in bacteria and tends to be found in bacteria that
have close associations with eukaryotes, including both patho-
genic and symbiotic bacteria110. When PC synthesis is disrupted
in these bacteria, it can result in a loss of virulence in the case of
pathogens, and inefficient symbiosis in the case of mutualists111.
The established role of these glycerophosphocholines in multiple
terrestrial symbioses makes them a promising target for further
investigation in marine holobiont systems.

Multi-omics approaches to address ecological questions are
relatively new, representing an opportunity to explore the impact
of microbe-metabolite interactions on ecological systems. Coral
reefs are highly complex ecosystems, occurring in a narrow lati-
tudinal margin (~30° N/S) distributed across every continent on
the globe apart from Antarctica. Multi-omics tools can shed light
both on the commonalities and distinguishing features of these
systems. Mmvec is a new tool designed for this type of study. In
the Caribbean, a mmvec-based analysis of the coral Orbicella
faveolata revealed that lipids presented high co-occurrence values
with the phylum Firmicutes106. In our study, lipids were also key
metabolites of reef primary producers, but co-occurred primarily
with the phyla Proteobacteria, Bacteroidetes, and Cyanobacteria.
Additional comparisons of marine organisms across the globe are
likely to reveal distinct and shared co-occurrences patterns.

In conclusion, the present study revealed that, while some
ubiquitous features are shared across organisms, different types of
coral reef primary producers harbor distinct microbial commu-
nities and small molecules. A major pattern in the data was sig-
nificant site-to-site variation in the metabolomes of each benthic
primary producer; in contrast, their microbiomes did not vary
significantly between sites. This indicates that benthic primary
producers maintain broadly consistent relationships with micro-
bial taxa while their composition of tissue metabolites can be
susceptible to change as a result of environmental conditions.
Further studies are necessary to identify whether the observed
patterns in microbe-metabolite association are driven by inter-
actions that occur intracellularly, on the mucus layers and surface
biofilms of tissues, or even within the non-living skeletal com-
ponents of calcifying taxa. The metabolomics analyses revealed
the presence of several biologically relevant lipids, which were
primarily detected in coral and macroalgae samples. The in silico
annotations allowed us to derive useful information about
otherwise unknown metabolites based on structural databases,
while multi-omics tools enabled us to investigate biological pro-
cesses within the reef system. Our results suggest that CCA
remains chemically underexplored, representing a relevant target
for future studies. The microbiomes of CCA and coral were
diverse and overlapped significantly, while the microbiome of
macroalgae comprised distinct microbial families. These results
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provide a comparative view of the complex phylogenetic and
chemical contexts in which coral reef symbioses occur. They
represent a starting point for future studies to further investigate
the complex roles of metabolites, which serve as a nutrient source,
signaling language, and physical interface for hosts and micro-
biomes in holobiont systems.

Methods
Sample collection. Samples were collected on June 20th and 21st
(2019), from 5 sites in the vicinity of Waimea Bay within the
marine life conservation district of Pūpūkea on the north shore of
Oʻahu (Fig. 2a). Three biological replicates of each of three spe-
cies of coral were collected at each site: Porites lobata, Pocillopora
meandrina, and Montipora capitata (Fig. 2b–d), resulting in 17,
13, and 15 samples, respectively. Macroalgae were collected in
triplicate wherever possible, but not every site had every species in
sufficient abundance; we sampled a total of eleven genera: Col-
pomenia (n= 2), Dictyota (n= 1), Ectocarpus (n= 1), Galaxaura
(n= 5), Halimeda (n= 7), Hypnea (n= 1), Jania (n= 5),
Lophocladia (n= 1), Neomeris (n= 1), Porphyra (n= 1) and an
unidentified Gigartinales (n= 1) (representative Fig. 2e–g).
Detailed information on sample size for the collected sample
types are described in Supplementary Data 4. Crustose coralline
algae were collected as three discrete individuals from each of
three morphotypes (examples Fig. 2h–j) at each site as these algae
are notoriously difficult to identify, resulting in 41 CCA samples.
For coral and CCA samples, divers used stainless steel bone
shears to collect ~2 cm2 sections of healthy surface material,
which included surface biofilms, mucus membranes, living tissue,
and calcium carbonate substructures. Entire thalli of macroalgae
were cut above the holdfast, which gave individuals on the reef a
chance to regenerate post sampling. Samples were collected in
clean plastic bags and stored in a cooler on dry ice immediately
after collection. Collected samples were rinsed in sterile ultrapure
water prior to being frozen and stored at −80 °C. Frozen samples
were lyophilized at −50 °C for 48 h (LabConco, Freezone). Entire
samples were homogenized post-lyophilization using a Waring
blender. The collections were permitted by the Hawaiʻi State
Department of Land and Natural Resources Division of Aquatic
Resources (Special Activity Permit No. 2020-23).

