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PC3T: a signature-driven predictor of chemical
compounds for cellular transition
Lu Han1,2,8, Bin Song3,8, Peilin Zhang4,8, Zhi Zhong5, Yongxiang Zhang1,2, Xiaochen Bo 6, Hongyang Wang 4,

Yong Zhang 7✉, Xiuliang Cui 4✉ & Wenxia Zhou 1,2✉

Cellular transitions hold great promise in translational medicine research. However, ther-

apeutic applications are limited by the low efficiency and safety concerns of using tran-

scription factors. Small molecules provide a temporal and highly tunable approach to

overcome these issues. Here, we present PC3T, a computational framework to enrich

molecules that induce desired cellular transitions, and PC3T was able to consistently enrich

small molecules that had been experimentally validated in both bulk and single-cell datasets.

We then predicted small molecule reprogramming of fibroblasts into hepatic progenitor-like

cells (HPLCs). The converted cells exhibited epithelial cell-like morphology and HPLC-like

gene expression pattern. Hepatic functions were also observed, such as glycogen storage and

lipid accumulation. Finally, we collected and manually curated a cell state transition resource

containing 224 time-course gene expression datasets and 153 cell types. Our framework,

together with the data resource, is freely available at http://pc3t.idrug.net.cn/. We believe

that PC3T is a powerful tool to promote chemical-induced cell state transitions.
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Cell state transition (reprogramming, differentiation and
transdifferentiation) is one of the fundamental events in
biology, and advances in the control and manipulation of

cell identity enable the generation of desired cell types, which
provide broad applications in disease modeling, drug discovery
and regenerative medicine1. Currently, there are two main stra-
tegies to achieve cell fate conversion: (1) inducing lineage-specific
transcription factors2,3 or (2) small-molecule stimulation4–6.
However, the induction of exogenous transcription factors raises
safe concerns for its clinical applications. In contrast, small
molecules do not integrate into the genome and are highly con-
trollable, easy to optimize, and standardize7, and, therefore, are
promising solutions for the clinical application of cell lineage
reprogramming. It is critical to screen small molecules that can
induce the desired cell state transition.

Conventional phenotypic chemical screening always starts with
a selected pool of compounds that target particular pathways or
biological processes8,9. This strategy relies heavily on a priori
understanding of the mechanism driving a desired cell state
transition. Moreover, considering the large chemical space, the
missing is inescapable because of the limited scale of the initial
screening pool. Cell state transition is a dynamic process, and the
identification of small molecules that promote intermediate stages
in the trajectory path is important. Unfortunately, intermediate
states are usually unstable and reversible, and their features are
not well-characterized, which limits the use of traditional mole-
cular screening methods.

Given that cell state transitions are associated with character-
istic changes in gene expression profiles, we modeled the problem
as identifying small molecules that induce similar changes and
developed an in silico chemical screening pipeline, a signature-
driven predictor of chemical compounds for cellular transition
(PC3T). For any given initial and terminal states or any inter-
mediate state in the cell transition trajectory, PC3T enriched
candidates from among 20,768 molecules in the LINCS L1000
project database10 and ChemPert11. To validate the performance
of PC3T, we applied our method to previously identified cell
transitions mediated by small molecules and obtained correct
predictions in most of the datasets. We then predicted and
experimentally validated small molecules that convert fibroblasts
into hepatic progenitor-like cells (HPLCs) and found that mouse
embryonic fibroblasts (MEFs) exhibited epithelial cell-like mor-
phology after treatment with carbidopa, LY-364747 or
CHIR99021. Moreover, these molecules suppressed the expres-
sion of fibroblast-specific genes while inducing the expression of
hepatocyte-specific genes. The converted cells exhibited hepatic
functions, such as glycogen storage and lipid accumulation.
Finally, we collected and manually curated a comprehensive time-
series gene expression resource representative of the dynamic
transition process and predicted the molecules inducing these
changes. The datasets and online server of PC3T are freely
available at http://pc3t.idrug.net.cn/. We believe that PC3T will be
a valuable resource and useful server for both experimental and
computational biologists who are interested in chemical-induced
cell state transitions.

Results
Method overview. Here, we present a computational method to
screen small chemical molecules that can induce desired cellular
transitions. The method requires only gene expression profiles of
the initial and desired cellular states. Therefore, our method can
be applied to the transition between any pair of initial and query
cell types, including novel cell transitions that have not been
previously achieved, whether by transcription factors or chemical
molecules.

