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Cross-species transcriptomics reveals bifurcation
point during the arterial-to-hemogenic transition
Shaokang Mo 1,2,3,4, Kengyuan Qu2,3,4, Junfeng Huang 2,3,4✉, Qiwei Li2,3, Wenqing Zhang 1✉ &

Kuangyu Yen 2,3✉

Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge

from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-

hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Character-

ization of this AECs subpopulation and whether this phenomenon is conserved across species

remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages

refined mouse information to explore under-studied human EHT. Utilizing single-cell tran-

scriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship

between these two species, with minimal pre-HSC signals observed in human cells. The pre-

HE stage contains a conserved bifurcation point between the two species, where cells pro-

gress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify

ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting

hemogenic choice using a human in vitro differentiation system. Our findings advance human

arterial-to-hemogenic transition understanding and offer valuable insights for manipulating

HSC generation using in vitro models.
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Hematopoietic stem cells (HSCs) can develop into all blood
cell lineages and are vital to individual survival1,2.
The first embryonic HSC emerges in the AGM through

EHT3, whereby individual HE becomes round form HCs that
aggregate into intra-aortic clusters (IACs)4–13. Within those
HCs, CD41+CD45- T1 pre-HSCs further differentiate into
CD41+CD45+ T2 pre-HSCs before maturing into definitive
HSCs14,15.

During mouse EHT within the AGM, not all AECs differentiate
into HSC-forming HEs; some may develop into mature arterial
cells16. Moreover, studies indicate that immature HEs need to go
through an arterialization process before differentiating into
definitive lymphoid–myeloid progenitors9,17. These findings
indicate an intimate relationship between arterial specification
and HSC formation7. Furthermore, research suggests that the
transition from AEC to HE passes through a relatively unex-
plored intermediate pre-HE stage18, where cells initiate hemato-
poietic programs while retaining arterial features. Within this
AEC to pre-HE to HE transition, a developmental bottleneck
exists between pre-HE and HE18. Runx1, a master regulator for
EHT, has been shown to assist pre-HEs in overcoming this bot-
tleneck and allowing cells to further develop into HEs18. These
findings suggest that pre-HE may serve as a critical stage for
hemogenic fate determination, and AECs require driving forces to
achieve hemogenic fate. Nevertheless, the mechanisms that spe-
cifically facilitate the hemogenic choice of mouse AEC remain
poorly understood.

Human HSC-forming HEs may also originate from
AECs9,17,19,20, and the existence of a human pre-HE stage has
been suggested20. Nonetheless, it remains unclear whether the
role of the pre-HE stage during the AEC-to-HE transition is
similar between human and mouse. However, for ethical reasons,
details regarding the human AEC-to-HE transition are less well
characterized compared to that of the mouse. Furthermore, the
mouse has long served as a model organism to study various
human biological processes, including EHT11,21,22. This high-
lights the need for cross-species comparative studies that identify
cellular differences and explore developmental relationships
between species23–31, thereby bypassing the limitations con-
straining human EHT research.

For cross-species comparative studies, homologous genes that
share similar DNA sequences and functions across species pro-
vide an entry point. Various cross-species analysis tools have been
developed utilizing homologous genes24,25,32–34. For instance, La
Manno et al.24 used a Bayesian generalized linear model (GLM)
to identify significantly expressed genes in each cell type and
compared analogous cell types across tested species using these
genes. However, these approaches are restricted in cases where
the annotation of corresponding cell types is unavailable. This
requirement is frequently obstructed by subjective assumptions
and insufficient markers for cell type identification, especially in
non-model species, which constrains cross-species analysis.
Consequently, a tool that requires no prior knowledge could
circumvent these limitations.

To further elucidate the AEC-to-HE transition, here we
introduce HomologySeeker, a cross-species analysis pipeline that
detects homologous genes exhibiting highly variable expression in
an unbiased manner. Without prior cell type annotation in
reference or query species, HomologySeeker accurately captures
well-established EHT-related homologous genes between mouse
and human EHT ensembles that are constructed from publicly
available single-cell transcriptome profiles. We present evidence
to show that mouse and human EHT exhibit analogous cell type
correspondences, with minimal T1/2 pre-HSC signals observed in
human cells. Furthermore, mouse and human exhibit similar
developmental trajectories from arterial to hematopoietic groups

and display comparable transcriptional expression patterns along
the trajectories. Additionally, the pre-HE stage serves as a bifur-
cation point where cells face hemogenic or arterial choices, and
this bifurcation point is conserved between both species. We
further examine publicly available human spatial transcriptomics
data to identify the ligand modules responsible for the distinct
developmental choices of cells in the pre-HE stage between
hemogenic and arterial fates. Using a human in vitro hemato-
poietic differentiation system, we validate the role of CXCL12
cytokine, identified from the module that facilitates further
development into the hemogenic fate, in promoting the hemo-
genic choice of hemogenic precursors. Furthermore, we observed
an increased production of HPCs with enhanced multilineage
differentiation capability in the CXCL12 group compared to the
control group. Our results contribute to a deeper understanding
of human AECs and their selection of the hemogenic fate in vivo.
Moreover, HomologySeeker provides a valuable tool for com-
parative transcriptomic studies across various contexts.

Results
HomologySeeker identifies EHT-related highly variable
homologous genes. To bypass the requirement of prior annota-
tion, we developed an analysis pipeline called HomologySeeker
(“Methods”). HomologySeeker utilizes highly variable expressed
homologous genes (herein termed Homologous-HVGs), assum-
ing that genes with high expression variability are more likely to
represent genuine biological variation35. Briefly, HomologySeeker
identifies homologous genes among tested species, ranks them
based on expression variance, and then sets a cutoff using the
mean value of all variances to retrieve genuine Homologous-
HVGs (Fig. 1a; “Methods”). The calculation of Homologous-
HVGs proceeds in an unsupervised manner, requiring no addi-
tional information, and is applicable for downstream analysis,
thus offering the potential for flexible cross-species analysis
application.

To evaluate the performance of HomologySeeker, we re-
analyzed La Manno et al.24 scRNA-seq datasets with pre-assigned
cell identities removed (Supplementary Fig. 1a; “Methods”; Sup-
plementary Data). We first identified overlapping Homologous-
HVGs between human and mouse and then calculated the
transcriptome correlation among cell clusters (Supplementary
Fig. 1b, c). We then assigned identities to these cell clusters based
on the expression level of the marker genes used in La Manno
et al.24. Although we observed nearly 50% overlap between our
Homologous-HVGs and the homologous genes identified by La
Manno et al. (Supplementary Fig. 1d), the transcriptome
correlation analysis using Homologous-HVGs reproduced the
same paired cell types described in La Manno et al. (Supplemen-
tary Fig. 1e, left heatmap). This demonstrated the feasibility of
Homologous-HVGs for comparative analysis across species.

We then applied HomologySeeker to identify Homologous-
HVGs in mouse and human EHT (“Methods”). To encompass
cells at various EHT stages before screening Homologous-HVGs,
we constructed human and mouse EHT ensembles using
published single-cell RNA-seq datasets generated from surface
markers-enriched endothelial cells (ECs), hemogenic ECs
(HECs), IACs, hematopoietic stem/progenitor cells (HSPCs),
and fetal liver HSCs (FL-HSCs) (“Methods”; Supplementary
Data). Directly merging datasets caused cells to cluster based on
the dataset rather than cell type (Supplementary Fig. 2a). To
mitigate batch effects among various datasets, we employed the
“anchor”-based integration method36 for merging datasets. Using
the cell identities defined by the original studies (hereafter called
pre-defined)18–20,37,38, similar cell types tended to cluster
together, prompting us to unify corresponding cell types

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05190-6

2 COMMUNICATIONS BIOLOGY |           (2023) 6:827 | https://doi.org/10.1038/s42003-023-05190-6 | www.nature.com/commsbio

www.nature.com/commsbio


(Supplementary Fig. 2b). We observed a continuous landscape in
both mouse and human EHT ensembles, as shown in the two-
dimension UMAP (Supplementary Fig. 2c, d). Notably, the mouse
EHT ensemble captured the accumulated “bulge” (Supplementary
Fig. 2c), identified as the pre-HE stage in Zhu et al.18. These
results indicate that our data merging preserved the biological
relationships among cells without distorting the original datasets.

