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An oscillatory mechanism for multi-level storage in
short-term memory
Kathleen P. Champion1,7, Olivia Gozel 2,3,7, Benjamin S. Lankow4,7, G. Bard Ermentrout 5✉ &

Mark S. Goldman 4,6✉

Oscillatory activity is commonly observed during the maintenance of information in short-

term memory, but its role remains unclear. Non-oscillatory models of short-term memory

storage are able to encode stimulus identity through their spatial patterns of activity, but are

typically limited to either an all-or-none representation of stimulus amplitude or exhibit a

biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by

which oscillatory input enables a circuit to generate persistent or sequential activity that

encodes information not only in the spatial pattern of activity, but also in the amplitude of

activity. This is accomplished through a phase-locking phenomenon that permits many dif-

ferent amplitudes of persistent activity to be stored without requiring exact tuning of model

parameters. Altogether, this work proposes a class of models for the storage of information in

working memory, a potential role for brain oscillations, and a dynamical mechanism for

maintaining multi-stable neural representations.
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The maintenance of information in short-term memory is a
key component of a wide array of cognitive1,2 and non-
cognitive3,4 functions. However, the biophysical mechan-

isms that enable memory storage over the seconds-long time scale
remain unclear. Single-unit studies have demonstrated a neural
correlate of memory maintenance in the persistent activation of
neurons whose population activity spans the memory period
(reviewed in refs. 2,4–6). Theoretical studies have shown how such
persistent activity can be generated by recurrent network
feedback7–9, but simple instantiations of this idea are either
implausibly sensitive to mistuning or can only maintain a single
elevated firing rate that is unrealistically high (the “low firing rate
problem”, reviewed in refs. 2,10), limiting storage about a given
item to a single bit (“on” or “off”) of information.

Separately, previous studies have identified distinct bands of
oscillatory activity in field potential recordings and EEG during
the maintenance of working memory (reviewed in ref. 11). Such
activity can be generated through cell-intrinsic mechanisms, local
circuitry, or long-range interactions12–14. However, it remains an
open question whether oscillatory activity is necessary, sufficient,
or even beneficial for working memory storage. Previous work
has proposed how oscillations can contribute to a variety of
memory functions such as the generation or maintenance of
persistent activity15,16; the structuring of spatial codes through
frequency coupling17; and the coordination, control, and gating of
memory-related activity18–30. By contrast, other studies have
suggested that oscillations could be an epiphenomenon of other
computational or network mechanisms10,31. Here, we demon-
strate a potential mechanistic role for oscillations, regardless of
source or frequency, by showing how the addition of oscillatory
inputs to simple recurrent feedback circuits can enable both low
firing rate persistent activity and a discretely graded set of per-
sistent firing rates that increases the information capacity of a
memory network.

Results and discussion
To illustrate the core challenges that arise when generating bio-
logically plausible models of persistent activity, consider an
idealized circuit consisting of a memory neuron (or lumped
population) connected to itself through positive feedback
(Fig. 1a); this basic motif of recurrent excitation is the key
component of most circuit models of persistent neural activity
(reviewed in ref. 2). This simple circuit receives a brief stimulus
(Fig. 1a, c, e, external input) and needs to store it through per-
sistent activity. Stable persistent activity (drdt ¼ 0) in the absence of
external input is achieved only when the intrinsic decay of the
neuron (represented by the term �r) and the recurrent drive to
the neuron (f ðrÞ) are equal in magnitude and cancel each other.
This condition imposes two separate, but related, problems that
depend on whether the firing rate function f ðrÞ is linear or
nonlinear. In the typical nonlinear case (Fig. 1b, c), if the stimulus
is too weak, the memory neuron’s low initial firing rate provides
insufficient recurrent feedback to overcome the post-stimulus
intrinsic decay of activity (Fig. 1b, left of open circle). As a result,
the firing rate of the network returns to a low (or zero) baseline
firing rate (Fig. 1c, orange, purple, green traces). By contrast, if
the stimulus is stronger, the memory neuron’s initial firing pro-
vides recurrent feedback that exceeds the rate of intrinsic decay
(Fig. 1b, right of open circle), leading to a reverberatory ampli-
fication of activity in which the rate rises until some saturation
process brings the rate to rest at an elevated persistent level
(Fig. 1c, blue and red traces). Thus, the only possibilities are that
activity decays to its baseline level or that activity runs away to
saturation at a high level that, for typical neuronal nonlinearities,
is unrealistically large. A different problem emerges in the case in

