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The pharmacoepigenomic landscape of cancer cell
lines reveals the epigenetic component of drug
sensitivity
Alexander Joschua Ohnmacht1,2, Anantharamanan Rajamani3,4,5, Göksu Avar 1,2, Ginte Kutkaite 1,2,

Emanuel Gonçalves6,7, Dieter Saur 3,4,5 & Michael Patrick Menden 1,2,8✉

Aberrant DNA methylation accompanies genetic alterations during oncogenesis and tumour

homeostasis and contributes to the transcriptional deregulation of key signalling pathways in

cancer. Despite increasing efforts in DNA methylation profiling of cancer patients, there is

still a lack of epigenetic biomarkers to predict treatment efficacy. To address this, we analyse

721 cancer cell lines across 22 cancer types treated with 453 anti-cancer compounds. We

systematically detect the predictive component of DNA methylation in the context of tran-

scriptional and mutational patterns, i.e., in total 19 DNA methylation biomarkers across 17

drugs and five cancer types. DNA methylation constitutes drug sensitivity biomarkers by

mediating the expression of proximal genes, thereby enhancing biological signals across

multi-omics data modalities. Our method reproduces anticipated associations, and in addi-

tion, we find that the NEK9 promoter hypermethylation may confer sensitivity to the NEDD8-

activating enzyme (NAE) inhibitor pevonedistat in melanoma through downregulation of

NEK9. In summary, we envision that epigenomics will refine existing patient stratification,

thus empowering the next generation of precision oncology.
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Precision oncology adverts to stratifying patients based on
tumour entities and their molecular profiles to enhance
drug efficacy and reduce toxicity1. The success rate of

clinical trials without a molecular biomarker is estimated to be
1.6% and is increased to 10.7% when using an appropriate patient
stratification2. Accordingly, methods that identify biomarkers and
thereby facilitate clinical translation are crucial for the rapid
development of novel cancer treatments.

In human tumours, aberrant DNA methylation has been
shown to deregulate oncogenic pathways3 and to contribute to
the acquisition of drug resistance4,5. For example, DNA
methylation in promoter, enhancer and CpG island regions has
revealed epigenetic mechanisms involved in the transcriptional
activity of several key cancer genes3,6. In particular, the
downregulation of tumour suppressor genes by hypermethyla-
tion of CpG sites in gene promoters is a hallmark of many
cancer types7. In contrast, the hypermethylation of CpG sites in
gene bodies is often reported to be positively correlated with
gene expression8.

Molecularly characterised cancer cell lines are a useful and
scalable model system for drug discovery9. They have
empowered large high-throughput drug screens (HTS)10–15,
which include cell line panels of >1000 cell lines and are aimed
to characterise the biomarker landscape of cancer16. For
example, skin cutaneous melanoma cell lines (SKCM) har-
bouring BRAF V600E mutations are vulnerable to BRAF kinase
inhibitors, and furthermore, this in vitro observation gen-
eralises to in vivo models and melanoma patients17. Genetic
alterations are the causally related disease aetiology of cancer.
Thus, most molecular biomarker studies have focused on
somatic mutations and copy number variations. However,
despite the growing utility of epigenetic biomarkers in clinics
and an increasing number of commercially available diagnostic
tests involving DNA methylation18, prognostic and predictive
epigenetic biomarkers are still sparse19.

Few efforts have been dedicated to identifying DNA
methylation biomarkers of drug response. For example, DNA
methylation has been used to identify the CpG island methy-
lator phenotype (CIMP)20. It has previously been suggested as a
predictive biomarker21, however, its definition is still
inconsistent22, challenging to mechanistically interpret and
limited to a handful of cancer types20,23,24. Furthermore, pre-
dictive DNA methylation biomarkers in HTS are commonly
assessed by summarising CpG sites in promoters and CpG
islands11,21. For these summarised regions, machine learning
models have been used to predict drug response25,26 of
preselected genes involved in DNA methylation or
demethylation26. In summary, these methods either do not
leverage the full epigenome on the CpG site resolution, build
evidence in multi-omics data modalities across different data-
sets, or lack mechanistic interpretations.

In order to empower epigenetic response biomarkers, our
objectives were: (1) Identify DNA methylation regions associated
with drug response in HTS; (2) Integrate genetic, epigenetic and
transcriptomic data modalities of cancer cell lines for increasing
evidence and interpretability; (3) Verify these epigenetic regula-
tions of gene expression in human primary tumours and thus
enhancing clinical translatability; (4) Finally, map the epigeneti-
cally regulated genes onto protein-protein signalling networks,
and link them to their respective drug targets, thereby obtaining
interpretable, actionable and translatable mechanisms. Our sys-
tematic analysis of the pharmacoepigenomic landscape in HTS,
accompanied by thorough filtering for layer-wise evidence,
interpretability and translatability, may pave the way for epige-
netic response biomarkers in cancer.

Results
For the discovery of DNA methylation biomarkers of drug
response, we analysed methylation patterns of 721 cancer cell
lines from 22 cancer types treated with 453 anti-cancer com-
pounds. The data was derived from the Genomics of Drug Sen-
sitivity in Cancer (GDSC; Fig. 1a) project11, which has since
expanded its set of screened compounds compared to the original
publication27,28. Drug responses of cancer cell lines were char-
acterised by their area under the drug response curve (AUC;
Fig. 1b), for which low AUC values convey high sensitivity to the
respective compound.