DNA extraction and Sequencing analysis. DNA Extractions
were conducted on 50 mg (dry weight) subsamples using the
PowerSoil MagAttract DNA KF Kit (Qiagen) on a 96-well
Kingfisher Flex (Thermofisher Scientific) and a FastPrep-96
homogenizer (MPBio) following the manufacturer’s recom-
mended protocol. A total of 112 samples were subjected to
sequencing analyses. The V4 region of the bacterial 16 S gene was
amplified in a single step 35 cycle PCR with 12 base pair Golay
indexed primers 515 and 806112, using the KAPA3G Plant kit
(KAPA Biosystems) under the following conditions: 95 °C for
3 min, followed by 35 cycles of 95 °C for 20 s, 50 °C for 15 s, 72 °C
for 30 s, and a final extension for 72 °C for 3 min. PCR products
were stored at −20 °C prior to downstream cleanup. PCR pro-
ducts were cleaned and normalized using the Just-a-plate kit
(Charm Biotech). Normalized PCR products were pooled and
concentrated using an SPRI magnetic bead solution (Beckman
Coulter). The pooled amplicon library was sequenced using the
Illumina Hiseq 2500 platform. Sequencing results were demulti-
plexed and processed using the MetaFlow|mics custom analysis
pipeline113,114, which incorporated tools from VSEARCH,
Mothur, DADA2, FastTree, and phyloseq. Several filters were
imposed throughout the pipeline, as described in the Supple-
mentary Methods. After this pipeline, 93 samples were retained
that had >15,000 reads per sample.

Untargeted MS/MS analysis. The lyophilized materials were
weighed and extracted with MeOH:H2O (4:1) in a proportion of
100 mg of dried material per 1 mL of extraction solvent. A total of
112 samples were homogenized in a Qiagen TissueLyzer II
(Qiagen, Hilden, Germany) for 5 min at 25MHz and extracted
for 30 min at room temperature. The samples were then cen-
trifuged (14,000 g) for 15 min in an Eppendorf US centrifuge 5418
(USA), and 600 µL of the supernatants were transferred to a
polypropylene 96-deep-well plate. The solvent was evaporated
overnight in a Labconco CentriVap (USA), and the plates were
sealed and stored at −80 °C until analysis. The dried extracts were
initially resuspended in 600 µL MeOH:H2O (1:1) containing
sulfadimethoxine (1 µM) as an internal standard and sonicated
for 15 min. The plates were centrifuged for 10 min at 2000 rpm,
and the supernatants were then transferred to a new 96-well plate
for metabolomics analyses.

The LC-MS/MS analyses were carried out with a Vanquish
UHPLC system coupled to a Q-Exactive Orbitrap mass spectro-
meter (Thermo Fisher Scientific, Bremen, Germany). In order to
minimize batch effects, samples within each plate were randomly
injected. For the chromatographic separation, a C18 porous core
column (Kinetex C18, 150 × 2 mm, 1.8 µm particle size, 100 A
pore size—Phenomenex, Torrance, USA) was used. For gradient
elution, a high-pressure binary gradient system was used. The
mobile phase consisted of solvent A as H2O+ 0.1% formic acid
(FA), and solvent B as acetonitrile (ACN)+ 0.1% FA. The flow
rate was set to 0.5 mL/min, injection volume at 5 µL, and the
column temperature at 40 °C. After injection, the samples were
eluted with the following linear gradient: 0–1 min, 5% B, 1–4 min
5–60% B, 4–10 min 60–99% B, followed by a 3 min washout
phase at 99% B and a 3min re-equilibration phase at 5% B. Data-
dependent acquisition (DDA) of MS/MS spectra was performed
in positive ionization mode. Electrospray ionization (ESI)
parameters were set to 53 AU sheath gas flow, 14 AU auxiliary
gas flow, 0 AU sweep gas flow, and 400 °C auxiliary gas
temperature; the spray voltage was set to 3.5 kV and the inlet
capillary to 320 °C and 50 V S-lens level was applied. MS
scan range was set to 150–1500m/z with a resolution at m/z 200
(Rm/z 200) of 17,500 with one micro-scan. The maximum ion
injection time was set to 100 ms with an automated gain control
(AGC) target of 1.0E6. Up to 5 MS/MS spectra per MS1 survey
scan were recorded in DDA mode with Rm/z 200 of 17,500 with
one micro-scan. The maximum ion injection time for MS/MS
scans was set to 100 ms with an AGC target of 5E5 ions. The
MS/MS precursor isolation window was set to m/z 1. The
normalized collision energy was set to a stepwise increase from 20
to 30 to 40% with z= 1 as default charge state. MS/MS scans were
triggered at the apex of chromatographic peaks within 2 to 15 s
from their first occurrence. Dynamic precursor exclusion was set
to 5 s. Ions with unassigned charge states were excluded from MS/
MS acquisition as well as isotope peaks.

MS/MS data processing and feature-based molecular net-
working. The raw data files (.raw) were converted to .mzML
format using MSconvert (ProteoWizard, Palo Alto, CA, USA)115.
The .mzML files were processed in MZmine2116 (version
2.37.corr17.7_kai_merge2). The parameters used for feature
finding are provided in the Supplementary Methods. This feature
list was exported as a feature quantification table (.csv), as an
MS2 spectral summary (.mgf), and with the SIRIUS export
module (.mgf) for downstream analyses.