which the firing rate function f ðrÞ is linear (Fig. 1d, e). The lin-
earity of the rate function in this case allows a continuum of
persistent rates, corresponding to the continuous set of points at
which the feedback and decay lines overlap, to be stored (Fig. 1d,
blue line), unlike the nonlinear case. This comes at the cost of a
“fine-tuning” condition: the strength of the recurrent synapse(s)
must be exactly tuned to counterbalance the strength of the rate
decay; an arbitrarily small violation of this condition causes the
rate to exhibit runaway growth (Fig. 1e, red trace) or decay to a
low baseline (Fig. 1e, orange trace). Although presented here for a
very simple example, these problems are also commonly observed
in larger neural networks32.

We next illustrate what happens when a network with the same
positive feedback architecture is provided with a subthreshold

Fig. 1 Failures of traditional positive feedback models of working memory
storage. a Simplified model illustrating key features of positive feedback
models. In the absence of external input (external input ¼ 0), changes in
the firing activity rðtÞ of a population are determined by the relative balance
of network feedback (black, fðrÞ) and neuronal decay processes (gray, �r).
b, c Nonlinear models typically exhibit a “low firing rate problem”. b During
the memory period when external input is absent, the intersections of the
decay (gray) and network feedback (black) functions are such that there
are no stable fixed points (solid circles) within the range of firing rates
typically observed during persistent neural activity. c Firing rates below the
unstable fixed point (b, c, open circle) decay to zero (green, purple, orange
lines), whereas firing rates above the unstable fixed point run off to
unrealistically high rates (red, blue lines). d, e Linear models exhibit the
“fine tuning problem”: minute changes in the strength of feedback (red:
+5%, orange: −5%) relative to the tuned value (blue) result in unstable
growth (red) or decay (orange).
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oscillatory drive (Fig. 2). We demonstrate this in the more bio-
logically realistic case of a conductance-based spiking neuron
model (the Wang-Buzsaki (W-B) model of ref. 33), which facil-
itates the illustration of the phase-locking phenomenon that we
will describe. Without an oscillatory input, the model exhibits the
“low firing-rate problem” (Fig. 2a, b) and can only maintain
persistent activity at a high spiking rate or not spike at all. When a
subthreshold oscillation is added to the model (Fig. 2c–f), the
oscillatory drive has two effects. First, it provides extra input that
allows small transient inputs to trigger low-rate spiking. Second,
spiking of the memory neuron does not lead to runaway feedback
because, before the feedback can run away, the oscillatory drive
returns toward its trough, causing a cessation of spiking. The net
result is that the spike-driven feedback becomes discretized,
forming a staircase whose step heights correspond to the number
of spikes emitted by the neuron per oscillation cycle (Fig. 2d–f).
The phase locking of the spiking to the subthreshold oscillatory
drive constrains these spike numbers to be integer multiples of
the oscillation.

There are several key requirements for this mechanism to
enable discretely graded persistent activity. First, the oscillation
must be sufficiently strong. For very small oscillatory input
amplitudes, the system resembles the case with no oscillatory
input of Fig. 2b, in which external input is either too weak to
cause sustained spiking so that activity returns quickly to the
lower, no-spiking stable fixed point, or is strong enough to trigger
spiking but then runs off to the very high upper fixed point. To

maintain discretely graded persistent activity in the recurrently
connected network, the oscillation must be high enough at its
peak to annihilate the no-spiking fixed point and cause spiking,
and low enough at its trough to annihilate the upper fixed point
and terminate spiking in each cycle.