We first systematically searched for methylation regions with
differential drug response in cancer cell lines, i.e., drug differentially
methylated regions (dDMRs) by adaptively grouping spatially cor-
related CpG sites contained in the Infinium HumanMethylation450
BeadChip array (Fig. 1c; Methods). Secondly, we filtered for
dDMRs which may mediate proximal gene expression (Fig. 1d;
Methods), which thereby increases evidence of functional epigenetic
events impacting drug response (Fig. 1e). Subsequently, we filtered
for concordantly observed epigenetic mechanisms in human pri-
mary tumour samples from The Cancer Genome Atlas (TCGA;
Fig. 1f; Methods), which yielded a prioritisation list of tumour-
generalisable dDMRs, (tgdDMRs). Lastly, we correlated tgdDMRs
with somatic mutations in cancer genes (Fig. 1g) and used shortest
path algorithms applied to protein-protein interaction networks
(Fig. 1g, h; Methods) to derive relationships between drug targets
and proximal tgdDMR genes encoding respective proteins to sup-
port tgdDMRs further. In total, we found 19 tgdDMRs, i.e., pre-
dictive epigenetic biomarkers of drug response.

Identification of epigenetic drug response biomarkers from
high-throughput drug screens. Analysing the DNA methylation
and gene expression profiles of cancer cell lines stemming from
22 cancer types highlighted that the variance within cancer types
is lower compared to the variance between cancer types (Fig. 2a
and Supplementary Fig. 1a). Hence, we stratified cell lines into
cancer types for subsequent modelling. For each cancer type and
screened compound, we employed linear models and called drug
differentially methylated regions (dDMRs; Methods), i.e., regions
for which the methylation in CpG sites associates with drug
response quantified by AUC. In total, we identified 802 dDMRs
for 186 drugs in 22 cancer types (dDMR calling, adj. p < 10−6;
Fig. 2b and Supplementary Fig. 1b). We observed a linear rela-
tionship between the amount of found dDMRs and the sample
size of the investigated cancer type (Pearson’s r= 0.81,
p= 5.1 × 10−6, correlation test; Supplementary Fig. 1c).

The distribution of significant drugs across cancer types was
heterogeneous, but we identified enrichments of drug classes
between cancer types (one-sided hypergeometric test, FDR < 0.05;
Supplementary Data 1): Drugs that target the ERK-MAPK
signalling pathway (trametinib, PD0325901, ulixertinib, selume-
tinib, VX-11e and CI-1040) were enriched in colorectal cancer
(COREAD, odds ratio= 6.3), drugs that target EGFR signalling
(afatinib, sapitinib, AZD3759, erlotinib, gefitinib and pelitinib)
were enriched in lung adenocarcinoma (LUAD, odds ratio=
15.0) and drugs that are involved in targeting mitosis (alisertib,
vinblastine, vinorelbine, GSK1070916, epothilone B, docetaxel,
ARRY-520, S-trityl-L-cysteine) were enriched in small-cell lung
cancer (SCLC, odds ratio= 4.9).

The distribution of CpG site counts per dDMR had a median
of seven sites per dDMR. Furthermore, 132/802 dDMRs
comprised >10 CpG sites, whilst 147 dDMRs contained <5 sites
(Supplementary Fig. 1d). dDMRs were enriched for DNAase I
hypersensitive sites (DHS, p < 10−16, odds ratio= 3.32, one-sided
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Fisher’s test; Fig. 2c, d) and sites in CpG islands (p < 10−16, odds
ratio= 3.13, one-sided Fisher’s test; Fig. 2c, d). Furthermore, we
investigated dDMRs in proximity of cancer genes based on
annotations of the Network of Cancer Genes (NCG) project29.
DNA Methylation sites on the 450k microarrays have higher
seeding density in the vicinity of cancer genes, i.e., 645/674 (96%)
of cancer genes contained >10 profiled CpG sites compared to
16,213/20,557 (79%) of non-cancer genes. To alleviate this bias,
we only tested genes with at least ten proximal CpG sites, which
resulted in 16,858 background genes and 645/16,858 (3.8%)
cancer genes. We observed 503 genes in proximity to identified
dDMRs, of which 27 were cancer genes (5.4%; Supplementary
Fig. 1e), thus cancer genes were significantly enriched (p= 0.049,

odds ratio= 1.44, one-sided Fisher’s test). The most prevalent
cancer genes were APC and SKI found across two cancer types.
For reference, the most prevalent non-cancer genes were PTPRN2
and DKK1, which were found in five and four cancer types,
respectively (Supplementary Data 2).

Among the cancer genes associated with dDMRs, we found
that MGMT dDMR methylation in low-grade glioma was
associated with response to JQ1 (BET inhibitor, dDMR calling,
adj. p < 10−6; Supplementary Fig. 1f). The epigenetic silencing of
MGMT is frequently debated as a clinical biomarker30 and
previous work revealed that JQ1 disturbs DNA damage responses
by attenuating MGMT expression in glioblastoma cells31. While
the different treatment responses are often attributed to somatic
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Fig. 1 Analysis workflow for the identification of epigenetic biomarkers of drug response. a The Genomics of Drug Sensitivity in Cancer (GDSC) project
contains 721 cancer cell lines from 22 cancer types, which were epigenetically characterised and screened across 453 compounds. b The dose-response
curves of a responder and non-responder melanoma cell line treated with pevonedistat. c We identified 802 drug differentially methylated regions
(dDMRs). d The set of dDMRs is filtered for regulatory mechanisms, i.e., correlated gene expression of proximal genes, resulting in 377 functionally
interpretable dDMRs. e For example, the dDMR in the NEK9 promoter is associated with the expression of NEK9 and is additionally correlated with drug
response to pevonedistat. The error bars corresponding to 95% confidence intervals, the raw p-value (p) for the respective CpG site and the Pearson
correlation coefficient (r) are displayed. f In total, the methylation of 58 epigenetic biomarkers of drug response were observed to be consistently
correlated with the expression of their proximal gene in TCGA primary tumours. g The set of tgdDMRs was investigated for correlated somatic mutations
in cancer cell lines. Additionally, for gaining further mechanistic insights, shortest-path algorithms traversed protein-protein signalling networks containing
tgdDMR-associated genes as well as the respective drug targets and revealed additional evidence for 19 tgdDMRs. h The predictive biomarker NEK9 (light
blue) is connected within five steps to the drug target of pevonedistat, i.e., the NEDD8-activating enzyme NAE (pink). In the graph, nodes that are
traversed with a shortest path are highlighted by the blue-grey colour among the alternative paths. The used human icons are from the AIGA symbol signs
collection and are in the public domain.
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mutations in cancer genes, this suggests that DNA methylation
can function as a complementary mechanism.