In the first step of the method, we identified the differentially
expressed genes (DEGs) as cell fate transition signatures (CFTSs)
based on the expression profiles obtained during the transition
process both on bulk and single-cell levels (Fig. 1a). The small-
molecule profiles (SMPs) were derived from the LINCS L1000
database and ChemPert, which houses perturbation profiles of
20,768 molecules in 20 cell lines. We averaged all of the profiles
for each molecule, and the profiles of each molecule associated
with different doses and cell lines were categorized independently
(Fig. 1b). Then, a similarity score matrix between the CFTSs and
SMPs was calculated via gene set enrichment analysis (GSEA)
(Fig. 1c)12, and the max value was used as the final similarity
score for the molecule, which was considered a measure of its
reprogramming potential after optimization (Fig. 1d). Finally, we
ranked all the small molecules based on their similarity score to
the CFTSs, and top-ranking molecules were expected to be
candidates to induce the cell state transition (Fig. 1e).

Application to cell reprogramming from fibroblasts to iPSCs.
Induced pluripotent stem cells (iPSCs) are an invaluable tool in
regenerative medicine and are one of the most studied state
transitions. In 2006, Yamanaka and colleagues induced iPSC from
mouse embryonic or adult fibroblasts by introducing four factors,
Oct3/4, Sox2, c-Myc, and Klf4 (OSKM)3. Since then, several
methods have been proposed to achieve this process via either
transcription factors or small molecules5,13–15. In this section, we
applied PC3T to identify molecules that enhance the repro-
gramming of iPSCs, and the prediction was considered correct if
the reported molecules ranked highly among all molecules. In this
study, the top 5% molecules were considered as top-ranking
molecules. We first selected three datasets of reprogramming of
mouse iPSC from fibroblasts by transcription factors or small
molecules (Fig. 2a)6,16,17. Multiple time points were included in
these datasets (the average time point was 6.7), and the detailed
information was in Supplementary Table 1. We called the cells of
origin and those after transitioning as the initial cells and target
cells, respectively, and calculated the similarity score of 20,401
molecules (Fig. 2b). We focused on seven molecules that had been
reported to drive iPSC reprogramming, including forskolin,
CHIR99021, Y-27632, VPA, tranylcypromine, AM-580 and
EPZ004777. These seven molecules showed high similarity scores
and ranked among the top in most of the datasets; the median
ranks in the three datasets were 60,387 and 119. Target-based
strategies were commonly used for molecular screening, and we
compared the results obtained through PC3T with those obtained
via the target-based method. A total of 3020 molecules with
known targets were selected. As shown in Supplementary Fig. 1,
the median ranks identified by PC3T in the three datasets were
45, 76 and 52; however, the median ranks identified by the target-
based method in the three datasets were 1767, 1115 and 1575,
which indicated that PC3T performed better than the target-
based method.

We then applied PC3T to human reprogramming cells.
Human somatic cells are refractory to chemical stimulation
because of their stable epigenome18 and reduced plasticity;19

therefore, it is challenging to induce human iPSCs by chemical
reprogramming. As shown in Fig. 2c, three datasets were
selected13,15,20, and the average time point was 4.3 (Supplemen-
tary Table 1). The similarity scores of 20,401 molecules are shown
in Fig. 2d. Identical results were obtained, and the median ranks
of the seven molecules were 35, 159 and 105. Our results
suggested that although difficult to achieve, reprograming human
cells involves a similar mechanism to that identified in mouse
cells, and PC3T can be used to predict molecules for both human
and mouse cell reprogramming. We then compared the PC3T
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results with the target-based method results. As shown in
Supplementary Fig. 2, the median ranks in the three datasets
via PC3T were 34, 38 and 20; however, the median ranks
identified by the target-based method in the three datasets were
2437, 1600 and 1756. Finally, we investigated the influence of the
number of signature genes on the similarity scores. Using
different numbers of signature genes (ranging from 50 to 300),
we calculated the similarity scores for molecules in six datasets in
three cell lines (the ASC, NPC and MCF3 cell lines). As shown in
Supplementary Fig. 3a, the distribution of similarity score was
influenced by signature size, therefore, we used uniform signature
size in our study, and our pipeline was robust with respect to
signature size, and the average correlation coefficients were higher
than 0.8 when the signature size was 200 genes (Supplementary
Fig. 3b). In view of the fold change of perturbation profiles
(Supplementary Fig. 3c), we used the 200 most highly upregulated
and downregulated genes as signatures in our study. PC3T
calculated the similarity score using GSEA, which is a rank-based
algorithm and performed well across datasets generated using
different technologies (Supplementary Fig. 4).