Second, there must be some process that enables the activity
from one cycle of the oscillation to carry through to the start of
the next cycle and consequently enable renewed spiking as the
oscillatory input heads toward its peak. For the simple case illu-
strated here, where all neurons receive oscillatory inputs that are
perfectly aligned in phase, the mechanism enabling inter-cycle
memory is a slow NMDA-like (or local dendritic) synaptic time
constant3,10,34. Alternatively, we show in Supplementary Fig. 1
that, for a network of many neurons that receive oscillatory input
with heterogeneous phases and therefore fire at staggered times,
the synaptic time constant can be smaller and the time between
cycles may be bridged by the firing of other neurons in the
network.

Third, the single neuron model must be sufficiently nonlinear
to enable phase locking to the external oscillation (Fig. 3). The key
feature of this nonlinearity is that it must keep small changes in
synaptic input, for example due to small changes in synaptic
weights, from causing corresponding changes in firing rate. This
occurs in the Wang-Buzsaki model (Fig. 3a) because small per-
turbations (Fig. 3b, + or − pulse) that cause transient phase shifts
during the supra-threshold portion of the oscillatory cycle quickly
decay away during the sub-threshold portion of the cycle

Fig. 2 Oscillatory input allows robust maintenance of discretely graded persistent activity in a conductance-based, spiking neuron model. a Schematic
of conductance-based autapse model. The model is composed of potassium, sodium, and leak conductances, and receives feedback input (Isyn in Eq. (1),
“Methods”) as well as input current from an external source. b Manifestation of the “low-firing-rate” problem in the conductance-based model without
oscillatory input. Similar to the nonlinear firing rate model depicted in Fig. 1b, the conductance-based spiking model exhibits stable fixed points only at zero
and high firing rates (filled circles). Spiking rates between these two fixed points decay to zero from below the unstable fixed point (open circle) or run
off to high rates from above the unstable fixed point. Feedback activation refers to the synaptic feedback activation variable s (Eq. (3), “Methods”).
c Schematic of conductance-based neuron with the addition of an oscillatory input. d–f Maintenance of discretely graded persistent activity levels enabled
by oscillatory input. Phase-locking to the oscillatory input creates stable fixed points at integer multiples of the oscillation frequency. There is a trade-off
between the number of firing rates that can be maintained and the robustness of these fixed points, which is related to the spacing between the fixed
points. d Lower frequency oscillations enable a larger number of closely spaced fixed points. e, f Higher frequency oscillations lead to fewer, more robust,
fixed points. Time-varying firing rates in (b, d–f) are computed by smoothing the spike trains using an exponential filter with time constant equal to the
model’s synaptic time constant (150ms).
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(Fig. 3b). Due to this decay, the number of spikes per cycle, and
thus the output firing rate, can remain constant even when the
level of sustained synaptic input changes (Fig. 3c), leading to the
observed staircase in the firing rate versus feedback relation
(Fig. 3c).

To understand more quantitatively the origin of this nonlinear
phase-locking and the resultant staircase of firing rate versus
feedback, we considered a simple integrate-and-fire model neu-
ron with oscillatory input. For a non-leaky integrate-and-fire
neuron (Fig. 4a), which has perfectly linear, non-decaying sub-
threshold voltage dynamics, applying a brief pulse of external
input led to a phase shift in spiking that persisted across cycles
(Fig. 4b). Due to this lack of phase-resetting, when the level of
sustained synaptic input is even slightly increased, it causes a
progressive phase advance of spiking that builds up across cycles
until an additional spike is added (Fig. 4c, compare magenta and
cyan traces), increasing the firing rate slightly (note that, because
the second spike occurs late in the cycle, only a single spike can fit
in the next cycle). For a leaky integrate-and-fire neuron (Fig. 4d),
by contrast, a brief pulse of external input leads to a transient shift
in the times of the next spikes, but this phase shift decays away
exponentially with the leak time constant during the subthreshold
portion of the cycle (Fig. 4e; mathematical derivation shown in
Supplementary Note 1). As a result, small changes in synaptic
input do not build up across cycles and quite different synaptic
inputs can lead to the same number of spikes each cycle (Fig. 4f).