A negative effect size of a dDMR indicates that drug-sensitive
cell lines are hypermethylated. Here, this is exemplified by the
methylation status of SHC1, which was found to be associated
with the EGFR, ERBB2 and ERBB4 inhibitor CI-1003 in LUAD
(Fig. 2e). We observed that LUAD cell lines with a hypermethy-
lated promoter of SHC1 showed lower expression levels and were
more sensitive to CI-1003 (Fig. 2e). Indeed, the adaptor protein
SHC1 is involved in promoting the downstream signalling of ERK
through EGFR32. No correlations between SHC1 methylation and
alterations in the ERK signalling pathway such as EGFR, BRAF,
NRAS or KRAS mutations or amplifications were found. Clinical
trials have reported benefits for non-small cell lung cancer
patients with EGFR mutant tumours treated with the pan-ERBB
inhibitor dacomitinib33,34. Thus, SHC1 silencing through DNA
hypermethylation may be a sufficient but not necessary condition
for sensitivity to ERBB inhibitors.

Overall, CpG sites in gene promoters were particularly
enriched in dDMRs with a negative effect size (p < 10−15, one-
sided Fisher’s test; Fig. 2c). For dDMRs with a negative effect size,
methylation sites were usually hypomethylated across cancer
cell lines, with a few treatment-sensitive cell lines that were
hypermethylated (Supplementary Fig. 2).

In contrast to above, dDMRs with positive effect size contained
methylated CpG sites that were mostly distributed across diverse
genomic locations (Fig. 2d) and their hypomethylation was
associated with drug sensitivity (Supplementary Fig. 2). Further-
more, we found enrichments of dDMRs with positive effect size
within 200 bases upstream of the transcriptional start site
(TSS200) for 11/22 cancer types (p < 0.001, one-sided Fisher’s
test; Fig. 2d). Exemplifying a dDMR with positive effect size, the
hypomethylation of the SLFN11 promoter was significantly
associated with sensitivity to SN-38 in LUAD (Fig. 2f). The
topoisomerase I inhibitor SN-38, the active metabolite of
irinotecan, inhibits DNA replication through binding to the
topoisomerase I-DNA complex and thus promotes DNA double-
strand breaks. SLFN11 is a putative DNA/RNA helicase that
sensitises cancer cells to DNA damaging agents by killing cells
with defective DNA repair35. Its expression has been discussed
extensively as a predictive biomarker for compounds targeting
the DNA damage response36,37. Here, we show that cells with
hypomethylated SLFN11 show high SLFN11 expression and
sensitivity to SN-38.

For validating dDMRs, we retrieved independent drug
response data from the Cancer Therapeutics Response Portal
(CTRP; Methods). We found that 236/802 dDMRs (29.4%) had
overlapping data on cancer cell lines and drugs between GDSC

Fig. 2 Heterogeneity of epigenetic patterns across cancer types results in a rich resource of dDMRs. a Cancer type specific pattern of DNA methylation
profiles of cancer cell lines in the GDSC. b Significant dDMRs across 22 cancer types and 186 drugs. The size of the data points indicates the amount of
CpG sites in the identified dDMR. Genomic regions are labelled by the gene name in the closest vicinity. The enrichment of functional genomic regions in
dDMRs is visualised in heatmaps for the scenario in which c hypermethylation confers drug sensitivity or d hypomethylation confers sensitivity. We tested
enrichments for: genomic regions in the form of DNAaseI hypersensitive sites (DHS), CpG sites within CpG islands, enhancer regions, regions within 200
and 1500 bases upstream of the transcriptional start site (TSS200 and TSS1500), the 5’ untranslated region (UTR5), the 1st exon, gene body and 3’
untranslated region (UTR3). e The association between SHC1 promoter hypermethylation and CI-1033 response in LUAD; and f the association between
SLFN11 gene hypomethylation and response to SN-38. The error bars corresponding to 95% confidence intervals, the raw p-value (p) for the respective CpG
site and the Pearson correlation coefficient (r) are displayed.
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and CTRP. Among these, 193/236 (81.8%) had consistent effect
size (Supplementary Fig. 3a), with an overall correlation of
Pearson’s r= 0.46 (p= 9.7 × 10−14, correlation test; Supplemen-
tary Fig. 3b). Furthermore, we validated our dDMRs with
independent methylation data, i.e., reduced representation
bisulfite sequencing for DNA methylation profiling (RRBS;
Methods) extracted from the Cancer Cell Line Encyclopaedia
(CCLE). This only reduced the overlapping data of dDMRs
slightly to 227/802 (28.3%), and 164/227 (72.2%) of these dDMRs
displayed consistent effect size (Supplementary Fig. 3a), with a
correlation of Pearson’s r= 0.43 (p= 1.2 × 10−11, correlation test;
Supplementary Fig. 3c), highlighting the ability of our method to
yield reproducible results for independent drug screenings and
DNA methylation experiments.

Epigenetic biomarkers interpreted through gene regulatory
mechanisms. Hypermethylation of promoter regions is an
established mechanism to reduce sufficient transcription factor
binding and regulate gene expression accordingly38. Thus, most
methylation biomarker discovery efforts focus on gene promoter
regions and neglect other regulatory mechanisms11,21,25,26. For
example, the deregulation of methylation patterns in gene bodies
was also reported to alter gene expression profiles8. In order to
address this, we generalised our working hypothesis and explored
the DNA methylation of any dDMR that may mediate gene
expression of proximal genes (Methods).