Using HomologySeeker, we identified 2456 and 3248
Homologous-HVGs in mouse and human ensembles, respectively
(Supplementary Fig. 3a; Supplementary Data). As expected, EHT-
associated genes, including SOX1739, RUNX18,40,41, and
MYB42–44, appeared as Homologous-HVGs (Supplementary
Fig. 3a). Among these Homologous-HVGs, 1628 genes are
common between mouse and human (hereafter as “common
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EHT-associated Homologous-HVGs in Supplementary Fig. 3a).
In this gene set, we found that 76 out of the top 100 biological
pathways enriched in mouse and human were identical
(Supplementary Fig. 3c; Supplementary Data), suggesting that a
large proportion of these common EHT-associated Homologous-
HVGs may participate in similar biological processes. None-
theless, species-specific terms such as “Coagulation” in human
and “Wound healing” in mouse that are both related to the tissue
healing process were also observed. These differences could reflect
underlying biological differences or variations in nomenclature
between species.

Mouse and human EHT display analogous developmental
relationship. To evaluate the similarities between mouse and
human EHT, we first examined cellular correspondence. We
calculated the transcriptome correlation between the pre-defined
cell types of mouse and human EHT ensembles using the com-
mon EHT-associated Homologous-HVGs (“Methods”, Supple-
mentary Fig. 3b). Based on the relative levels of Pearson
correlation coefficients, we grouped corresponding mouse and
human pre-defined cell types into three sections on the resulting
heatmap: Endo (venous group), Hemo (arterial/hemogenic
group), and Hema (Hematopoietic group) (green, orange, and red
rectangles, respectively in Fig. 1b). We also conducted “anchor”-
based query projection to assign potential human cell identities,
using the mouse as a reference (Fig. 1c). Consistent with the
transcriptome correlation analysis, almost all human VECs were
anchored to mouse Wnt EC, human AEC/HEC to mouse AEC/
pre-HE/HEC, and HSPC/HC to mouse IAC/FL-HSC (Fig. 1c).

Interestingly, using pre-defined annotation, we found that the
majority of human HSPC1 (~69%, GJA5+ HSPC) and HSPC3
(~79%, GFI1B+ HSPC) exhibited higher mouse FL-HSC scores
(Fig. 1c, Supplementary Data). The other human cell types within
the Hema group exhibited either higher IAC or FL-HSC scores,
indicating diverse hematopoietic potentials within these cells.
Notably, a negligible number of human cells were anchored to
mouse T1/T2 pre-HSC (T1/T2). Since the “anchor”-based
projection relies on the shared nearest neighbors (SNN) of
reference cells36, we speculated whether the limited “human T1/
T2” signals in “anchor”-based query projection resulted from the
large number of mouse IACs co-occupying the T1/T2 in UMAP
(Supplementary Fig. 4a, upper panel). However, even with a
modified mouse EHT ensemble excluding IACs, we noted
minimal T1/T2 assignment of human cells (Supplementary
Fig. 4b, lower panel). Considering our EHT ensembles include
diverse datasets with various marker combinations for isolating
specific cell populations, the weak T1/2 signal observed in human
cells may be due to the variability in marker usage and the limited
presence of certain cell types (Supplementary Data). Therefore,
the existence of pre-HSCs in human EHT remains uncertain,
necessitating further exploration.

The observation that each human pre-defined cell type
correlates with several mouse pre-defined cell types indicates
heterogeneity within human cell types. To delineate potential cell
sub-clusters within those heterogeneous pre-defined human cell

types, we re-segmented the human EHT ensemble using the
Louvain algorithm, a graph-based unsupervised clustering
method45 (“Methods”). We employed a “cluster tree”46 to
objectively choose a stable clustering resolution, resulting in 10
sub-clusters (Supplementary Fig. 5a; Fig. 1d; C1–10). The
correlation between mouse cell types and human sub-clusters
reveals additional details (“Methods”, Supplementary Fig. 5b). For
example, human C4 exhibits the strongest correlation to mouse
AEC while human C6 has the highest correlation to mouse pre-
HE (Supplementary Fig. 5b). We then tried to assign cell
identities to human sub-clusters, using the mouse as a reference
(“Methods”). We applied a machine learning algorithm47 to
obtain cell type signatures by using the expression levels of
common EHT-associated Homologous-HVGs from mouse to
train prediction scores for human sub-clusters (Fig. 1e). We
observed high AEC, pre-HE, and HE scores, but low T1, T2, IAC,
and FL-HSC scores in human C4–C7 sub-clusters (Fig. 1f).
Notably, human C6 was assigned the highest pre-HE score
compared to all other human sub-clusters. Conversely, C8–10
exhibited low scores in AEC, pre-HE, T1, and T2 but high IAC
and FL-HSC scores (Fig. 1f, Supplementary Fig. 4c). Furthermore,
mouse pre-defined cell types and human re-defined sub-clusters
displayed comparable EHT marker gene expression patterns
(Fig. 1g).

Other than cellular correspondence, we then constructed
developmental trajectories for mouse and human EHT ensembles
using Monocle348. Given the arterial origin of the definitive HSCs
from the AGM region49,50, we assigned mouse AECs and human
C4 as the trajectory roots (Fig. 2a, b). Mouse and human EHT
ensembles both displayed a continuous trajectory from AEC/C4
to FL-HSC/C10, respectively. This continuous trajectory aligns
with the previous findings18–20,37,38. We noted that the human
developmental trajectory diverged toward C9 and C10 (Fig. 2b).
Although both C9 and C10 displayed high IAC scores, C9 had a
higher FL-HSC score (Fig. 1f). To investigate the hematopoietic
potential of C9 and C10, we utilized marker gene sets identified
from the DEGs inference method on publically available
hematopoietic progenitor cell (HPC) transcriptome profiles51

(“Methods”; Supplementary Fig. 5b). C9 consistently displayed
higher hematopoietic stem cell/multipotent progenitor (HSC/
MPP) scores, as well as higher scores for LMPP1/2 that associated
with monocyte/dendritic progenitors (MD) and granulocyte-
monocyte progenitors (GMP) (Supplementary Fig. 5c, lower
panel). Conversely, C10 showed higher lymphoid-primed MPPs
(LMPP3) scores, indicating its potential for differentiation toward
the lymphoid lineage (Supplementary Fig. 5c, red circle). These
results suggest that C9 and C10 likely arise independently from a
common precursor (C8) and possess distinct hematopoietic
potentials. This finding is consistent with recent research in
mouse that HSCs and hematopoietic progenitors may be
generated independently of the heterogeneous pre-HSPC
population52,53.