Some degree of tuning of the feedback is required to have
multiple levels of persistent activity. However, the width of the
steps of the staircase provides a moderate level of robustness to

mistuning, especially for higher oscillation frequencies (Fig. 2d–f).
Mechanistically, this robustness occurs because errors in the
tuning of feedback that are insufficient to systematically add or
subtract an extra spike per cycle do not persist from cycle to cycle,
unlike in models that do not obey the three conditions described
above. We illustrate this robustness to weight changes in Fig. 5,
where we compare the oscillatory autapse memory model of
Fig. 2d (Fig. 5a, b) to an approximately linear autapse model (see
Supplementary Note 1 and refs. 35,36) that can produce (nearly)
graded persistent activity in the absence of oscillatory input
(Fig. 5c, d). Each model receives an arbitrary sequence of positive
and negative input pulses and must temporally accumulate and
store the pulses in persistent activity. The linear spiking autapse
model requires fine tuning to maintain persistent activity: very
small deviations from the tuned autapse weight lead to activity
that grows to a saturating level or decays to zero activity (Fig. 5c,
d). In contrast, the same synaptic weight deviations have negli-
gible effect on the accumulation and multi-level storage capability
of the nonlinear spiking neuron with oscillatory drive (Fig. 5a, b).

The above examples demonstrate the basic mechanism by
which oscillatory input may permit discretely graded levels of
firing rate to be robustly stored in a recurrent excitatory network
model of persistent activity. We next explored applications of this
basic principle in the case of three different network architectures:
a spatially uniform (all-to-all) network that temporally integrates
its inputs (Fig. 6); a “ring-like” architecture whose activity can
store both a spatial location and discretely graded levels at that
location (Fig. 7); and a chain-like architecture that can generate
sequences of activity with multiple discretely graded amplitudes
(Fig. 8).

We first extended the demonstration of temporal integration,
shown in Fig. 5, to a spatially homogeneous (all-to-all) network
composed of 1000 neurons (Fig. 6a, b). This permitted us to not
only examine the systematic mistuning of weights shown in the
autapse network, which produces identical results to the averaged
activity of the 1000 neuron network (“Methods”), but also to
examine the robustness to four different sources of noise and
variability (Supplementary Note 2): input noise, in which each
neuron in the network received independent exponentially fil-
tered noise added to the subthreshold oscillatory drive (Fig. 6c);
noise in the connection weights, in which each synaptic weight
value in the network was initialized with added random noise
(Fig. 6d) or in which there was sparsity of connection weights
(Supplementary Fig. 2); randomly shuffled phases of the sub-
threshold oscillatory drive, in which each neuron received an
oscillatory signal whose phase was randomly picked from a
uniform distribution at initialization (Supplementary Fig. 3a); and
noisy oscillation frequency and amplitude, in which the para-
meters of the subthreshold oscillatory drive underwent noisy drift
(generated by an Ornstein-Uhlenbeck process) during the simu-
lations (Supplementary Fig. 3b). In all of these cases, the network
was able to accurately maintain multi-level persistent activity
despite moderate perturbations. Figure 6c, d and Supplementary
Fig. 3b illustrate the conditions for which the magnitude of the
perturbations notably affected network performance—for noise
substantially less than this amount, persistent activity was well
maintained over a timescale of seconds, whereas larger noise
levels led to progressively larger drifts of activity. We also con-
sidered the case of perfectly correlated frequency noise across
neurons, with the amplitude of oscillation-frequency noise the
same as the oscillation-frequency noise in Supplementary Fig. 3b
(Eq. (S.47) of Supplementary Note 2). In this case, due to not
being able to average out noise across neurons, performance was
worse, but for typical noise instantiations, the network still
approximately maintained its level of persistent activity for
multiple seconds.