Upon systematic analysis with the Enhancer Linking by
Methylation/Expression Relationships (ELMER) method39, we
observed that 377/802 dDMRs (47.0%) showed at least one
significantly associated gene in the proximity of its genomic
region (emp. adj. p < 0.001; Methods). In total, 576 genes were
associated with these 377 dDMRs. For each gene associated with a
dDMR, we independently correlated its expression and drug
response with a linear model fit (Fig. 3a–d). In summary, we
observed four distinct mechanisms which may drive drug
sensitivity, i.e., hypermethylation with either downregulated gene
expression (Case 1, n= 216; Fig. 3a) or upregulated gene
expression (Case 2, n= 110; Fig. 3b), and hypomethylation with
either upregulated gene expression (Case 3, n= 162; Fig. 3c) or
downregulated gene expression (Case 4, n= 88; Fig. 3d). We
exemplified each case in cancer cell lines and their mechanistic
consistency in primary tumours (Fig. 3e–l).

For both Cases 1 and 2, hypermethylated dDMRs were
associated with drug sensitivity (negative effect size in Fig. 2b).
The majority of dDMRs belonged to Case 1, which was
distinguished by promoter regions (Fig. 3a). It resembles the
canonical mechanism in which hypermethylation of promoter
regions downregulates the expression of their associated proximal
gene and thereby confers drug sensitivity. This behaviour is
exemplified by the methylation of the SHC1 promoter and its
gene expression in LUAD cell lines (Fig. 3e). Additionally, we
verified the association of the epigenetic status and gene
expression in LUAD human tumour samples (Fig. 3f).

For Case 2, hypermethylation of dDMRs correlated with higher
expression of proximal genes (Fig. 3g, h). This is a less frequent
epigenetic regulation mechanism, however, it is consistent with
previous studies reporting both behaviours8,40–42. As an example,
the hypermethylation of the OPLAH dDMR was associated with
the upregulation of OPLAH expression in SKCM cancer cell lines
and HG-6-64-1 drug sensitivity (Fig. 3g). In addition, this
epigenetic regulation of OPLAH expression was also demon-
strated in primary tumour samples (Fig. 3h).

Cases 3 and 4 were characterised by hypomethylated dDMRs
that were associated with drug sensitivity (positive effect size in
Fig. 2b), which could also be distinct by negative or positive

correlations of dDMRs with gene expression for Case 3 and Case
4, respectively. For example, we found that the hypomethylation
of the SLFN11 dDMR in LUAD was associated with higher
SLFN11 expression (Fig. 3i), which was further verified in human
tumour samples (Fig. 3j). In contrast, the hypomethylation of
PITX2 dDMR was linked to teniposide drug sensitivity, however,
the hypermethylation of PITX2 dDMR was positively associated
with PITX2 expression in cancer cell lines and human tumour
samples (Fig. 3k, l).

In summary, drug sensitivity in cancer cell lines may be driven
by either hypermethylation (Cases 1 and 2) or hypomethylation
(Cases 3 and 4) of dDMRs and can either present negatively
correlated gene expression (Cases 1 and 3) or positively correlated
gene expression (Cases 2 and 4). Case 1 has been the focus of
most epigenetic biomarker studies, whilst we systematically
investigated all 4 cases (Supplementary Data 2) and therefore
can provide broader mechanistic insights.

Epigenetic and transcriptional mechanisms in primary
tumours increase evidence of drug response biomarkers. In the
section above, we highlighted four distinct epigenetic mechanisms
that may drive drug response, i.e., Case 1-4. Each of them was
exemplified in cancer cell lines (Fig. 3e, g, i, k), and consecutively,
further supported by concordant methylation and proximal gene
expression patterns in tumours (Fig. 3f, h, j, l). Here, we sys-
tematically assessed all 377 short-listed dDMRs from above, to
investigate concordant epigenetic regulation patterns in primary
tumours leveraging ELMER39 also in TCGA tumour samples43

(Methods). In total, we investigated a subset of 241/377 dDMRs
for which the associated cancer type data was available in TCGA.
We observed that 58/241 (24.1%) of dDMRs showed a significant
association with their proximal genes in tumours (ELMER, emp.
adj. p < 0.001; Methods). We called this selection of epigenetic
biomarkers tumour-generalisable dDMRs (tgdDMRs). For the
final selection, we found 19/58 tgdDMRs for which the protein
encoded by the associated gene was connected to the corre-
sponding drug targets in the protein-protein signalling network
OmniPath44 (Methods). These 19 tgdDMRs (Supplementary
Data 2) contained proposed biomarkers for 17 anti-cancer drugs
across five cancer types (Fig. 4a), i.e., LUAD n= 7 (Supplemen-
tary Fig. 4), SKCM n= 6 (Supplementary Fig. 5), breast cancer
(BRCA) n= 2 (Supplementary Fig. 6), head and neck cancer
(HNSC) n= 2 (Supplementary Fig. 6), and stomach adeno-
carcinoma (STAD) n= 2 (Supplementary Fig. 6).

We found that the majority of tgdDMRs (15/19) were in
promoter regions, which is concordant with previous computa-
tional strategies that focused solely on promoters to identify
epigenetic response biomarkers. However, the remaining 4
tgdDMRs, which constitute >20% of our identified lead
biomarkers, had distinctly different epigenetic regulation
mechanisms, i.e., were located in either the gene body or distal
regions (Fig. 4b). In addition, we found that all tgdDMRs had
negative correlations with a proximal gene, which correspond to
mechanism Case 1 or Case 3 (Fig. 3a, c). Furthermore, for 10/19
tgdDMRs the expression of proximal genes in cell lines itself was
independently associated with drug response in cancer cell lines
(p < 0.05, linear model fit; Methods), thus having a functional
interpretation across two molecular layers.