As transcription factors (TFs) play a vital role in EHT21, we
further investigated the behavior of TFs along this trajectory. We
first selected TFs from Homologous-HVGs (226 and 274 TFs

Fig. 1 Cell correspondences between mouse and human EHT cells. a HomologySeeker workflow. b Pearson correlation heatmap showing the relationship
between mouse and human cell types, with colors representing Pearson correlation coefficients. Endo, endothelium section; Hemo, arterial/hemogenic
section; Hema, hematopoietic section. c Top-left: Schematic of query projection. Bottom: Heatmap displaying projection scores of human cell types
assigned new identities based on mouse reference. Columns represent human cells; rows represent mouse cell types; color intensity represents prediction
scores. Unified: combined human cell type annotation; Origin: original human dataset annotation; Stage: cell timepoints. d UMAP visualization of human sub-
clusters (C1–C10) post-unsupervised clustering. e Schematic of SingleCellNet model from (Tan et al.47). f SingleCellNet prediction scores of human cells
using mouse cell types as a reference; higher scores indicate greater confidence. g Expression levels of marker genes across mouse cell types (upper panel)
and human sub-clusters (lower panel). V, venous; A/Endo, arterial or endothelial; Hema, hematopoietic.
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from mouse and human, respectively) (“Methods”; Fig. 2c). More
than 50% of these TFs are common to both species. Numerous
well-known EHT regulators, including endothelial/arterial TFs
SOX17/18 and hematopoietic TFs RUNX1/MYB, are present
among these shared TFs (Fig. 2c, upper panel). The combination
of both endothelial and hematopoietic TFs highlights the
simultaneous regulation of endothelial and hematopoietic
programs in EHT16,19,20,37,38. To identify potential TF regulatory
modules, we applied hierarchical clustering to analyze the
expression changes of these TFs along the EHT trajectory and
used DynamicTreeCut54 to discern TF modules (Fig. 2c, lower
panel). We found that both species displayed two distinct TF
modules. To assess the behavior of these two TF modules behave
along the trajectory, we assigned module scores to each cell type

(“Methods”; Fig. 2d). For both species, TF module 1 displayed a
downward trend along the trajectory, indicating the down-
regulation of this module as EHT progresses. This TF module 1
contains Nr2f2, Hey2, Sox17, and Sox18, with the majority being
endothelial marker genes. TF module 2 comprises Runx1, Myb,
Spi1, and Hif, all recognized as positive hematopoietic regulators.
TF module 2 showed a consistent pattern along the mouse EHT
trajectory while exhibiting an increasing trend in the human EHT
trajectory. Together, these results indicate that mouse and human
EHT share similarities in corresponding cell types, developmental
trajectories, and transcriptional expression patterns.

Mouse and human EHT harbor a bifurcation point during the
AEC-to-HE transition. During mouse EHT, subsets of AECs
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undergo cell fate choices towards either HE or mature arterial fate
(late AEC, lAEC)16 (Fig. 3a). Within the mouse ensemble, we
observed a bifurcation in the EHT trajectory where pre-HE
diverged towards HE or E11.5 EC (hereafter EC) (Fig. 2a; zoomed
in Fig. 3b, left). This EC exhibited high expression of Ltbp4, a
mature arterial feature gene55 (Fig. 3b, right), leading us to
hypothesize that pre-HE may be a bifurcation point for cell fate

decisions. To investigate this hypothesis, we projected publicly
available single-cell transcriptome profiles, which functionally
validate the cell fate choices of early AEC (eAEC) toward HE or
lAEC16, onto our mouse EHT ensemble (“Methods”; Fig. 3a). The
published eAEC-to-HE trajectory aligned with our AEC-to-HE
trajectory (Fig. 3c), and areas where eAEC makes choices between
HE or lAEC fates corresponded to pre-HE in our data, indicating
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that pre-HE possesses a transcriptome comparable to eAEC. In
addition, lAEC was projected to the tip of the “bulge” where the
EC is located. EC showed the highest module scores measuring
the expression level of genes involved in EC development, arterial
EC differentiation, and blood vessel EC differentiation (Fig. 3d,
left panel), supporting the arterial fate choice of late AEC.
Moreover, we observed parallel patterns in the enriched biological
pathways during the transition from pre-HE to HE/EC and from
early AEC to HE/late AEC (Supplementary Fig. 8a, b). These
results indicate that the eAEC identified in previous work16 may
correspond to the pre-HE in our mouse EHT ensemble; conse-
quently, pre-HE in our mouse EHT ensemble may possess the
ability to choose different cell fates.

We also observed a bulge between human C6 and C7 sub-
clusters (Fig. 1d). Given the similarity between these two species
(Figs. 1 and 2), human EHT might encounter similar cell fate
choices during the AEC-to-HE transition. Notably, human C6
showed the highest pre-HE score among all other sub-clusters
(Fig. 1f) and exhibited pre-HE signatures in terms of dynamic
trajectory, marker genes, and cell composition20 (Supplementary
Fig. 6a–c). These findings indicated that C6 likely represents
human pre-HE and faces bifurcation choice akin to mouse pre-
HE. To explore this, we projected published GJA5+ AECs from
CS16 dorsal aorta27 (hereafter called GJA5+ AEC) onto the
human EHT ensemble using a similar approach to Fig. 2b
(“Methods”). Most GJA5+ AECs clustered at the tip of the C6/C7
bulge, with some scattered at C5/C6 (Fig. 3e), resembling mouse
lAECs (Fig. 3c). We then assessed whether C6 exhibits diverging
trajectories toward C7 or GJA5+ AEC. After merging human C4-
C7 and GJA5+ AEC into a localized cohort, we performed
Monocle3 trajectory analysis using a similar strategy to Fig. 2a, b
(“Methods”). Comparable to the bifurcation choices encountered
by mouse pre-HE, we observed a trajectory starting from C4,
reaching C6, and then diverging into C7 or GJA5+ AEC (Fig. 3f;
Supplementary Fig. 7a, b). The transition from C6 to C7 revealed
the emergence of hemogenic markers (RUNX18,40,41 and
KCNK1720) (Supplementary Fig. 7d), whereas the C6 to GJA5+

AEC transition retained pre-HE markers20 ALDH1A1 and IL33
but lacks expression of hematopoiesis-associated genes
(HOXA956 and MLLT357). This indicates that the transition
from C6 to C7 is involved EHT, while the C6 to GJA5+ AEC
transition follows arterial processes. Similar to mouse ECs, human
GJA5+ AECs exhibited comparatively high scores in all tested
modules (Fig. 3d, right panel). Notably, human C5 appeared as an
outlier, suggesting that C5 might not participate in EHT either
(Fig. 3f).

We further examined if similar transcriptional networks
govern the fate choices in mouse pre-HE and human C6 sub-
cluster. We integrated GJA5+ AECs into our human EHT
ensemble (Supplementary Fig. 7c) and calculated the differentially
expressed genes (DEGs) between these two choices (Supplemen-
tary Fig. 8c, d; Supplementary Data, pre-HE vs. HE/EC in mouse,

C6 vs. V7/GJA5+ AEC), followed by GO term analysis (Fig. 3g, h;
Supplementary Data). Upregulated DEGs in mouse pre-HE-to-EC
and human C6-to-GJA5+ AEC transition were enriched for
vasculature/angiogenesis development and endothelial develop-
ment pathways, indicating a vascular fate toward EC/GJA5+ AEC
(Fig. 3g, h). These pathways were down-regulated in the pre-HE-
to-HE transition in mice and the C6-to-C7 transition in humans
(Fig. 3g, h), suggesting an alternative choice toward HE/C7
direction. Upregulated DEGs of the pre-HE-to-HE transition in
mouse weremainly enriched for ribosome-related pathways, while
in human, they predominantly focused on protein modification-
related pathways. (Fig. 3g, h, bar plot in red). This is consistent
with prior research that highlighted the role of enhanced
ribosomal activity and protein translational processes in the
development of HSC-primed HE across both species16,19. We
then employed ChEA358 analysis to identify potential upstream
regulators of these upregulated DEGs in both the pre-HE-to-HE
in mouse and the C6-to-C7 in human. We observed that the top
10 regulators converge on the core factor MYC59 in both species
(Fig. 3i, j; Supplementary Data), aligning with a prior study that
demonstrated diminished HECs in the aorta upon Myc
deletion58. These results indicated that parallel transcriptional
networks govern the fate transitions in both mouse and human.