In addition to the seven aforementioned molecules, we
investigated other molecules with top rankings. The top 30
molecules in each of the six datasets were selected, and molecules
with a known mechanism of action (MOA) were selected for
further study (Supplementary Table 2). Sixteen molecules
appeared in at least two datasets, as shown in Fig. 2e, among
which five molecules were common to at least four datasets,
including EPZ004777, forskolin, pipamperone, panobinostat and
trichostatin-a. Four molecules were included in the reported
cocktail, and the other 12 molecules were novel. Most of these
molecules induced the up-expression of pluripotency and down-
expression of fibroblast genes in the LINCS L1000 dataset
(Supplementary Fig. 5). Further investigation to determine
whether these molecules induce or enhance cell reprogramming

of iPSCs is a worthy endeavor. Nine MOAs were involved, and
the HDAC inhibitor, glycogen synthase kinase inhibitor, a Dot1L
inhibitor and a Dopamine receptor antagonist were the top
MOAs with most dataset-molecule pairs, indicating that these
cellular pathways may play important roles during iPSC
reprogramming. We found that molecules with the same MOA
were inclined to be clustered together, such as cephaeline and
homoharringtonine; dacinostat, panobinostat and trichostatin-a;
CHIR-99021 and GSK-3-inhibitor-IX (Supplementary Fig. 6a).
We further investigated the biological processes affected by these
molecules using GSEA. As shown in Supplementary Fig. 6b,
fibroblast-related processes were downregulated, such as fibro-
blast proliferation, wound healing, cell matrix adhesion, stress
fiber assembly and actin filament organization. On the other
hand, DNA modification and cell cycle processes were
upregulated.

The gene profiles at different time points represent the
transition trajectory. In addition to the origin and destination
of cell transitions, PC3T can be used to predict molecules for any
intermediate state pair. To illustrate this application, we used our
previous dataset (GSE89056), which contained eight time points
(Fig. 2c), and calculated the similarity score of the seven
molecules for each time point combination. As shown in Fig. 2f,
we found that the similarity scores of molecules varied by time
course, which indicated that these molecules may mainly function
in different transitional stages. We obtained gene signatures of
different reprogramming stages21 and found that the fibroblast
genes were downregulated by seven molecules, and other stage
genes were upregulated differently (Supplementary Fig. 7a). We
further calculated the mean fold change of gene signatures as
signature score and found that CHIR99021 and tranylcypromine
may participate in an early transition stage, while Y-27632,
EPZ004777 and VPA may participate in a late transition stage
(Supplementary Fig. 7b). The expression levels of VPA signatures
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in different time points, and the genes upregulated by VPA
exhibited high expression levels at late reprogramming time
points, while the genes downregulated by VPA exhibited low
expression levels at late reprogramming time points (Supple-
mentary Fig. 7c).

Application to cell reprogramming of scRNA-seq data.
Recently, single-cell analysis revealed a high-resolution landscape
of cell transition trajectories and helped us discover rare but
important mechanisms that had been masked in bulk
analysis22–24. Hence, single-cell analysis has become a promising
tool for use in cell fate transition studies. In this section, we
described our efforts to determine whether PC3T was adequate
for use with single-cell datasets. We first employed our method to
scRNA-seq data obtained from OSKM-induced reprogramming
cells (GSE118258)25. A UMAP clustering of the dynamic transi-
tion from parental BJ (c0-d0) to D16+ cells (c5-d16pos) is shown
in Fig. 3a. Using markers (differentially expressed genes) in
parental BJ and D16+ cells as the required signature genes, we
calculated the similarity scores between molecular perturbation
profiles and these signature genes. As shown in Fig. 3b, the seven