For additional evidence of tgdDMRs, we again leveraged the
CTRP and CCLE datasets as validation cohorts. For the tgdDMRs
that had overlapping drug response data, we found that 7/9
tgdDMRs showed consistent effect sizes in the CTRP screen, with
an increased correlation of Pearson’s r= 0.75 (p= 0.02, correla-
tion test; Fig. 4c) compared to unfiltered dDMRs in the previous
section. Additionally, 5/7 of the tgdDMRs overlapping with the
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CCLE RRBS methylation data showed consistent effect sizes with
an increased correlation of Pearson’s r= 0.85 (p= 0.01, correla-
tion test; Fig. 4c) compared to unfiltered dDMRs in the previous
section. This highlights that reproducibility across independent
drug screens and methylation datasets increased when focusing
on tgdDMRs.

Currently, the majority of biomarkers for patient stratification
are genetic alterations, thus, we investigated if genetic mutations
and copy number alterations may reflect the methylation of
tgdDMRs. We tested for associations between somatic mutations
and tgdDMRs using linear models (Methods). We only observed
weak correlations between somatic mutations and tgdDMRs
(FDR < 0.1; Supplementary Fig. 7a; Methods).

While most tgdDMRs are found in gene promoters or bodies,
we observed a distal region in a CpG island in the vicinity of the
HOXB2 gene that marked favourable drug responses for
treatment with dinaciclib (CDK inhibitor), if the HOXB2
tgdDMR was hypermethylated (dDMR calling, adj. p < 10−6;
Fig. 4d). Furthermore, the methylation status was correlated with
HOXB2 expression in cell lines (ELMER, emp. adj. p < 0.001;
Fig. 4e) and primary tumours (ELMER, emp. adj. p < 0.001;
Fig. 4f). Additionally, DNA repair enzyme encoding gene APEX1
essentiality obtained from CRISPR knockout screens was
significantly higher, if the tgdDMR was hypermethylated (FDR <
0.2; Supplementary Fig. 7d; Methods). HOX genes are a family of
transcription factors that are frequently associated with cancer45.
Their expression is reported to be regulated by DNA

methylation46, however, the mechanisms by which they affect
responses to dinaciclib remain elusive. Notably, we were able to
validate this association in the independent CTRP drug screen
(Pearson’s r=−0.59, p= 0.02, correlation test; Supplementary
Fig. 7b) and additionally observed consistent trends with an
alternative methylation profiling based on RRBS in the CCLE
(Pearson’s r=−0.48, p= 0.10, correlation test; Supplementary
Fig. 7c).

Next, we highlight further associations included in the
identified tgdDMRs. For instance, hypermethylation of the
tgdDMR in the NEK9 promoter conferred sensitivity to NAE
inhibition with pevonedistat in cell lines (dDMR calling, adj.
p < 10−6; Fig. 4g). In particular, we observed that tumours with
hypermethylated tgdDMR in the NEK9 promoter showed low
NEK9 expression in both cell lines (ELMER, emp. adj. p < 0.001;
Fig. 4h) and patient tumours (ELMER, emp. adj. p < 0.001;
Fig. 4i). NEK9 has been previously reported to participate in G1/S
phase transition and progression and to regulate the kinase
activity of CHK1 upon replication stress47. Examining the
neighbourhood of signalling networks, the inhibition of NAE
by pevonedistat leads to the inactivation of cullin-RING ligases48,
which target key proteins during the cell cycle progression such as
CDK2 and CDC25A (Fig. 1h)49. This is supported by the Library
of Integrated Network-Based Cellular Signatures (LINCS)
database, which revealed the transcriptional dysregulation of
CUL3, CDC25A, CCNB1 and PLK1 in SKCM cell lines upon
treatment with pevonedistat (FDR < 0.1; Supplementary Fig. 7e;
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Methods). Concordantly, pevonedistat has been shown to induce
DNA damage and cell cycle arrest50,51, from which the cells with
downregulated NEK9 may not be able to recover.

A second tgdDMR in SKCM was identified, which involved a
pro-apoptotic agent. Specifically, hypermethylation of the CRYAB
promoter was associated with drug sensitivity to the BIRC5
inhibitor sepantronium bromide (dDMR calling, adj. p < 10−6;

Fig. 4j) and aberrant CRYAB expression (ELMER, emp. adj.
p < 0.001; Fig. 4k, l). Sepantronium bromide functions as a pro-
apoptotic agent by inhibiting BIRC5, a member of the inhibitor of
apoptosis (IAP) family52. The signalling network neighbourhood
of the CRYAB tgdDMR shows interactions with CASP3 and P53
(Supplementary Fig. 5), which have been previously reported
to show anti-apoptotic activity through CRYAB53,54. This
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observation suggests that activated CRYAB may protect from
apoptosis induced by sepantronium bromide, however, the exact
nature of this relationship remains elusive. Nevertheless, the
signalling network neighbourhoods of tgdDMRs offer interpre-
table indications about putative drug response mechanisms
associated with tgdDMRs.

Discussion
For advancing predictive epigenetic biomarkers in cancer, we
presented an epigenome-wide multi-omic analysis for identifying
interpretable and actionable epigenetic drug sensitivity bio-
markers in HTS. In total, we identified 802 dDMRs demon-
strating the epigenetic component of drug sensitivity in human
cancer cell lines. Furthermore, we guided our method by the
functional relationship that DNA methylation can mediate
proximal gene expression, which resulted in a filtered set of 377
dDMRs that showed explainable regulation of transcriptional
activity in human cancer cell lines. Furthermore, identifying
consistency between cancer cell lines and primary tumours yiel-
ded evidence across epigenomic and transcriptomic data mod-
alities and overcame limitations imposed by cell line artefacts55.
This step prioritised 58 tgdDMRs of which 19 were further
supported by protein-protein interaction networks. This thor-
ough filtering was necessary because direct evidence of epigenetic
biomarkers is lacking and validation was only possible for a
limited number of dDMRs.