Identification of external signals that facilitate bifurcation
choices during the AEC-to-HE transition. Cell fate transition
during EHT is guided by the surrounding cellular environment60.
To gain a better understanding of how external factors impact
transcription networks during bifurcation choice, we analyzed
publicly available human spatial transcriptomics data, which
provided transcription profiles for the nearby niche of AGM20.
We treated each spot on the spatial transcriptomics slide 7 from
the CS15 human embryo as a single pseudo cell and used applied
unsupervised clustering45 to categorize these pseudo cells into 11
major cell populations, with S1 and S8 derived from AGM
(Supplementary Fig. 9a; “Methods”). We then applied
NicheNet61, which predicts ligand-target connections through an
integrated model encompassing the signaling path from ligands
to target genes, to identify potential ligands using DEGs from C6-
to-C7 and C6-to-CS16 GJA5+ AEC as downstream targets
(“Methods”; Fig. 4a; Supplementary Data). We considered
potential ligands for EHT as true only if they were expressed by
the S1 or S8 cell populations (Supplementary Fig. 9b, c; Supple-
mentary Data). Notably, various ligands that facilitate C6 to
choose distinct fates could affect the same downstream targets
(Supplementary Fig. 9c, black rectangle).

Among the true potential ligands that facilitate the C6-to-CS16
GJA5+ AEC transition, TGFB1 is the top candidate (Supplemen-
tary Fig. 9b, arterial module). However, TGFB1 also contributes
to the C6-to-C7 transition, implying its divergent roles in cell fate
selection, as previous work has shown that the interplay between
TGFβ and Notch signaling directs AECs to adopt a hemogenic

Fig. 3 Bifurcation point identification during the AEC-to-HE transition. a Developmental trajectory starts from early AEC (eAEC) and bifurcates toward
late AEC (lAEC) or HEC. b Left: Close-up of mouse trajectory concerning AEC-Pre-HE-EC/HE transition from Fig. 2a. Right: Expression levels of marker
genes for mouse cell types-Nr2f2 (venous marker), Pecam1 (CD31-coding gene) and Cdh5 (endothelial markers), Ltbp4 (mature arterial marker), Ptprc
(CD45-coding gene, hematopoietic marker). c Query projection of mouse scRNA-seq data from (Hou et al.16) into mouse ensemble (gray). eAEC (blue),
early AEC; lAEC (red), late AEC; HEC (orange). d Module scores for mouse and human cell types/sub-clusters based on gene sets from GO terms and TF
module 1. e Query projection of human GJA5+ AEC from Crosse et al.27 into human ensemble (gray). f Human developmental trajectory starting from C4
and branching at C6 toward GJA5+ AEC and C7. g Top five biological pathways enriched by DEGs between mouse pre-HE and HE, and analogous terms
enriched by DEGs between pre-HE and EC. Red/blue GO terms indicate enrichment by up/down-regulated DEGs. h Top 5 biological pathways enriched by
DEGs between human C6 and C7, and matching terms enriched by DEGs between C6 and GJA5+ AEC. Red/blue GO terms signify enrichment by up/
downregulated DEGs. i, j Local regulatory networks among the top ten upstream regulators of upregulated DEGs between mouse pre-HE and HE (i), and
between human C6 and C7 (j). Network edges represent co-regulatory relationships with edges involving MYC, highlighted in red.
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identity62. SPP1 has been shown to target CD4419,27, a receptor
that marks the HSPC-forming AECs63. Our analysis further
suggests that SPP1 promotes the arterial fate of those HSPC-
forming arterial ECs.

All of the top five true potential ligands that facilitate the C6-
to-C7 transition (Supplementary Fig. 9b, Hemogenic module) are
pivotal during EHT62,64,65. BMP signals (BMP4, BMP5, and

BMP7), especially BMP4, are required for HSC emergence and
maturation within AGM66–68. VEGFA is required for NOTCH
signaling, which activates the hematopoietic program65,69–71.
Besides maintaining the quiescent HSC pool72,73, the CXCL12-
CXCR4 axis has been found to either suppress the EC program of
mouse HE74 or facilitate the generation of engrafting HSCs from
E9-to-E10 hemogenic precursors75, highlighting a vital role for
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CXCL12 in EHT. PCDH7, one of the potential ligands that
facilitate the C6-to-CS16 GJA5+ AEC transition (Supplementary
Fig. 9b), also interacts with CXCR4 (Supplementary Fig. 9c),
implying a distinct function for CXCR4 in cell fate choice under
different conditions.

In our ligand-target analysis, CXCL12 activates several key
regulators (Fig. 4b). Among these key regulators, MEIS1 has been
shown to promote the hemogenic specification of APLNR+

mesoderm progenitors in human76. Consistent with this, MEIS1
was also identified as a TF that specifically regulates the DEGs
between human C6 and C7 (Supplementary Fig. 9c, C7 vs.
C6 specific). Moreover, GATA2, which is vital in HSC
generation77,78, participated in the CXCL12 signaling pathway.
One of the CXCL12 target regulators is MYC, which we identified
as the core upstream regulator of upregulated DEGs in both
species (Fig. 3h, i). Considering its prominent role among the true
potential ligands facilitating the C6-to-C7 transition, we
hypothesize that CXCL12 may selectively promote the hemogenic
choice in human embryonic hematopoietic development.

CXCL12 promotes hemogenic fate. Given the potential role of
CXCL12 during hemogenic fate determination of pre-HE, we
wondered if CXCL12 treatment can truly promote HE formation
from the hemogenic precursor. To this end, we took advantage of
a human pluripotent stem cell (hPSC) in vitro system79 (Fig. 4c)
that mimics hematopoietic differentiation, allowing us to bypass
the ethical restrictions on human embryos. In this monolayer-
based in vitro system that underwent chemically defined culture,
hPSCs (Day 0, referred to as D0) progress through mesoderm
(D2) and endothelial (D4) specification before developing into
hematopoietic progenitors (HPCs) (D7) with multilineage dif-
ferentiation capability. CD144+CD34+CD73−CD184− cells at
D4 are considered as HEs80 (hereafter called in vitro-defined
HEs), and CD34+CD43+ cells at D7 as HPCs (hereafter called in
vitro-defined HPCs). As in vitro-defined HEs are mainly enriched
at D4, hence we anticipate that the hemogenic precursor-to-HE
transition happens between D2 and D4 in this system. Therefore,
we added CXCL12 (Peprotech, 300-28A) into the culture medium
on day 2 to determine whether it promoted the hemogenic
precursor-to-HE transition. After two days of differentiation until
D4, we quantified the abundance of in vitro-defined HEs
(CD144+CD34+CD73−CD184−) using flow cytometric analysis
(FACS) (“Methods”; Fig. 4d; Supplementary Fig. 10a). We
observed that CXCL12 treatment (referred to as the CXCL12
group) significantly increased the amount of in vitro-defined HEs
as compared to the control group (no CXCL12 treatment)
(Fig. 4e, left panel; “Methods”, *P value < 0.05), supporting the
promoting role of CXCL12 in hemogenic fate determination.