molecules showed high similarity scores (ranging from 0.43 to
0.34) and rankings (ranging from 63 to 1479, median value is
620) among all the 20,401 molecules. Recently, the Deng group
reprogrammed human fibroblasts into hCiPS cells via small
molecules. The whole procedure was categorized into four stages,
and 26 molecules were involved in the process4. As shown in
Fig. 3c, all the cells were clustered into 13 groups (GSE178325).
We used human adult adipose-derived mesenchymal stromal
cells (hADSCs) as the initial cells and clusters of the end time
point of each stage and hCiPSC as the target cells (c0-s1d0.5-d2,
c1-s2, c2-s3-s4d4, c11-s4d10 and c12-hCiPSC); we thus calculated
similarity scores of the LINCS molecules (Fig. 3d). Thirteen of the
26 molecules were found in LINCS data, and the median rank of
the molecules involved at a specific stage were 529, 2905, 3670,
1946 and 1605 respectively. In particular, tranylcypromine
(TPCA-1 inhibitor), SB590885 (B-Raf inhibitor) and PD-0325901
(MEK inhibitor) showed high similarity scores in different stages;
however, their rank was lower than the example above, which
may have been a result of many more molecules included in the
chemical cocktail. In summary, our method can be used for
molecular screening based on scRNA-seq data of cell state
transition.
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Application to cell transition into neurons. Because of its lim-
ited regenerative ability, the mammalian central nervous system is
a desirable target for assessing in vivo chemical reprogramming.
It has been reported that different cell types can be converted into
functional neurons26–28. In this section, we first applied PC3T to
predict the chemical molecules that can reprogram fibroblasts
and astrocytes into neurons directly. Li et al. developed a cocktail
of small molecules that direct drove lineage reprogramming of
mouse fibroblasts into functional neurons27. We used fibroblasts
and the cells induced 19 days as initial cells and target cells
respectively (GSE68715), and calculated the similarity score
between the transition signatures and LINCS perturbation pro-
files. We focused on the similarity score of the FICB (forskolin,
ISX9, CHIR99021 and IBET151) cocktail. As shown in Fig. 4a,
these four molecules yielded high similarity scores (0.397, 0.414,
0.407 and 0.405, respectively) and top rankings (25, 9, 13 and 15)
from among all 20401 LINCS molecules. We also noticed another
molecule, SB431542, which enhanced the survival and neurite
outgrowth of induced neurons but was dispensable for generating
neuron generation. The similarity score of SB431542 was 0.321,
and it ranked 1366 among all 20,401 molecules. Astrocytes are
ideal targets for in vivo reprogramming because they are among
the major cell types that respond, proliferate, and assemble to
enclose necrotic lesions. The Deng group reprogrammed astro-
cytes into neurons using a chemically defined cocktail called
DFICBY (DBcAMP, forskolin, ISX9, CHIR99021, IBET151, and
Y-27632)26. We calculated the similarity score between the
transition signatures (GSE164421) and molecular perturbation
profiles. Five molecules in DFICBY were included in the LINCS
dataset except for DBcAMP, and four of these five molecules
(forskolin, ISX9, CHIR99021 and IBET151) exhibited high
similarity scores (0.371, 0.422, 0.355 and 0.480) and top rankings
(385, 58, 620 and 2) among all 20401 LINCS molecules, while the
similarity score and rank of Y-27632 were 0.295 and 3740
respectively (Fig. 4b). As shown in Fig. 4c, fibroblast-specific
genes and astrocyte-specific genes were downregulated during

both the reprogramming procedure and molecular treatment, and
neuron-specific genes were upregulated. Pluripotent stem cells are
promising sources of cells for application in regenerative medi-
cine. We applied PC3T to predict small molecules that lead to the
directed differentiation of embryonic stem cells into neurons
(GSE32658). Three molecules (purmorphamine, SB-431542, and
LDN-193189) used by Sonja et al.28 exhibited high similarity
scores (0.488, 0.479 and 0.431) and top rankings (122,169 and
923) (Fig. 4d). Collectively, our method consistently predicted
chemical molecules that induced the transition of different cell
types into neuron. Finally, we investigated the top-ranked
molecules that were not included in the reported cocktail for
each of the reprogramming procedures (Fig. 4e). Three HDAC
inhibitors, panobinostat, trichostatin-a and apicidin, were enri-
ched, and panobinostat and trichostatin-a were also predicted to
be candidates for fibroblast to iPSC reprogramming (Fig. 2e). The
potential role played by these molecules is worthy of further
investigation.