To investigate and compare the metabolic profile from the
CCA, coral, and macroalgae sample types, the processed LC-MS/
MS data (.mgf and .csv) were used to create a Feature-Based
Molecular Network43 on the GNPS platform46. Structurally
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similar compounds present similar fragmentation patterns in
mass spectrometry analyses, and the molecular networking
approach uses spectral correlation to group ion features with
similar structural characteristics. The parameters used for analysis
are available in the Supplementary Methods. The metabolites
were considered exclusive to a specific producer type if they were
not detected in other producers above the threshold used for the
MZmine2 data processing. Metabolites for which the maximum
peak area in real samples was <3X the maximum peak area in
blanks were considered potential contaminants (Supplementary
Methods). The molecular networking visualization was per-
formed in Cytoscape (version 3.7.2, Cytoscape consortium, San
Diego, CA, USA)117.

Chemical hierarchy analysis. To quantify the chemical hierarchy
of the different ion features in the dataset and visualize their
distribution across sample types, we used the Qemistree workflow
(https://github.com/biocore/q2-qemistree)44 available on the
GNPS platform46. The feature quantification table exported from
MZmine2 was used as input, along with the file obtained from the
SIRIUS export module (.mgf). More information regarding the
steps involved in this analysis can be found in the Supplementary
Methods.

Repository scale analysis. Fragmentation spectra from five entire
molecular families (component indexes 10, 42, 71, 184, and 500)
containing features mainly detected in CCA samples were sub-
mitted to the Mass Spectrometry Search Tool (MASST)45, which
allows searching a specific MS/MS spectrum in public datasets
available in the MassIVE spectral repository. All the MASST jobs
in GNPS can be found in Supplementary Data 5.

Microbe-metabolite associations. To identify associations
between microbial taxa and the metabolites they may be produ-
cing or consuming, we calculated co-occurrence probabilities. For
this analysis, the microbial-metabolite vector (mmvec v1.0.4,
https://github.com/biocore/mmvec)55 approach was used. Mmvec
takes as an input the relative abundance matrices of microbes and
metabolites across a shared set of samples. Mmvec then applies a
softmax transformation to the data and uses a neural networking
approach to determine the conditional probability of observing all
metabolites based on the observed abundance of each microbe. A
subset of samples with both metabolite and microbiome data
were used in this modeling exercise (93 of the 112 samples col-
lected). We selected parameters to optimize a model with low
cross-validation error and model likelihood. The parameters
chosen were as follows: --p-learning-rate 1e-3, --p-num-testing-
examples 30, --p-epochs 200, --p-batch-size 5, --p-latent-dim 3.
Emperor118 was used to visually inspect the feature-feature
biplots. The spheres were colored based on which sample type the
metabolites were most abundant, and the arrows indicate the 100
ASVs with the strongest correlations with the PCoA axes.

Statistics and reproducibility. Statistical analyses were per-
formed to identify the differential enrichment of metabolites and
microbes in the three sample types (CCA, coral, and macroalgae).
These analyses were performed at several different scales ranging
from entire microbial communities and metabolite profiles to
individual ion features. At the broadest level, samples’ microbial
communities and metabolite profiles were compared using
methods based on distance matrices. For metabolites, a Bray-
Curtis distance matrix was calculated based on the relative
abundance of transformed peak areas. For microbes, a UniFrac
distance matrix based on raw read counts was used119. Samples
were ordinated using non-metric multidimensional scaling

(NMDS) as implemented by metaMDS in the R package vegan120.
Differences in variance and dispersion between sample types,
genera, and sampling sites were interrogated using PERMA-
NOVA as implemented in the adonis2 and betadisper functions,
also in the R package vegan120. To account for potential batch
effects, statistical tests were repeated with the extraction plate
included as a variable in the model. Though the effect of site on
metabolite profiles was diminished, overall trends, in particular
the separation between primary producer types, was consistent
(Supplementary Methods).

At a more refined level, metabolite networks, metabolite
chemical classes, microbial classes, and individual metabolite ion
features were tested for differential enrichment in sample types, as
described in the Supplementary Methods.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The mass spectrometry data can be accessed on the Mass spectrometry Interactive Virtual
Environment (MassIVE) at https://massive.ucsd.edu/ as part of the dataset
MSV000085129121, which is publicly available. The Feature-Based Molecular Networking
and the Qemistree jobs can be accessed online at GNPS under the following links: https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=94d7974737ba4a4c82453f11a3ee1a41 and
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55a790571af4490fbf7502d44f65e5c7.
All the links for the 158 MASST searches performed can be found in the Supplementary
Table 1.

Sequence files and sample metadata that support the findings of this study are available
from SRA with project number PRJNA701450.

Code availability
The code and data files used to perform statistical analyses and generate figures for this
study can be accessed on Github (https://github.com/soswift/waimea_marine) and in
Zenodo122.
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