Quantitative real-time polymerase chain reaction (qRT-PCR)
analyses of the D4 cells from the CXCL12 group showed
significantly increased RNA expression of hematopoietic markers,
such as GATA2 and RUNX1 (Fig. 4f; “Methods”, *P value < 0.05).
Meanwhile, the RNA expression of endothelial markers, such as

PECAM1 (CD31-coding gene) and TEK (TIE2-coding gene),
showed no significant change (Fig. 4f). Notably, KDR, which
encodes a VEGFR2 receptor that marked the endothelial subset
with hematopoietic potential81,82, exhibits significantly increased
RNA expression under CXCL12 treatment. Additionally, the
increased MYC expression agrees with our analysis that CXCL12
might positively regulate MYC during the C6-to-C7 transition
(Fig. 3h, i; Fig. 4f). These results indicated that CXCL12 facilitates
hemogenic fate by promoting the hematopoietic program instead
of repressing the endothelial program. We then evaluated the
hematopoietic potential for these HEs. Given that in both our
FACS results (Fig. 4d) and the original paper80,83, at D4, CD34+

cells encompassed all CD34+CD144+CD73−CD184− HE cells.
Therefore, for subsequent hematopoietic potential analysis, we
used Magnetic-Activated Cell Sorting (MACS) to isolate CD34+

cells at D4 as a representation of the
CD34+CD144+CD73−CD184− HEs. These CD34+ cells were
cultured in STEMdiff APEL 2 medium until day 7 (D7) and
followed by assessing the formation of HPCs. Using FACS, we
observed a significantly higher amount of in vitro-defined HPCs
(CD34+CD43+) from the CXC12 group (Fig. 4g, h; Supplemen-
tary Fig. 10b; “Methods”, *P value < 0.05), supporting the
enhanced hematopoietic potential of those in vitro-defined HEs
from the CXCL12 group.

Given the increased production of in vitro-defined HEs and
HPCs, we hypothesized that CXCL12 treatment could promote
the multilineage potential of those in vitro-defined HPCs. To test
this hypothesis, we used MACS to sort an equal number of in
vitro-defined HPCs (CD34+CD43+) at D7 from both the
CXCL12 and control groups and followed by measuring their
colony-forming potential using a colony-forming unit (CFU)
assay (“Methods”). In line with our hypothesis, we observed
significantly higher numbers of hematopoietic colonies of
myeloid and erythroid lineages from the CXCL12 treatment
group (Fig. 4i; “Methods“, ***P value < 0.001), indicating an
enhanced multilineage differentiation capability of HPCs from
the CXCL12 group. In summary, our results not only support the
role of CXCL12 in facilitating the hemogenic fate of HE
precursors but also highlight its role in promoting the
hematopoietic potential of HEs (Fig. 5).

Discussion
Here we introduce a cross-species analysis method (Homo-
logySeeker) based on homologous genes exhibiting high levels of
expression variability (Fig. 1a). Compared to state-of-the-art
methods that require prior cell type annotation, including a
recent model (CAME)34 that advances the utilization of non-one-
to-one homologous gene mapping, HomologySeeker avoids prior
cell type annotation for cross-species comparisons. We utilize
HomologySeeker to study EHT transcriptome ensembles that we
constructed from publicly available single-cell RNA-seq datasets
(Supplementary Fig. 2). These ensembles could serve as an
expandable repository for the scientific community. We showed

Fig. 4 Identification of spatial ligands that facilitate cell fate choices of human pre-HEs. a Schematic of signaling pathways from spatial ligands to target
genes (DEGs). b Signaling pathway mediated by CXCL12. The signal travels from CXCL12 (ligand, orange) to receptors (pink) through signaling mediators
(light blue) and regulators (blue), ending at target genes (purple) (DEGs between C6 and C7 regulated by CXCL12). c Schematic of human in vitro
hematopoietic differentiation system from (Shen et al.79). d Representative flow cytometric analysis of the in vitro-defined HEs
(CD34+CD144+CD184−CD73−) from day 4 differentiation. e Cell number of in vitro-defined HEs (CD34+CD144+CD184−CD73−) sorted from day 4 (left
panel) differentiation with or without CXCL12 treatment (n= 3, *P < 0.05). f Expression of PECAM1, CDH5, TEK, GATA2, and RUNX1 in cells from day 4 with
or without CXCL12 treatment. The expression level was normalized to that of β-actin. ns, not significant. (n= 3, *P < 0.05; **P < 0.01). g Representative
flow cytometric analysis of the in vitro-defined HPCs (CD34+CD43+) from day 7 differentiation. h Cell number of in vitro-defined HPCs (CD34+CD43+)
sorted from day 7 differentiation with or without CXCL12 treatment (n= 3, *P < 0.05). i Colony-forming unit (CFU) assay of HPCs generated with or
without CXCL12 treatment. CFUs per 4 × 103 cells plated (n= 3, ***P < 0.001).
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that human and mouse EHT display analogous cell type corre-
spondences, similar developmental trajectories, and comparable
transcription expression patterns (Figs. 1 and 2), substantiating
the conserved nature between these two species. However, due to
the diversity of datasets and potential omissions in the data
integrated into our human ensemble, the minimal T1/2 signals we
observed in human cells (Fig. 1c–f; Supplementary Fig. 4) could
suggest a scarce presence of pre-HSC cells if any. Moreover, we
do not observe mouse cells equivalent to the human C5 popula-
tion (Fig. 1f, g), warranting further exploration. We observe that
pre-HEs have the potential to differentiate into either HEs or
lAECs, a phenomenon conserved between mouse and human
(Fig. 3), which refines our understanding of the human arterial-
to-hemogenic transition. We further identify ligand modules that
contribute to pre-HE choices and demonstrate that
CXCL12 significantly enhances the HSPC-forming potential of
HE precursors using an in vitro differentiation system (Fig. 4).

Our finding that mouse pre-HEs can further differentiate into
HEs or E11.5 ECs (Fig. 3) harmonizes with parallel studies16,18.
These studies show that the cell fate choice of eAECs toward
either HEs or lAECs16 co-occurs with the pre-HE stage, an
intermediate stage between AEC and HE18. Zhu et al.18 knocked
down Runx1, and we observed increased pre-HE numbers but a
reduced amount of HE. This pre-HE-to-HE transition is similar
to that of the eAEC-to-HE transition, as reported by Hou et al.16.
Additionally, the transcriptome profile of lAECs in Hou et al.16

overlaps with E11.5 ECs that reside at the end of the trajectory,
away from the path toward HEs (Fig. 3c). This pre-HE-to-E11.5
EC transition resembles that of the eAEC-to-lAEC transition in
Hou et al.16. Furthermore, cells from this human C6 sub-cluster
exhibit similar fate choices as mouse pre-HE towards the C7 sub-
cluster, which contains HE signatures, or GJA5+ AECs (Fig. 3f).

Taken together, the pre-HE stage may serve as a bifurcation point
for cell fate decisions, and this phenomenon is conserved across
species.