Prediction and validation of small molecules inducing mouse
fibroblast transdifferentiation into hepatic progenitor-like
cells. In the previous sections, we applied our method to the
cell station transitions that have been previously achieved via
chemical induction to illustrate the performance of PC3T, which
produced results consistent with the experimental data. In this
section, we employed PC3T to screen molecules that induce the
reprogramming of fibroblasts into hepatocytes. The liver is a
pivotal organ for regulating many physiological processes, and the
generation of surrogate hepatocytes is important to cell-based
approaches in liver disease treatment and drug pharmacokinetics
analysis29. The Hui group directly reprogrammed fibroblasts into
functional and expandable hepatocytes both in mouse and human
by introducing lineage-specific transcription factors30,31. The
Deng group developed a two-step lineage reprogramming strat-
egy by mimicking a natural regeneration route. Specifically,
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fibroblasts were first reprogrammed by hepatic transcription
factors into proliferative human hepatic progenitor-like cells
(hHPLCs), and then, the hHPLCs were chemically induced to
become functionally competent hepatocytes32. In our study, using
fibroblasts and hHPLCs as the source cells and target cells,
respectively, we screened candidate molecules by PC3T. The
similarity scores of all 20,401 molecules are shown in Fig. 5a, and
the seven top molecules were chosen for experimental validation,
including troglitazone, forskolin, valproic-acid, carbidopa, LY-
364947, panobinostat and CHIR-99021 (Supplementary Table 3).
We first investigated morphology changes induced by molecular
treatment. As shown in Fig. 5b, MEFs treated with LY-364947,
CHIR-99021, carbidopa or VPA displayed epithelial cell-like
morphology. The expression of fibroblast genes such as Acta2 and
Wisp2 was decreased in cells treated with these molecules, par-
ticularly forskolin, VPA, carbidopa, LY-364947 and CHIR-99021
(Fig. 5c, Supplementary Table 4). On the other hand, the
expression of genes specific to hepatocytes, such as Alb, Hnf4α,
Cyp1a1 and Cyp2a1, was increased in the treated cells (Fig. 5d,
Supplementary Table 5). It was reported that hHPLC-derived
resembled freshly isolated primary hepatocytes (F-PHHs) in cell
identity and functionality hepatocytes32. Five of the seven mole-
cules also derived the top-ranking (top 5%) using F-PHHs as
target cells, including forskolin, carbidopa, LY-364947, panobi-
nostat and CHIR-99021. According to the morphology and gene
expression results, we chose three molecules for further study.
The converted cells displayed hallmark hepatic functions, such as
accumulation of fat droplets and glycogen synthesis (Fig. 5e).
Hierarchical clustering revealed that converted cells clustered
closely with HPLCs, but were distinct from MEFs and human
embryonic fibroblasts (HEFs) (Fig. 5f). We then reduced the
concentration of the molecular treatments by one-half (5 uM)

and treated the MEFs. The changes we observed were consistent
with the aforementioned changes in the expression of fibroblast
and hepatocyte genes (Supplementary Fig. 8, Supplementary
Tables 6 and 7). The robust performance of PC3T confirmed
combining and optimizing these molecules, which is worthy of
further investigation.

Construction of resource and webserver. We previously pre-
sented an online resource with the time-course gene expression
data during cell state transitions in bulk tissues of human and
mouse33. With the rapid advances, an increase in successful cell
fate reprogramming has been achieved in recent years. Moreover,
public resources have accumulated large amounts of gene
expression data, especially scRNA-seq data, characterizing the
dynamic transition process. Herein, we utilized text mining to
collect public datasets and manually curated them to provide
concise experimental descriptions and annotations of the key
transition time points for every sample in these datasets. In total,
224 datasets were collected, 132 with human data and 92 with
mouse data (Table 1), and 153 cell types were included. The
average time points were 5.18, 4.71 for human and 5.95 for
mouse. These data offer a comprehensive roadmap to describe
diverse cell state transitions. The landscapes of the cell state
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Table 1 Statistics of cell state transition datasets deposited
in PC3T.

Species Datasets Cell types Average time points

Human 132 98 4.71
Mouse 92 72 5.95
Total 224 153 5.18
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transitions in human and mouse deposited in PC3T was shown in
Fig. 6a, b (Supplementary Table 8). Hence, the differentiation of
embryonic stem cells and reprogramming of fibroblast into iPSCs
have been the most widely studied transitions. Moreover, cell
state transitions can be classified into different groups according
to the similarity of their expression signatures (Fig. 6c, d). The

upregulated and downregulated genes common to the same
clusters are shown in Supplementary Figs. 9 and 10.