Fig. 3 Phase-locking provides a correction to small external
perturbations. aModel schematic as in Fig. 2c. b A small input perturbation
(+ or − pulse) causes a transient phase shift (red, phase advance; orange,
phase delay) during the supra-threshold portion of the oscillatory cycle that
is subsequently reset during the sub-threshold portion of the cycle.
Simulation shown for the conductance-based autapse model depicted in
(a). c Simulations with synaptic feedback activation held constant at two
different levels (cyan and magenta points). For each synaptic feedback
level, the corresponding voltage traces have the same number of spikes
per cycle.
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Next we demonstrate that a similar temporal integration of
inputs can also occur in spatially structured networks. We con-
sider a classic ring model architecture commonly used to model
spatial working memory tasks in which stimuli can be presented
at any of various locations arranged in a circular (ring-like)

layout. The model consists of a ring of neurons with local exci-
tatory connectivity and functionally wider inhibitory connectivity
(Fig. 7a, “Methods”). Such models can generate persistent activity
at any spatial location along the ring, but typically have only a
binary (on-off) representation at a given spatial location (Fig. 7b).

Fig. 4 Discretely graded spiking per oscillatory cycle is related to a phase-locking mechanism enabled by a restorative decay in the membrane
potential. a Model schematic of non-leaky integrate and fire neuron receiving an oscillatory input and a feedback self-connection. b A perturbation
(current) pulse is applied to the neuron while firing at a steady-state value of two spikes per cycle. As there is no decay in the membrane potential, a
“voltage memory” is carried over from cycle to cycle, and the spiking does not phase-lock to the oscillatory drive. Synaptic feedback input is held constant
in this simulation as, due to lack of phase locking, not doing so leads to activity decaying to zero or running away. c Non-leaky integrate and fire neuron
receiving an oscillatory input and a synaptic feedback input held constant exhibits continuously graded spiking activity. For any two very close-together
levels of synaptic feedback activation (cyan and magenta points), the voltage traces exhibit a different number of spikes per cycle. d Model schematic of
leaky integrate and fire neuron receiving an oscillatory input and a feedback self-connection. e A perturbation (current) pulse is applied to the neuron while
firing at a steady-state value of two spikes per cycle. The membrane leak in this case allows the membrane voltage to return to the same value between
each period of the oscillatory cycle, essentially providing the “reset” required for phase-locking. For comparison to (b), the synaptic feedback input was
held constant in this simulation, but, due to phase-locking, not doing so (as in Fig. 3b) leads to near-identical results. f Discretely graded spiking activity of a
leaky integrate and fire neuron receiving an oscillatory input and a synaptic feedback input held constant. For two less close-together levels (cyan and
magenta points), the voltage traces exhibit an equal number of spikes per cycle of the oscillatory input.

Fig. 5 Oscillation-based integrator model exhibits more robustness to changes in the recurrent feedback weight than a traditional non-oscillation-
based model. a Responses of oscillation-based model to a sequence of positive and negative input pulses. Red and yellow traces show conditions in which
the recurrent feedback strength has been detuned by ±5%, respectively. The activity levels remain persistent following detuning. b Steady-state firing rates
as a function of synaptic feedback activation that is held at steady values; mistuning the autapse weight value by ±5% has no effect on the existence and
location of the stable fixed points (intersections of black lines and horizontal stairs). c Responses of a traditional, approximately linear, conductance-based
model of persistent neural activity (adapted from model of ref. 36). Detuning the recurrent feedback strength by 5% (orange and red traces) causes spiking
activity to decay to 0 (orange, decreased feedback strength) or run off to high rates (red, increased feedback strength). d Small weight changes cause
systematic loss of fixed points in the traditional model.
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When we added an oscillatory input stimulus to such a ring
model, the network could store multiple, discretely graded levels
of activity at any spatial location (Fig. 7c) and could temporally
integrate location-specific inputs into discretely graded levels
(Fig. 7d). While the spatial memory (bump attractor) networks
proposed in refs. 37–39 are capable of generating graded persistent
activity, the network presented here represents, to our knowledge,
the first spatial memory network to encode multi-level activity
without requiring an exact tuning condition.