Our study shows that CXCL12 not only facilitates hemogenic
fate but also promotes hematopoietic potential, as evidenced by
the increased number of in vitro-defined HPCs, indicating the
formation of genuine HSPC-forming HEs under CXCL12 treat-
ment (Fig. 4). Furthermore, hematopoietic progenitors treated
with CXCL12 exhibited enhanced multilineage differentiation
capability (Fig. 4i), consistent with a previous study that CXCL12-
CXCR4 signaling enables the generation of long-term engrafting
HSCs from mouse E9-to-E10 AGM derived hemogenic
precursors75. Additionally, our study identifies CXCL12 as a
shared upstream effector for hemogenic regulators, like MEIS175

and MYC59 (Fig. 4b), both involved in mouse hemogenic fate
choice decisions. These findings suggest that CXCL12 plays a
conserved role during the pre-HE-to-HE transition between
mouse and human, potentially serving as a critical checkpoint for
hematopoiesis manipulation. Nevertheless, further exploration is
needed to elucidate the precise mechanism of how CXCL12
promotes hemogenic fate. Studies72,73 have shown that CXCL12
functions through the CXCR4 receptor, which is also involved in
EHT9,19,74,75. Interestingly, only a subset of the CXCR4+ popu-
lation shows hemogenic potential, while others exhibit arterial
features80. Our ligand network analysis indicates that CXCR4
interacts only with either CXCL12 or PCDH7 (Supplementary
Fig. 9c), the latter belongs to ligand modules that facilitate arterial
choices in pre-HEs (Supplementary Fig. 9b, c). Consequently,
PCDH7 may compete with CXCL12 for CXCR4, resulting in a
mutually antagonistic relationship between CXCL12 and PCDH7
that co-regulates pre-HE fate selection.

Our work presents HomologySeeker as a new approach for
investigating cell fate transitions across species. By applying this
method to the study of EHT, we have advanced our under-
standing of this critical developmental stage, particularly during
the human arterial to hemogenic transition. Our findings provide
valuable insight into the regulation of hematopoiesis and the
enhancement of hematopoietic efficiency in human in vitro
differentiation.

Methods
Maintenance and hematopoietic differentiation of hPSCs. The H1 hPSC line
was obtained from the WiCell Research Institute (Madison, WI, http://www.wicell.
org). Cultured cells were maintained on Matrigel-coated 6-well plates (Corning)
containing E8 medium (Gibco)84,85, and the medium was replaced daily. The
hPSCs were sub-cultured every 3–4 days with a treatment of 0.5 mM ethylene-
diaminetetraacetic acid (EDTA; Life Technologies) for passaging when cells
reached 60–70% confluence. For hematopoietic differentiation, single hPSCs were
obtained for sequential EC–HC induction. Briefly, single-cell suspensions of hPSCs
were obtained by treating the hPSC cultures at 70–80% confluency with TrypLE
(Thermo Fisher Scientific). Single cells were then plated at an optimized density of
6 × 103 cells/well onto 12-well plates (Corning) coated with vitronectin (Peprotech)
in STEMdiff APEL 2 Medium (STEMCELL Technologies) supplemented with
3 μM GSK3 inhibitor, CHIR99021 (ABM Inc), 4 ng/ml ActivinA (Peprotech),
10 ng/ml BMP4 (Peprotech), and 10 μM Rho kinase inhibitor, Y-27632 (STEM-
CELL Technologies) on day 0. After 48 h (day 2), the medium was changed to
STEMdiff APEL 2 Medium supplemented with 40 ng/ml VEGF (Peprotech). For
the following 24 h (day 3), recombinant Human FGF2 (ABM Inc.) was added to a
final concentration of 40 ng/ml until day 4. CD34+ cells were isolated from dif-
ferentiated cells on day 4 by magnetic-activated cell sorting (MACS, Miltenyi
Biotec.). We re-seeded the isolated CD34+ cells on vitronectin (Peprotech)-coated
12-well plates (Corning) at a density of 1.25 × 105 cells/well in STEMdiff APEL 2
Medium (STEMCELL Technologies) supplemented with 40 ng/ml VEGF (Pepro-
Tech) and 40 ng/ml FGF2 (ABM Inc) until day 7. The entire differentiation process
was incubated at 37 °C in 5% CO2 with 100% humidity.

Flow cytometry analysis. Cells were dissociated to form a single-cell suspension
by TrypLE treatment and washed with FACS buffer PBE (2% FBS and 0.5 mM
EDTA in PBS). The dissociated cells were then resuspended in PBE and labeled
with fluorochrome-conjugated anti-human CD73-PE-Cy7 (BioLegend, clone:
AD2), CD184-APC (Invitrogen, clone: 12G5), CD144-PE (Invitrogen, clone: 16B1),

CXCL12

Pre-HE

HE Late AEC

IAC

AEC

(AGM Region)

Fig. 5 Cell fate choices during the pre-HE stage. During mouse and human
EHT, a specific subset of AECs differentiates into pre-HEs. In response to
interactions between specific cell fate determinants (like CXCL12) and their
corresponding receptors, pre-HEs may advance toward either a hemogenic
or arterial fate. Those hemogenic precursors that acquire the CXCL12 signal
can further develop into a hematopoietic population with multilineage
differentiation capability aggregated in clusters. AEC arterial endothelial
cell, pre-HE pre-hemogenic endothelium, HE hemogenic endothelium, IAC
intra-aortic cluster.
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CD34-APC-Cy7 (BioLegend, clone: 561), CD34-PE (Invitrogen, clone: 4H11), and
CD43-PE (BioLegend, clone: 10G7). Dead cells were excluded according to DAPI
(BD Biosciences) staining. Isotype-matched control antibodies were used to
determine the background. Flow cytometry was performed using Canto II analyzer
(BD Biosciences). Data analysis was performed using FlowJo software (Tree
Star, Inc.).

RNA extraction and quantitative real-time polymerase chain reaction (qRT-
PCR) assay. Total RNA was extracted using a TRizol reagent (Roche). cDNA was
synthesized from 2 μg of total RNA using the GoScript™ Reverse Transcriptase Kit
(Promega) and stored at -80°C until use. Real-time PCR was performed using a
ChamQ SYBR Color qPCR Master Mix (Low ROX Premixed) (Vazyme) on a
QuantStudio™ 3 (Applied Biosystems). Amplification of β-actin was conducted in
parallel to control for the quantity of loaded cDNA in each reaction. Primer
sequences are listed in Supplementary Data.

Hematopoietic colony-forming unit (CFU) assays. 4000 CD34+CD43+ HPC
single cells in 0.1 ml IMDM (Life Technologies) with 2% FBS were mixed with
MethoCult H4034 Optimum (STEMCELL Technologies). The mixture was then
transferred to ultra-low attachment 12-well plates (Corning). The cells were
incubated at 37 °C in 5% CO2 with 100% humidity for 14 days before counting
colonies. Each type of colony was classified according to morphology. Each assay
was performed in triplicate.

scRNA-seq data collection and pre-processing. For mouse and human midbrain
scRNA-seq datasets from La Manno et al.24, gene expression matrices deposited in
the NCBI Gene Expression Omnibus (GEO) were downloaded under the accession
number GSE76381 (STRT-seq).

For mouse EHT scRNA-seq datasets, gene expression matrices under accession
numbers: GSE112642 (Baron et al.38, Cel-seq) and GSE137117 (Zhu et al.18, 10×
Genomics droplet-based scRNA-seq) were downloaded (Supplementary Data). For
the scRNA-seq data of Zhou et al.37 (GSE135202, STRT-seq) and Hou et al.16

(GSE139389, STRT-seq), raw reads were split by barcode sequence attached in Read
2. The TSO sequence and adapter contaminants were trimmed using trim_galore
(v0.6.7)86 for Read 1. Trimmed Reads 1 were aligned against mm10 mouse genome
using STAR (v2.6.0c)87 (Parameters: outFilterMatchNminOverLread= 0.3,
outFilterScoreMinOverLread= 0.3). Uniquely mapped reads were counted using
HTSeq (v0.13.5)88 and grouped by the cell-specific barcodes. For each barcode, the
copy number of transcripts of a given gene was taken as the number of distinct UMIs
of that gene.