In the previous sections, we confirmed the performance of
PC3T using both computational and experimental results. To
facilitate the application of PC3T, we constructed a webserver,
which is freely available at http://pc3t.idrug.net.cn/. The online
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tool comprises LINCS perturbation gene profiles and cell fate
reprogramming datasets collected to date. The powerful and user-
friendly interface enables experimental researchers to predict and
visualize the molecules for the given cell state transition in a
flexible and diverse manner. PC3T also supports the query and
download of gene expression profiles and signatures for a specific
cell transition process. Finally, users are allowed to upload their
custom time-series gene expression data for analysis.

Discussion
Cell state transition has been a rapidly advancing field in recent
decades2,3,9,26,27,30, and small molecules provide a temporal and
highly tunable approach for the clinical application of cell
reprogramming. Scalable throughput chemical screening has
become an urgent challenge, which is currently limited by the cost
of exhaustive experimental testing of plausible sets of molecules,

and in silico methods are urgently needed. Inspired by the con-
nectivity map (CMap) concept34,35, we used the changes in gene
expression profiles as indicators reflecting the underlying
mechanisms of cell state transitions and developed PC3T, an
unbiased molecular screening for cell transitions. PC3T used the
LINCS chemical pool, which is more comprehensive than the
conventional phenotype-based chemical pool used for screening.
Moreover, PC3T does not rely on expert knowledge of lineage-
specific genes or pathways.

To illustrate the performance of PC3T, we applied our
method to cell state transitions that have been achieved via
small-molecule treatment. Three main types of transitions were
used to evaluate PC3T: cellular reprogramming6,13,15–17,20,
differentiation28 and transdifferentiation26,27. The results showed
that our method consistently enriched small molecules that had
been experimentally validated regardless of the induction condi-
tion. Moreover, PC3T performed well with scRNA-seq data of

Fig. 5 The prediction and validation of small molecules inducing mouse fibroblasts into hepatocytes. a The similarity scores (left) and top molecules
(right) of cell transition from fibroblasts to hepatocytes. b Morphology of cells treated by seven molecules (left) and MEF and mouse primary hepatocyte
(MPH) (right). Scale bar, 50 µM. c, d The expression of fibroblast-specific genes (c) and hepatocyte-specific genes (d) after molecules treatment (10 µM).
There were two biologically independent samples. Statistical significance was determined with a two-tailed unpaired Student’s t-test, and the estimated
effect size was determined using Cohen’s D (Supplementary Tables 4 and 5). Asterisks indicate p-values: *p < 0.05; **p < 0.01; ***p < 0.001. e Hepatic
functions in converted cells: Oil Red O staining and PAS staining. Scale bar, 50 µM. f Hierarchical clustering of global gene expression of MEFs, converted
cells treated by three molecules (c1: CHIR-99021, c2: LY-364947; c3: carbidopa), and HEF, F-PHH and HPLC from Deng group.

aa

c

d

b

Fig. 6 The construction of resource and webserver of PC3T. a, b The landscape of cell state transitions in human (a) and mouse (b). c, d The classification
of cell state transitions according to the similarity of their signatures in human (c) and mouse (d).
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chemical-induced reprogramming4,25. Focusing on the dynamic
intermediate states also distinguishes PC3T from similar
methods36.

We further predicted small molecules that reprogrammed
MEFs into HPLCs. Four molecules that induced changes in the
morphology and expression of fibroblast genes and hepatocyte
genes were enriched: carbidopa, CHIR-99021 and LY-364947.
MEFs treated by these molecules exhibited HPLC-like gene
expression profiles and hepatic functions. CHIR-99021 has been
reported to reprogram fibroblasts into iPSCs and other cell
types37. LY-364947 is a TGF-beta 1 receptor inhibitor, and the
anti-fibrotic effect of LY-364947 has been previously reported in
silicosis treatment38, proliferative vitreoretinopathy prevention39,
and central nervous system injury40. Carbidopa is an aromatic-L-
amino-acid decarboxylase inhibitor. It is used in Parkinson’s
disease to reduce peripheral adverse effects of levodopa41. Their
roles in cell fate reprogramming are worthy of further
investigation.