We observed an enrichment of cancer genes in the proximity of
dDMRs, however, many established cancer genes lacked dDMRs,
which suggests that only a minority of cancer genes may be
epigenetically regulated. Furthermore, the modest correlations
with somatic mutations suggest that DNA methylation may
function complementary to genetic alterations for determining
cancer drug susceptibilities. In contrast, DNA methylation was
often accompanied by transcriptomic changes; however, it was
not able to substitute DNA methylation pattern of dDMRs, i.e.,
more than half of dDMRs did not reveal regulations of a proximal
gene. This suggests that tgdDMR methylation may either assist
cancer cells in rewiring key signalling pathways through altering
transcriptional signals or accompany other more elusive epige-
netic mechanisms. This notion advocates our study design that
first focuses on differentially methylated regions and consecutive
integration of genetic and transcriptomic data. The layer-wise
filtering starting with DNA methylation allowed us to evaluate
intermediate results on all separate analysis steps and provide a
comprehensive resource of epigenetic biomarkers (Supplemen-
tary Data 2).

Within this study, we focused on cancer type specific dDMRs
and observed strong epigenetically diverse patterns across cancer
types. Since the amount of found dDMRs was directly related to
the studied sample size, we anticipate that forthcoming large-scale
screening efforts can increase the power to detect dDMRs
focusing on tumour subtypes, e.g., in BRCA56 or COREAD57.
Since DNA methylation can correlate with tumour subtypes, our
analysis of dDMRs corrects for global methylation patterns
through its principal components, which increases the ability to
capture local mechanisms.

We showed consistency of tgdDMRs with an independent HTS
and a different methylation profiling technology. Furthermore,
we highlighted concordant epigenetic regulation of gene expres-
sion in human tumour samples, however, matched drug response
readouts in human tumours are lacking. Nonetheless, our
mechanisms may be validated in retrospective analyses of pre-
viously conducted molecularly characterised clinical trials for
exploratory biomarker discovery. Although the signalling net-
work neighbourhoods give insights into the potential mechanisms

for causal relationships or synthetically lethal interactions
between drug targets and tgdDMRs-associated genes, tgdDMRs
as predictive biomarkers remain to be further evaluated. In par-
ticular, melanoma patient subpopulations with promoter hyper-
methylation of tgdDMRs in the NEK9 or CRYAB promoters
could reveal benefits if treated with pevonedistat or pro-apoptotic
agents such as sepantronium bromide, respectively.

We confirmed that DNA methylation in promoters is the
major regulatory mechanism, and only sparse evidence supports
mechanisms in gene bodies or distal regions. Thus, the role of
methylation in cancer beyond its relevance in tumorigenesis and
potential epigenetic vulnerabilities remains elusive. Upcoming
technologies may enable the investigation of alternative epigenetic
mechanisms in mediating drug responses beyond DNA methy-
lation. For example, another class of epigenetic modifications,
histone acetylation and histone methylation, are commonly
associated with tumorigenesis and transcriptional regulations in
cancer58. Furthermore, sequencing technologies beyond the tra-
ditional epigenome, e.g., ATAC-seq chromatin accessibility and
Hi-C chromosome conformation, can yield further regulatory
insights.

In essence, epigenetic data has the potential to yield the next
generation of predictive biomarkers for precision medicine. The
results of our analysis show that DNA methylation com-
plemented with multi-omic data integration can reveal inter-
pretable biomarkers for expanding the limited number of
epigenetic biomarkers in clinical use. Our analysis for pharma-
coepigenomics can be applied to any drug screening effort with
complementary multi-omics characterisation. Therefore, it may
refine existing patient stratification and enhance the development
of personalised cancer therapies in future.

Methods
Cancer cell lines and primary tumours. We leveraged cancer cell lines from the
Genomics of Drug Sensitivity in Cancer (GDSC) project10 and the Cancer Cell Line
Encyclopaedia (CCLE) project12 as discovery and validation cohort, respectively.
Both databases have been extensively characterised and curated59. The primary
tumour samples are included in The Cancer Genome Atlas (TCGA), which aims to
adhere to established guidelines and regulations regarding the use of human data60.
Ethics and policies regarding the TCGA study are available at https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/policies.
Additional demographic characteristics of TCGA are available under https://portal.
gdc.cancer.gov/ and have been reported previously61.

DNA methylation. The raw methylation profiling data from GDSC, generated with
the Infinium HumanMethylation450 BeadChip array, were downloaded from the
Gene Expression Omnibus (GEO: accession number GSE68379 https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379). The data was processed with the R
Bioconductor package Minfi62, performing the noob background subtraction with
dye-bias normalisation. After that, we filtered cross-reactive probes63 and probes
falling on sex chromosomes. The methylation beta-values were extracted and
normalised by using the BMIQ method implemented in the R Bioconductor
package ChAMP64. The probe annotations were obtained from the package
IlluminaHumanMethylation450kanno.ilmn12.hg1965.

The raw methylation profiling data from CCLE, generated with the reduced
representation bisulfite sequencing (RRBS) methylation profiling technology, were
downloaded in the form of fastq files from the Sequence Read Archive (SRA:
accession number PRJNA523380 https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA523380/) using the SRA toolkit. We found 651 cell lines in our selected
cancer types and performed quality control analysis and adaptor trimming using
FastQC and TrimGalore66, respectively. Subsequently, methylation percentage calls
were retrieved from Bismark67 using methylKit68.