Human EHT scRNA-seq data were collected under accession numbers:
GSE135202 (Zeng et al.19, STRT-seq and 10X Genomics droplet-based scRNA-
seq), GSE162950 (Calvanese et al.20, 10× Genomics droplet-based scRNA-seq), and
GSE151877 (Crosse et al.27, 10× Genomics droplet-based scRNA-seq)
(Supplementary Data). Briefly, sequencing data from 10× genomics was processed
using CellRanger (v2.1.1) with default mapping arguments. The sequencing data of
STRT-seq were processed as mouse STRT-seq datasets, but using the GRCh38/
hg38 human genome for reads mapping. To keep the consistency of gene
annotation, all gene names from mouse and human datasets were converted to
official gene symbols using the alias2Symbol function from limma (v3.18.10)89.
Only CDH5+GJA5+HEY2+APLNR-NR2F2-PDGFRA-PDGFRB-GYPA-EPCAM-

cells from the single-cell dataset (Crosse et al.) were selected as GJA5+ AECs.
For the 10× Genomics droplet-based scRNA-seq dataset from Huo et al.51, the

gene expression matrix was downloaded from GEO under the accession number
GSE224714. Only cells sampled from healthy controls were retained for further
analysis.

HomologySeeker method. As comparative analyses using all homologous genes
may include genes that are not expressed across all cells or unrelated to the
development system in question, making downstream interpretation challenging.
To avoid this, we sought to take advantage of the concept of highly variable genes
(HVGs), which is widely used in single-cell RNA-seq analysis to select genuine
biological variations. Furthermore, HVGs can be identified in an unsupervised and
low-calculation-cost manner that applies to various kinds of development systems.
HomologySeeker is designed to identify homologous gene sets with highly variable
expression (Homologous-HVGs) for cross-species analysis while keeping species-
specific homologous/non-homologous genes for additional purposes.

HomologySeeker consists of two main steps: (i) Homologous gene collection
and filtering, (ii) homologous-HVGs identification. Briefly, homologous genes
between species are collected from Ensemble databases using “getLDS” function in
biomaRt (v2.46.3 was used in this study). HomologySeeker only keeps genes with
one-to-one orthology and high orthology confidence introduced by the Ensemble
database in “Ortholog_qc_manual” section (https://ensembl.org/info/genome/
compara/Ortholog_qc_manual.html). Next, returned gene sets are fed into an
HVG selection method (Seurat v4.1.136 was used in this study) to get variation
levels (i.e., standardized variance) of all genes for each species. Finally, to
objectively select variable genes, HomologySeeker utilizes the mean values of the
variation levels of gene sets as the cutoff for selecting “genuine” highly variable

genes, which results in species Homologous-HVG sets for further comparative
analysis.

EHT ensembles construction. Expression matrices from Zhou et al., Baron et al.,
and Zhu et al. were used to construct the mouse EHT ensemble (Supplementary
Data). Only cells annotated as venous/arterial EC, EC, HE, IAC, T1/2 pre-HSC,
and FL-HSC were included. The ensemble was constructed based on the instruc-
tion of “Performing integration on datasets normalized with SCTransform”90

(https://satijalab.org/seurat/articles/integration_introduction.html) in Seurat.
Briefly, normalization and highly variable genes selection were performed for each
dataset using “SCTransform” function (Parameter: method= “glmGamPoi”,
min_cells= 1). Integration features and objects were prepared using “SelectInte-
grationFeatures” and “PrepSCTIntegration” with default settings, respectively.
Then anchors identified using the “FindIntegrationAnchors” function among
datasets were used for data integration using “IntegrateData” function with default
parameters. The resulting integrated dataset was called the “EHT ensemble”.

For human, expression matrices from Zeng et al. and Calvanese et al. were used
to construct the human EHT ensemble. Only cells annotated as venous/arterial EC,
HE, and HSPC/HC were included for further analysis. The human EHT ensemble
construction was performed as a mouse EHT ensemble.

To maintain the consistency of cell annotation, mouse cell types are unified as
Wnt_EC, AEC, EC, Pre-HE, HE, IAC, T1, T2, and FL-HSC according to original
annotations, whereas human cell types were unified as VEC, AEC, HEC, HC, and
HSPC (Supplementary Fig. 2c).

For merging GJA5+ AECs into the human EHT ensemble, STACAS (v2.0.1)91,
a sub-type anchoring correction method for alignment in Seurat, was used to
prevent batch effect overcorrection. Briefly, each dataset (Zeng et al. (STRT-
seq+ 10×), Calvanese et al., and GJA5+ AEC) was normalized using the
“NormalizeData” function in Seurat. Then “Run.STACAS” function (Parameters:
dims= 1:50) was used to perform the integration analysis of all normalized
datasets.

Dimension reduction and unsupervised clustering. Dimension reduction and
unsupervised clustering were done by Seurat unless otherwise mentioned.

To visualize single cells in 2D space, the dimension of both EHT ensembles was
first reduced based on principal component analysis using the “RunPCA” function
with default settings. EHT ensembles were visualized by projecting cells in 2D
space using UMAP implemented in “RunUMAP” function (Parameters:
dims=1:50).

To cluster the human single cells, the nearest-neighbor graph of the human
EHT ensemble was first constructed using “FindNeighbors” function, and sub-
clusters were identified by the Louvain algorithm using “FindClusters” function
(Parameters: resolution= 0.8, clustree (v0.4.4)46 were used to determine the
optimal clustering resolution).

For the 10x Genomics droplet-based scRNA-seq dataset from Huo et al.,
datasets from each healthy donor were integrated based on the instruction of
“Performing integration on datasets normalized with SCTransform”. Then the
dimension of the integrated dataset was reduced based on principal component
analysis using the “RunPCA” function with default settings. Cells were projected
into 2D space using UMAP implemented in “RunUMAP” function (Parameters:
dims= 1:50).

GO enrichment analysis. GO term enrichment was performed using clusterPro-
filer (v4.5.0.992)92 with default parameters.

Pearson correlation analysis. For Pearson correlation analysis between mouse
and human midbrain data, Homologous-HVGs sets for mouse and human were
calculated based on single cell matrices from La Manno et al. using Homo-
logySeeker. After Homologous-HVG identification, median matrices constructed
by La Manno et al. (genes as rows and cell types as columns with the median value
of that cell type as the matrix value) were used for Pearson correlation analysis.
median matrices (x) were normalized by “log(1+ x)-rowMeans(log(1+ x))” ahead
according to La Manno et al. (“rowMeans” equal to the mean value of each row).
Overlapped Homologous-HVGs between mouse and human were used to calculate
Pearson correlation using the “cor” function implemented in the R base package
(v4.0.3).

For Pearson correlation analysis between mouse and human EHT ensembles,
Homologous-HVGs sets for mouse and human were selected using
HomologySeeker (based on the residual variance of each gene returned by Seurat
integration using the “SCT” method (according to “EHT ensemble construction”
section)). Median matrices and Pearson correlations were calculated based on
corrected single-cell matrices.

Single-cell projection. Single-cell projection analysis was performed following the
instruction of “Mapping and annotating query datasets” (https://satijalab.org/
seurat/articles/integration_mapping.html).

For intra-species projection, the query single-cell dataset was normalized using
the “SCTransform” function. Transfer anchors between query and reference
datasets were identified using “FindTransferAnchors” function. Anchors were then
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used to project the query dataset into reference using the “MapQuery” function.
For inter-species projection, the PCA space of EHT ensembles was re-calculated
using shared Homologous-HVGs between mouse and human EHT ensembles
using the “RunPCA” function. Then anchors between query and reference were
identified using the “FindTransferAnchors” function. Anchors were then used to
project the query dataset into the reference using “MapQuery” function. Prediction
scores were visualized in heatmap using ComplexHeatmap93 (v2.6.2).