With the rapid development of cell fate reprogramming, a large
amount of datasets have been accumulated, with single-cell data
in particular. We therefore collected and manually curated 224
time-course gene expression datasets during cell state transition,
including 153 cell types, and the resource is freely available in our
PC3T. These datasets not only provide valuable resources to
characterize the complicated transition trajectory path but also
suggest the barriers that must be overcome during
reprogramming25.

There are several limitations that need to be further addressed.
First, our screening pool was limited to molecules for which
transcriptional profiles had already been experimentally assessed.
Fortunately, cost-effective sequencing methods have been devel-
oped, such as DRUG-seq42 and sci-Plex43, which enable
researchers to derive massive chemical transcriptomics at a very
low cost. In addition, machine learning algorithms have been
proposed to generate perturbation transcriptional profiles relying
only on chemical formulas44. These experimental and computa-
tional methods will largely increase the utility of our approach. In
addition, DEGs were used as signatures in our current pipeline,
and other algorithms identifying driver regulators of cell fate
decisions, especially with single-cell data45,46, can be integrated as
options in further iterations of PC3T.

In summary, this study presented an in silico screening fra-
mework to enrich small molecules that induce cell state transi-
tions, and these molecules could be promising candidates to
induce and enhance cell transition. We believe that PC3T will be
a powerful server and resource to promote chemical-induced
reprogramming.

Methods
Bulk data. P3CT first identified the change in gene expression between the
required cell transition states. For bulk tissue data, the processed series matrix file
was retrieved from the GEO, and the probe IDs were converted to Refseq IDs with
Brainarray Chip Description Files (CDFs). We identified the fold change required
using the limma R package and converted the gene IDs into Entrez IDs using the
clusterProfiler R package47.

Single-cell data. For scRNA-seq data, the preliminary filtered data generated from
Cell Ranger were used for downstream analysis. Single-cell data were processed for
dimension reduction and unsupervised clustering by following the workflow in
Seurat48. In brief, 2000 highly variable genes were selected by using Seurat
“FindVariableGenes” function. Then, the principal component analysis (PCA)
matrix with 30 components was calculated to perform clustering and uniform
manifold approximation and projection (UMAP) dimensionality reduction. All of
the cells were clustered using the “FindClusters” function with a resolution of 0.2.
We used the “FindAllMarkers” function based on normalized data to identify
DEGs, and the p-value was adjusted using Bonferroni correction based on the total
number of genes in the dataset.

Finally, the homologs gene mapping between human and mouse was conducted
using biomaRt R package49.

Molecular perturbation gene profiles. The L1000 data were obtained from the
Library of Integrated Network-based Cellular Signatures (LINCS) project10. The
LINCS perturbation response transcriptional profiles were generated using the
L1000 assay, which is a high-throughput bead-based assay that measures the
expression of 978 representative landmark transcripts10. Level 4 plate-normalized
data in the March 2017 datasets were downloaded from the LINCS Data Portal
[http://lincsportal.ccs.miami.edu/datasets/#/view/LDS-1372]. An additional pre-
processing step was performed for all gct and gctx files by using the “parse.gctx”
function in the “cmapR” R package. Gene expression profiles were aggregated for
samples on the basis of molecule and cell line (technical/biological replicates of the
small molecule). We also integrated transcriptional profiles in response to per-
turbations across non-cancer cell types from ChemPert11.

GSEA. The similarity score was calculated using gene set enrichment analysis
(GSEA), which was initially proposed by Lamb et al.34. Briefly, a nonparametric,
rank-based pattern-matching strategy based on the Kolmogorov-Smirnov (KS)
statistic was used to assess the enrichment of disease genes in a ranked drug gene
expression list12. The “fgsea” package was employed to calculate the similarity
score, which ranged from −1 to 1. A high positive score indicates an obverse
relationship between the cell transition and the molecular treatment, while a low
negative score indicates a reverse relationship between them. The enrichment score
of upregulated signature (ESup) and downregulated signature (ESdn) were calcu-
lated respectively, and the final similarity score was calculated using the formula 1
as below:

similarity score ¼ ESup � ESdn
2

ð1Þ

Target-based score. The target-based method is commonly used in drug devel-
opment. In this study, we assumed that when the expression of a gene was
downregulated during the cell transition, the molecules targeting this gene induced
a cell transition. A total of 3020 molecules with known targets were selected from
the LINCS datasets. For a given cell transition, we first ranked the gene list
according to the fold change (from highest to lowest) and then calculated the
target-based score of a molecule for the given cell transition using the formula 2 as
below:

target� based score ¼
1
M∑M

1 Rm

Ncell

ð2Þ

where M is the number of targets of the molecular, Ri is the rank of target m in the
ranked gene list, and Ncell is the length of the ranked gene list.