For the human primary tumours in TCGA, the preprocessed beta-values from
the Infinium HumanMethylation450 BeadChip were downloaded from the GDC
data portal (https://portal.gdc.cancer.gov/), accessed on the 18th October 2019.
They were downloaded and processed with the R package TCGAbiolinks69, using
the ChAMP preprocessing pipeline consisting of filtering, imputation and
normalisation methods with default parameters. Cancer types that either lacked
DNA methylation or gene expression data, or had low sample size (n < 8), were
excluded from further analysis, i.e., LAML, ALL, SCLC, NB, MM and OV.
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Gene expression. For the cell lines in the GDSC project, we downloaded the
RMA-processed Affymetrix array data from their website http://www.
cancerrxgene.org /gdsc1000/, accessed on the 8th August 2019. For the human
tumours, we downloaded the Hi-Seq count data from the RNAseq experiments in
the TCGA database https://portal.gdc.cancer.gov/, accessed on the 18th October
2019. For the subsequent analysis, we performed variance stabilising transforma-
tion (VST) on the transcript count matrix.

High-throughput drug response screens. For the discovery cohort, we leveraged
the HTS from the GDSC project http://www.cancerrxgene.org/downloads/bulk_
download release 8.0. We limited the analysis to the 22 cancer types that had >15
fully treated and molecularly characterised cancer cell lines. Drug response was
quantified by using the area-under-the-curve (AUC). A drug was required to
display partial drug response across at least three cell lines, i.e., AUC ≤ 0.7. For the
independent validation cohort, we used the Cancer Therapeutics Response Portal
(CTRP) project https://portals.broadinstitute.org/ctrp.v2.1.

Linear models and spatially correlated methylation sites for the identification
of differentially methylated regions (dDMR calling). We employed a two-step
analysis method to identify the differentially methylated regions of drug response
(dDMRs). First, we identified differentially methylated sites in cancer cell lines. For
that, we built linear models which fit the drug response denoted as y by the
methylation beta-value denoted asm for each CpG site and drug in all cancer types,
while correcting for the screening medium (c1), growth properties (c2), micro-
satellite instabilities (c3) and the first two principal components (pc1; pc2) to correct
for global methylation patterns. Thus, the linear model was defined by

y ¼ β0 þ β1mþ β2c1 þ β3c2 þ β4c3 þ β5pc1 þ β6pc2; ð1Þ

where β0; ¼ ; β6 are the regression coefficients. The analysis was performed for
each cancer type separately. The p-values were derived from the significance of the
regression coefficient β1 using a t-test for the respective CpG site. For the extraction
of differentially methylated regions of drug response (dDMRs), we employed the
software Comb-p70,71 with default parameters. We first calculated the auto-
correlation (ACF) between sites and the Stouffer-Liptak-Kechris correction of
ACFs, followed by subsequent extraction of regions based on the Šidák-adjusted p-
values (adj. p) while merging peaks within 1000 bases. dDMRs were called with a
cutoff of adj. p < 10−6. For the post-processing, the extracted regions were filtered
such that there existed more than three cell lines that were aberrantly methylated
for each dDMR. For this, we counted the number of cell lines which showed a
methylation beta-value < 0.3 and beta-value > 0.7. Furthermore, we filtered regions
for which the contained CpG sites did not meet the threshold for the raw p < 0.01.
The identified region is labelled a dDMR, if both criteria were fulfilled. This sub-
sequently yielded 802 drug differentially methylated regions (dDMRs) for 186
drugs. The effect size for each dDMR was defined as the mean of the regression
coefficients β1 across all CpG sites contained in the called region. The raw p-value
(p) for each CpG site and the Pearson correlation coefficient (r) are reported for
statistical tests analysing DNA methylation and drug response in the manuscript
scatter plots.

Inference of gene regulatory mechanisms as potential drug response bio-
markers in cancer cell lines and human tumour samples. To identify the
proximal genes that were associated with aberrant methylation, we used the R
package ELMER39. We focused on either promoter or distal regions within each
cancer type43. For each dDMR, we tested the association between the methylation
status and the gene expression with a Mann–Whitney U test according to the
default parameters of ELMER39. We corrected for multiple hypothesis testing using
a permutative approach with permutation size= 50000, raw p-value threshold=
0.05 and empirical adjusted p-value (emp. adj. p) threshold= 0.001. The empirical
adjusted p-value (p) and the Pearson correlation coefficient (r) are reported for
statistical tests analysing DNA methylation and gene expression in the manuscript
scatter plots. In addition, for cancer cell lines, we tested if the proximal gene
expression was associated with drug response independently of its dDMR. For this,
we used linear models which fit the drug response to the respective proximal gene
expression accordingly with the analogous linear models built using the
methylation data.

Protein-protein interaction networks between dDMR proximal genes and
drug targets. We identified protein-protein interaction networks in the neigh-
bourhood of tgdDMR-associated genes and drug targets based on the OmniPath
database44. For each of the 58 tgdDMRs, we extracted the correlated proximal gene
and identified the ten shortest paths to each putative drug target using Yen’s
algorithm72. If no path from a gene to a drug target was found in the directed
network, we identified paths traversing from the drug target to the tgdDMR gene.
In summary, we were able to display protein-protein interaction networks with
their shortest paths for 19/58 tgdDMRs, thus enhancing the mechanistic under-
standing of tgdDMRs.

Somatic variants and their association with tgdDMRs. The GDSC project has
compiled a selection of somatic variants and copy number alterations11, which are
available at Cell Model Passports (https://cellmodelpassports.sanger.ac.uk/
downloads). Only somatic mutations in coding regions were considered, which
were binarised to represent the mutant and wild type status. Similarly, we binarised
amplifications and deletions of gene-level copy number alterations. For both we
only considered alterations which showed >3 altered cell lines. For assessing the
correlation between genetic alterations and tgdDMRs, we used univariate linear
models explaining tgdDMR methylation by the mutational status of each alteration.
The p-values were derived from the significance of the regression coefficients and
were multiplicity-adjusted by using the Benjamini–Hochberg method.