Recent studies have shown that memory activity during a delay
period also may take the form of a sequence of activity that spans
the delay40–42. Models of such activity typically generate chain-
like patterns of activity that attain only a single, stereotyped level
of firing rate. Consistent with this, when we constructed a net-
work with a chain-like architecture (Fig. 8a), we found that, in the
absence of oscillatory input, the sequential network activity either
quickly decayed when the initial stimulus amplitude was too
small or converged to a single saturated level of activity for larger
stimuli (Fig. 8b). By contrast, in the presence of a subthreshold
oscillatory input, the network could exhibit sequential activity
with discretely graded amplitudes (Fig. 8c). Thus, as in the per-
sistently active networks, the oscillatory sequential memory net-
work could encode multiple discretized stimulus levels.

A key experimental prediction of the model is that there
should be phase-locking of neural activity to oscillations, with
the number of spikes per oscillation cycle increasing in a dis-
cretized manner. To test this prediction, population-wide cel-
lular-resolution recordings in a parametric working memory task
are likely necessary given noise in single-cell activity (e.g.,
Fig. 6c), as well as nonstationarities. EEG recordings have
identified parametric variation in power at certain frequencies
that encodes the graded, parametrically varied amplitude of a
stimulus43. However, the resolution of such recordings is insuf-
ficient to determine whether representations are discretized. A
larger challenge for neural recording studies of analog working
memory tasks is that the set of neurons that generate such
working memory, as opposed to reading it out, has not been
identified in classic graded working memory tasks44—a readout
mechanism could nonlinearly transform the representation, or
pool across multiple discretized representations to obtain higher
resolution readouts. The advent of high-resolution, population-
wide recordings will hopefully make possible future experimental
studies that can test the theoretical principle proposed in
this work.

In summary, this work demonstrates a simple mechanism by
which oscillatory input to a memory network can transform it

Fig. 6 Maintenance of persistent activity and robustness to noise in a fully connected network of 1000 W-B neurons. a Schematic of network. All units
make synapses on all other units, with uniform synaptic weights (plus noise when present). b Spiking responses of network neurons to a sequence of
positive and negative input pulses, with spike rasters plotted for the time window indicated by the dashed gray lines (random sample of 10 neurons from
the 1000-neuron network). c Spiking responses of the network to the same input sequence in the presence of continuous external input noise. The noise
had zero mean and standard deviation roughly one third the magnitude of the individual input pulses (σ ¼ 0:1 μAms0:5=cm2), the point at which network
activity noticeably began degrading. The network is able to maintain persistent activity despite the noisy input. d Spiking responses of the network
initialized with random noise in the connection weights. Noise with mean zero and standard deviation of 10 times the mean connectivity strength
(σ ¼ 0:055 μA=cm2), the point at which network activity noticeably began degrading, is added to the individual connection weights between neurons.
Although individual neurons in the network respond with different rates, the network is able to maintain persistent activity at many levels.
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from storing only binary amplitudes to maintaining discretely
graded amplitudes of persistent activity. Memory networks using
this mechanism require a cellular, synaptic, or network process
that can span the period of the oscillation. The mechanism can
operate at any of the many oscillation frequencies suggested to
correlate with working memory storage (Fig. 2d–f): higher fre-
quency oscillations do not require long timescale processes to
span the oscillation cycle and are more robust to noise, but due to
their short period may only store one or a few values; lower
frequency oscillations could store more items, but require a cel-
lular or network process with longer timescale to bridge the
troughs occurring in each cycle and are more easily perturbed by
noise. This tradeoff might be mitigated if, as suggested above, the
memory readout could pool across multiple discretized repre-
sentations with different locations of staircase steps so that the
summed output had finer steps. Our work complements tradi-
tional attractor models of working memory that typically fall into
two classes: bistable models that robustly maintain two levels of
activity (Figs. 1b and 2b) and continuous attractor models that
can maintain nearly analog storage of memory but require very
precise tuning of connection weights (Figs. 1d, e and 5c, d). Our
model represents an intermediate possibility with relatively
moderate tuning requirements (Fig. 5b) and a discretely graded
set of response levels. Previous work has suggested how multiple,
spatially distinct bistable processes in a cell can be coupled
together to form multiple stable levels of firing activity45,46. Here,
we demonstrate a complementary mechanism for forming multi-
stable representations that relies on temporal, rather than spatial,
patterning of inputs. Altogether, this work suggests that the
oscillatory activity commonly observed during working memory
tasks may expand short-term memory capacity by enabling
multi-level storage of information in persistent or sequential
activity.