Isolation and culture of Mouse embryonic fibroblasts and mouse primary
hepatocytes. MEFs were isolated from E13.5 embryos of a C57BL/6J mouse
(GemPharmatech Co. Ltd. Nanjing). The head, tail, limbs and internal organs were
removed, and the rest tissues were cut into pieces and digested with 0.05% trypsin
into single-cell suspensions. MEFs were cultured in DMEM plus 10% FBS (Bioind)
and 100 units/ml penicillin as well as 100 μg/ml streptomycin (Gibco) at 37 °C with
5% CO2. The passage 3 to passage 5 of MEFs were used for the examination of
chemicals effect. MPHs from C57BL/6J mice were isolated according to a previous
protocol50. In brief, MPHs were isolated using the collagenase IV (1 mg/ml,
Worthington) perfusion method. Then the cell suspension was filtered by a 70-μm
cell strainer (Falcon) to obtain a single-cell suspension. Blood cells and dead cells as
well as cell debris were discarded through centrifuge at 50 × g for 2 min. The
isolated primary MPHs were then plated into tissue culture dishes coated by rat tail
collagen and cultured in DMEM plus 10%FBS for 4 h. The medium was replaced
by DMEM plus N2/B27 supplement (Gibco, N2 supplement, 17502-048;
B27 supplement, 17504044) for MPHs maintenance.

The experiment procedure of MEFs treated by molecules. For this, 0.5 × 106

P3-P5 MEFs were plated onto 6 cm cell culture dishes and cultured in DMEM
supplemented with 10% FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin
(Gibco) at 37 °C with 5% CO2 for 2 h for attachment. After 2 h, molecule was
added to the culture medium at dosages of 5 and 10 μM to treat the MEFs. The
culture medium was changed every 3 days while the molecule was continuing to
treat the MEFs. The PAS staining system was purchased from Sigma-Aldrich.
Cultures were fixed with 4% paraformaldehyde (DingGuo) and stained according
to the manufacturer’s instructions. Lipid detection was performed with a Lipid (Oil
Red O) Staining Kit (Sigma) according to the manufacturer’s instructions.

RNA sequencing and bioinformatics analysis. We performed RNA-seq for
MEFs, and cells treated by carbidopa, LY-364947 and CHIR-99021. Total RNA was
isolated using the RNeasyMini kit (QIAGEN). RNA sequencing libraries were
prepared using the NEBNext UltraTM RNA Library Prep kit for Illumina (NEB,
USA) following the manufacturer’s recommendations. The fragmented and ran-
domly primed 150-bp paired-end libraries were sequenced on Illumina Novaseq
6000 platform. The generated sequencing reads were mapped against the human
genome build mm10 using STAR(v2.4.2a)51, and the read counts for each gene
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were calculated using featureCounts. Gene expression was normalized by DESeq2.
Unsupervised hierarchical clustering of RNA-seq data was conducted by the hclust
package in R (R 3.4.3). The RNA sequencing data are available in the Gene
Expression Omnibus (GEO) under the accession number GSE231967.

Real-time PCR assay. The seven small-molecule compounds were purchased from
Topscience (China); the CAS ID and product ID are in Supplementary Table 3.
MEFs were treated with chemicals for 7 days, and total RNA was isolated using the
RNeasy Micro Kit (QIAGEN). RNA was converted to cDNA using First-Strand
Synthesis SuperMix for quantitative real-time PCR (qRT-PCR) (INVITROGEN).
PCR was carried out using Power SYBR Green PCR Kit (Applied Biosystems,
Foster City, CA) and a LightCycler 96 Real-Time PCR System (Roche, Mannheim,
Germany). The data were analyzed using the 2−ΔΔCt method. The primers were
listed in Supplementary Table 9.

Statistics and reproducibility. All statistical tests used, sample sizes, and the
number of replicates are described in the corresponding methods.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data and the processed data in the RNA-seq analysis were deposited in the GEO
(GSE231967). Source data for the graphs in the main figures are available as
supplementary data, and any remaining information can be obtained from the
corresponding author upon reasonable request.

Code availability
Our framework, together with the data resource, is freely available at http://pc3t.idrug.
net.cn/.
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