CRISPR screens and their association with tgdDMRs. CRISPR knockout data
and associated gene effects on viability were downloaded from the DepMap Public
22Q4 primary files (https://depmap.org/portal/download/all/)28,73. Univariate lin-
ear models assessed associations between CRISPR knockouts for each gene in
signalling network neighbourhoods of all tgdDMRs. The p-values were derived
from the significance of the regression coefficients and were multiple hypothesis-
adjusted by the Benjamini–Hochberg correction.

LINCS drug transcriptomic signatures and their association with tgdDMRs.
We used the CLUE knowledge base (https://clue.io/lincs)74 and its provided API to
retrieve transcriptomic gene signatures from the overlapping compounds with
matching tissue. Next, we tested for enrichments of each tgdDMR-associated gene
and the corresponding genes in the signalling network neighbourhood in the set of
gene signatures using a binomial test. The resulting p-values were adjusted using
the Benjamini–Hochberg method.

Statistics and reproducibility. The sample sizes of the GDSC, CCLE/CTRP and
TCGA data were predetermined by their data availability. We selected cancer types
with >15 distinct molecularly characterised cell lines in the GDSC dataset. Cancer
cell lines in the GDSC were parallelly treated according to the previously published
study protocol11. For the matching cancer types, all distinct primary tumour
samples with both available DNA methylation and gene expression data in the
CCLE and TCGA data were selected. For all datasets, this resulted in 22 cancer
types: small-cell lung cancer (SCLC; nGDSC= 63; nCCLE= 36; nTCGA= 0), lung
adenocarcinoma (LUAD; nGDSC= 63; nCCLE= 87; nTCGA= 484), skin cutaneous
melanoma (SKCM; nGDSC= 52; nCCLE= 50; nTCGA= 104), breast invasive carci-
noma (BRCA; nGDSC= 49; nCCLE= 39; nTCGA= 861), colorectal adenocarcinoma
(COREAD; nGDSC= 46; nCCLE= 47; nTCGA= 325), head and neck squamous cell
carcinoma (HNSC; nGDSC= 40; nCCLE= 29; nTCGA= 520), glioblastoma (GBM;
nGDSC= 35; nCCLE= 37; nTCGA= 51), esophageal carcinoma (ESCA; nGDSC= 35;
nCCLE= 24; nTCGA= 170), ovarian serous cystadenocarcinoma (OV; nGDSC= 34;
nCCLE= 30; nTCGA= 7), lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC; nGDSC= 33; nCCLE= 28; nTCGA= 48), neuroblastoma (NB; nGDSC= 32;
nCCLE= 14; nTCGA= 0), kidney renal clear cell carcinoma (KIRC; nGDSC= 30;
nCCLE= 21; nTCGA= 344), pancreatic adenocarcinoma (PAAD; nGDSC= 29;
nCCLE= 38; nTCGA= 181), acute myeloid leukemia (LAML; nGDSC= 25; nCCLE=
29; nTCGA= 0), acute lymphocytic leukemia (ALL; nGDSC= 25; nCCLE= 24;
nTCGA= 0), stomach adenocarcinoma (STAD; nGDSC= 23; nCCLE= 29; nTCGA=
338), mesothelioma (MESO; nGDSC= 21; nCCLE= 8; nTCGA= 86), bladder uro-
thelial carcinoma (BLCA; nGDSC= 19; nCCLE= 24; nTCGA= 428), multiple mye-
loma (MM; nGDSC= 17; nCCLE= 24; nTCGA= 0), liver hepatocellular carcinoma
(LIHC; nGDSC= 17; nCCLE= 20; nTCGA= 412), brain low-grade glioma (LGG;
nGDSC= 17; nCCLE= 15; nTCGA= 511) and thyroid carcinoma (THCA; nGDSC=
16; nCCLE= 10; nTCGA= 551). The reproducibility of biomarkers was assessed by
the overlapping CCLE/CTRP DNA methylation and drug response data as inde-
pendent validation cohort. Discrepancies between drug response biomarkers in
CCLE/CTRP may arise due to technical noise or differences in drug screening
assays, but showed high consistency as reported.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets that were analysed in this study are publicly available within the outlined
repositories. Specifically, the GDSC and CCLE DNA methylation data are available on
Gene Expression Omnibus (GEO: accession number GSE68379) and Sequence Read
Archive (SRA: accession number PRJNA523380), respectively. The TCGA DNA
methylation data is available on the GDC data portal https://portal.gdc.cancer.gov/. The
GDSC and CCLE drug response data are available on http://www.cancerrxgene.org/
downloads/bulk_download release 8.0 and the Cancer Therapeutics Response Portal
https://portals.broadinstitute.org/ctrp.v2.1, respectively. The GDSC and TCGA gene
expression data are available on http://www.cancerrxgene.org /gdsc1000/ and the GDC
data portal https://portal.gdc.cancer.gov/, respectively. The GDSC somatic variants and
copy number alterations are available at Cell Model Passports https://cellmodelpassports.
sanger.ac.uk/downloads. The CRISPR screens are available on DepMap https://depmap.
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org/portal/download/all/ and the LINCS data is available on CLUE https://clue.io/lincs.
The processed datasets are publicly available on Zenodo75. Source data for the figure
panels are provided in Supplementary Data 3.

Code availability
The source code for the presented analysis is available at https://github.com/MendenLab/
pheb v0.1.0. It refers to a runnable docker image that contains all used software for data
analysis. The statistical analysis can be reproduced with the source code and datasets
provided on Zenodo75.
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