Methods
The Wang-Buzsaki (W-B) model neuron used for most spiking neuron simulations
is based upon the original model described in ref. 33. Below, we show the equations
for the dynamical variables most relevant to the maintenance of discretely graded
persistent activity. The full model equations, and modifications of the equations
below to include input noise, stochasticity in the parameters, or more complex
forms of oscillatory inputs with heterogeneous phases or time-varying amplitudes
and frequencies across neurons, are included in the Supplementary Information.
The membrane potential of the Wang-Buzsaki neuron obeys the current balance
equation:

Cm
dVi

dt
¼ �INa Vi; hi

� �� IK Vi; ni
� �� IL Vi

� �þ Isyn;i s1; ¼ ; sN
� �þ I0 þ I tð Þ þ Iext;i tð Þ

ð1Þ

Isyn;i s1; ¼ ; sN
� � ¼ ∑

N

j¼1
wijsj ð2Þ

τsyn
dsi
dt

¼ �si þ αsyn ∑
tspikei

δ t � tspikei

� �
ð3Þ

I tð Þ ¼ ψ cos ωtð Þ ð4Þ
where h and n are time-varying channel variables (Supplementary Note 1). The
parameter values used are specified in Supplementary Tables 1–3. The Wang-
Buzsaki neuron receives several sources of inputs: (1) Isyn;i s1; ¼ ; sN

� �
represents

recurrent feedback to neuron i, the strength of which is determined by a weight
matrix wij defining the strength of the connection from neuron j to neuron i, (2) I0
is a constant current that shifts the resting potential, and could represent tonic
background input or intrinsic currents not explicitly modeled, (3) I tð Þ is the
external oscillatory input (I tð Þ ¼ 0 for models with no oscillatory input), and (4)
Iext;i tð Þ represents the external inputs to be accumulated and stored by the memory
network. To calculate spike times in Eq. (3), we used the time of the peak of the
action potential, with only action potentials exceeding a voltage of 0 mV included.
Integration was performed numerically using the fourth order Runge-Kutta
method with a time step Δt= 10−2 ms.

In the single neuron case, there is a single recurrent synaptic weight w½μA=cm2�.
Values for simulation parameters are included in Supplementary Table 2. In
Figs. 6–8, we study three different network architectures composed of Wang-
Buzsaki neurons: an all-to-all connectivity (Fig. 6), a ring structure (Fig. 7), and a

Fig. 7 Maintenance of discretely graded bumps of persistent activity in a ring network of W-B neurons. a Schematic of network structure. The spatial
positions of neurons in the network are indexed by the angle theta from an arbitrary reference neuron. b Illustration of low-rate problem in a ring network of
conductance-based spiking neurons without oscillatory input. Steady-state firing rate response of neurons in the network to input pulses of different
amplitudes at locations centered around network position¼ π, and heatmaps illustrating the network’s temporal firing-rate responses to short pulses of
inputs at network locations labeled by colored bars. The network is unable to maintain bump activity levels between the low and high fixed points. c Ring
network with oscillatory input is able to maintain discretely graded bumps of persistent activity. d Temporal integration in the ring network. Short (100ms)
input pulses to the network are temporally integrated and stored in persistent activity. For simplicity, the persistent activity in (b, c) is terminated using a
pulse of inhibitory input; we do not model the origin of such termination signals.
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directed structure (Fig. 8). Simulation parameter values specific to multi-neuron
networks are included in Supplementary Table 3.