Developmental trajectory inference. Developmental trajectory of EHT ensembles
was inferred using Monocle3 (v1.2.7) according to “Calculating Trajectories with
Monocle 3 and Seurat” (http://htmlpreview.github.io/? https://github.com/satijalab/
seurat-wrappers/blob/master/docs/monocle3.html). Briefly, mouse Wnt EC and
human C1–3 (venous EC sub-clusters) were excluded from further analysis. The
Seurat object was first converted to Monocle3 cell_data_set object. Unsupervised
clustering of cells was performed using “cluster_cells” function (Parameter: reduc-
tion_method = “UMAP”, cluster_method = “louvain”). The principal graph was
learned from UMAP space using “learn_graph” function (Parameter: close_loop=F).
Cell order according to pseudo time was inferred using the “order_cells” function.

For the TF expression patterns along the developmental trajectory, we fitted a
local regression to the expression level for each cell at their value of pseudo time
using ggplot2 (v3.3.6) (“geom_smooth” function with method = “loess”) (https://
ggplot2.tidyverse.org).

The developmental trajectory of single-cell RNA-seq data from Hou et al. was
inferred using Monocle (v2.9.0)16. Briefly, the normalization factors and variability
of scRNA-seq data were calculated using “estimateSizeFactors” and
“estimateDispersions” functions, respectively. Only genes that expressed at least 10
cells were retained. Then the highly variable genes of scRNA-seq data calculated by
“FindVariableFeatures” function from Seurat were fed into “setOrderingFilter”
function to acquire features for further trajectory inference. Genes from the cell
cycle GO term (GO:0007049) were filtered out from the highly variable genes to
reduce the influence of the cell cycle effect. Then cells were projected into lower
dimensional space using “reduceDimension” function. The final trajectory was
inferred using “orderCells” function.

TF module identification. Mouse and human TF lists were downloaded from
AnimalTFDB3.0 and HumanTFDB3.0 (http://bioinfo.life.hust.edu.cn/)94, respec-
tively. All TFs were selected from mouse and human Homologous-HVG lists. To
identify potential TF modules, Pearson distance was calculated according to
Pijuan-Sala et al.95. Briefly, the Pearson correlation distance between TFs was
calculated as “([1 − x]/2)0.5”, where x is the Pearson correlation among TFs. Then
hierarchical clustering was performed using the unweighted pair group method
with arithmetic mean (UPGMA), and modules were identified using the “dyna-
micTreeCut” function in dynamicTreeCut (v1.63-1)54.

Differential expression analysis. To find DEGs, Wilcoxon Rank Sum tests
implemented using “FindMarkers” function in Seurat were performed to identify
DEGs. DEGs with adjusted P values less than 0.0001 were deemed significant. For
the DEGs between human C6 and GJA5+ AECs, only the aggregated part (Fig. 3d,
shadow in blue) of GJA5+ AECs was used for differential expression analysis. For
the marker genes modules of HSC/MPP and LMPP from Huo et al.51, DEGs
between HSC/MPP or LMPP and all other cells are calculated. The top 20 upre-
gulated DEGs that ranked by fold change were used for subsequent module score
calculation.

Module score calculation. Module scores of TFs, marker genes, and gene sets
from GO terms were estimated by using the “AddModuleScore” function in Seurat.
The gene sets encompassed by EC development (GO:0001885), Arterial EC differ-
entiation (GO:0060842), and Blood vessel EC differentiation (GO:0060837) were
collected from AmiGO 2 (http://amigo.geneontology.org/amigo).

Identification of potential upstream regulators of DEGs. The upstream reg-
ulators of DEGs between pre-HEs and HEs (C7 vs. C6 in human) were predicted
by TF enrichment analysis using ChIP-X Enrichment Analysis 3 (ChEA3; https://
maayanlab.cloud/chea3/). The TF local network was constructed using the top 10
returned regulators interaction mined from the ENCODE ChIP-seq project.

SingleCellNet analysis. SingleCellNet (v0.1.0)47 was used to assign human cells
with potential identities inferred from mice based on differentially expressed
homologous genes. Briefly, cell types classifiers were built using the “scn_train”
function using mouse cell types as a reference (Parameter: nTopGenes= 100).
Human cells were classified using a trained classifier using the “scn_predict”
function with default settings.

RNA velocity analysis. Velocyto (v0.17.17)96 was used for RNA velocity analysis
of the human EHT ensemble. To annotate spliced, unspliced, and spanning reads
in the measured cells, “run_smartseq2” and “run10x” commands were used to
generate loom files for human STRT-seq and 10× genomics drop-based single-cell
data with GRCh38/hg38 reference genome. The output loom files were combined

and analyzed using the “velocyto.R” package (v0.6). RNA velocity was estimated
using the “RunVelocity” function with default settings. RNA velocities were
visualized on the human EHT ensemble using the shared nearest-neighbor graph
calculated in “Dimension reduction and unsupervised clustering” section using the
“show.velocity.on.embedding.cor” function (Parameter: n= 100, which equals
neighborhood size).

Analysis of spatial transcriptomics data. The spatial transcriptomics matrix of
the CS15 human embryo (slide7) was downloaded from GitHub deposited by
Calvanese et al., and analyzed by Seurat. Briefly, the “SCTransform” function
was used to normalize and find variable genes within the spatial transcriptomics
data. Dimension reduction and unsupervised clustering were then performed
according to the “Dimension reduction and unsupervised clustering” section
with some modifications (Parameters: dims= 1:30 in “FindNeighbors” function,
resolution= 1.2 in “FindClusters” function and dims= 1:30 in “RunUMAP”
function).

Ligand-target signaling inference. NicheNet (v1.1.0)61 was used to infer potential
ligands that share active links with target genes (DEGs between human C6 and C7/
late AEC). Briefly, pseudo cells from spatial transcriptomics data located in the
AGM region were defined as sender cells. Potential ligands expressed by sender
cells were ranked based on how well they interacted with target genes (evaluated by
the Pearson correlation coefficient).

The signaling paths from ligands to target genes were inferred based on the
instructions for “NicheNet Results: Ligand-Targets interesting paths” introduced
by Saez lab that combine NicheNet and OmnipathR (v3.5.21) (https://github.com/
saezlab/NicheNet_Omnipath/blob/master/07_LigandTargetPaths.md). The
resulting pathways were visualized in Cytoscape (v3.8.2)97.

Statistics and reproducibility. Data obtained from multiple experiments were
reported as the mean ± SEM. An unpaired t-test was used to compare the means
from two groups, and ANOVA was used to compare the means from three or more
groups. Results with a value of P < 0.05 were considered statistically significant.
*P < 0.05; **P < 0.01; ***P < 0.001.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data is existing data available in GEO under accession numbers: (Zhou et
al.37, GSE135202), (Baron et al.38, GSE112642), (Zhu et al.18, GSE137117), (Hou et al.16,
GSE139389), (Zeng et al.19, GSE135202), (Crosse et al.27, GSE151877), (Calvanese
et al.20, GSE162950), (La Manno et al.24, GSE76381), (Huo et al.51, GSE224714). Details
are listed in Supplementary Data. The highly variable homologous gene sets, differential
expressed gene sets between different cell types or subclusters, GO biological pathways
enriched by differentially expressed gene sets, upstream regulators of the differentially
expressed genes set, NicheNet singling pathways components, primer sequences for real-
time polymerase chain reaction (QPCR), and cell metadata for mouse and human
ensembles are available as Excel sheets in Supplementary Data. Single-cell analysis code
used in this study is available upon reasonable request.

Code availability
HomologySeeker is openly available as an R package. The code, documentation, and
examples are accessible at https://github.com/YenLab/HomologySeeker. Interfaces for
mouse and human ensembles are also available.
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