The all-to-all connected networks of Fig. 6 are composed of 1000 Wang-Buzsaki
neurons. Figure 6b, c implements a network with uniform connection strengths
wij ¼ w

N ½μA=cm2�. Figure 6d implements a network in which these uniform con-
nection strengths have been perturbed by adding static Gaussian noise of mean
zero independently to each connection. Exponentially filtered temporally white
noise (Ornstein-Uhlenbeck process) input was implemented in the network illu-
strated in Fig. 6c; for each neuron i, the additive noise was given independently by:

ni tð Þ ¼ ni;t�Δt � ni;t�Δt
Δt
τn

þ σnηi;t

ffiffiffiffiffi
Δt
τn

s
ð5Þ

ηi;t � Nð0; 1Þ ð6Þ
where σn is the amplitude of the noise.

For the ring connectivity structure in Fig. 7, the connection strength from
neuron j to neuron i is described by:

wij ¼ Aþ B cos
2π i� j

� �
N

� �
½μA=cm2� ð7Þ

The directed structure illustrated in Fig. 8 resembles the ring structure, but
results in a drift of the “activity bump” in one direction. The connection strength

from neuron j to neuron i in this case is defined by:

wij ¼ Aþ B cos
4π i� j

� �
N

þ 0:1

� �
H C � i� j

		 		� �½μA=cm2� ð8Þ

where H is the Heaviside (step) function and C controls the spatial extent of the
connectivity.

Comparison to linear spiking autapse model. In Fig. 5, we compare the
robustness of the discretely graded persistent activity of the nonlinear spiking
model described above, to that of an approximately linear spiking autapse model in
which analog persistent activity is enabled by excitatory feedback that is tuned to
offset the intrinsic decay of activity. The equations for the linear spiking autapse
model36 are included in Supplementary Note 1, with parameter values in Sup-
plementary Table 4.

Simple rate model. The equation for the simple firing rate model implemented for
Fig. 1 is given in Fig. 1a. The nonlinear term used for Fig. 1b is:

f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w x � xthr

 �

þ

q
ð9Þ

with w ¼ 75, xthr ¼ 10½Hz�.

Integrate and fire model. In Fig. 4, we use an integrate-and-fire model whose
membrane potential (V) dynamics are given by:

dV
dt

¼ � 1
τ
ðV � VLÞ þ IsynðsÞ þ I0þIðtÞ þ Iext ðtÞ ð10Þ

where τ ¼ 10 ms is the time constant of the leak when present, I(t) is the oscil-
latory input (given by Eq. (4)) with amplitude ψ=−1.0 μA=cm2 and
ω= 0.05 ms−1, IsynðsÞ (Eq. (2)) is the synaptic input, which was held constant
(parameter values given in Supplementary Note 3), I0 ¼ �0:4 μA=cm2 is a con-
stant current that shifts the resting potential as in Eq. (1), and Iext tð Þ represents an
external input. We used a spike threshold of −59.9 mV and voltage reset of −68
mV; we did not enforce a refractory period.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data to generate all figures is provided on a GitHub repository at https://github.
com/goldman-lab/Championetal2023.jl.git and https://doi.org/10.5281/zenodo.
817015647.

Code availability
Code to implement all simulations described in this manuscript is available at https://
github.com/goldman-lab/Championetal2023.jl.git and https://doi.org/10.5281/zenodo.
817015647.
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